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Introduction. The purpose of this paper is two-fold. First, we char-
acterize the maximal left linear topology on a ring. Applying this, we again
prove the equivalence of conditions on a ring, obtained by Nicholson and
Sarath [6], to have a unique maximal left linear topology. Secondly, as in
parallel with Meijer and Smith [7], we investigate the complement of left
linear topologies on a ring R. Thus we consider the collection C(R) of
those left ideals of R which do not belong to any proper left linear topology
on R. Two extremes when C(R) consists of all proper left ideals of R and
C(R) = |0} are examined.

0. Preliminaries. Let R be a ring with identity. We denote by #(R)
the set of all left ideals of R, and by R-mod the category of all unital left
R-modules. For A € ¢ (R) and a subset F of R, we set AF~' ={x € R |
xF C A}. A nonempty subset ¢ of #(R) is called a left linear topology if
the following conditions are satisfied :

Tl. fle ,Je (R)andI< J, thenJ € £.

T2. If Iand J belongto ¢, thenINJ € 2.

T3. If /€ # anda€ R, thenla™' € 2.

A left linear topology & on R is called a left Gabriel topology if £ satisfies
a further condition :
T4. IfIe 2(R) and there exists J € & such that [j7' € & for
every j€ J, thenl € &.

A left linear topology & is called proper if 0 ¢ #. If &, and &, are left
linear topologies on R, we define £, < &, if every member of &, is
a member of #,. A subclass # of R-mod is called a hereditary pretorsion
class if & is closed under isomorphisms, submodules. factor modules and
direct sums. & is called proper it R &€ #. A preradical r for R-mod is
called left exact if r(N) = r(M) N N for every M € R-mod and every
submodule N of M, It is called proper if r(R) == R. and is called cofaithful
if 7(Q) = Q for every injective @ € R-mod. For preradicals r and s for

97



98 H. KATAYAMA

R-mod, we define a preradical r+s by (r+s)(M) = r(M)+ s(M) for all
M € R-mod. For a module @ € R-mod, we define a preradical ¢, for R-mod
by t(M) = 21 Ima, a ranging over Homg(Q, M), for each M € R-mod.
We remark that #; is cofaithful if and only if Q is cofaithful, i.e., @ gener-
ates all injective left R-modules, or equivalently, R can be embedded in
a finite direct sum of copies of Q ([1, Proposition 4.5.4]). We naturally
define the ordering of hereditary pretorsion classes of R-mod and that of left
exact preradicals for R-mod. It is well known that there is an order
preserving bijective correspondence between left linear topologies on R,
hereditary pretorsion classes of R-mod and left exact preradicals for R-mod
(see [9, p.145]).

1. Maximal linear topologies. It is not assured that, for a given
proper left Gabriel topology on R, there exists a maximal left Gabriel
topology containing given one. In [7, Theorem 3.4], Meijer and Smith
proved that the above property on a ring R holds if and only if every nonzero
injective left R-module has a nonzero submodule whose annihilator is an M-
ideal. If R satisfies the maximum condition for ideals, then R has the above
property ([3, Proposition 3. 2]). But we can prove the next

Proposition 1.1. For every proper left linear topology ¥ on R, there
exists a maximal left linear topology coniaining ¥ .

Proof. This is done by Zorn’s lemma.

Lemma 1.2. For every left linear topology & on R and left ideal A of
R, there exists a unique minimal left linear topology & * containing ¢ and A.
For J€ #(R), J belongs to #* if and only if there exist | € & and a finite
subset F of R such that J = I N AF™",

Proof. Let &* be the set of left ideals J of R such that there exist
I € 2 and a finite subset F of R satisfying J = I N AF~'. It is sufficient
to show that £* is in fact a left linear topology. Clearly #* satisfies T1.
Assume J; and J; belong to #*. Then there exist left ideals I, and I, and
finite subsets F; and F, of R such that J; = I, N AF;' (i = 1,2). Since
ILNLe £ and AF7' N AF;7' = A(F, U F2)™', we have J1 N J. =
(LN L) N AF, U F,)™", proving #* satisfies T2. Now assume J € £¥*
and @ € R. Then there exist ] € ¥ and a finite subset F of R such that
J=IN AF'. Now we have Ja ' =2 (I N AF Ya'=Ia'N (AF Ya™!
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= Jao' N A{aF)"'. Since Ia™' € ¥, we obtain Ja~' € 2*, proving *
satisfies T3.

Now we have a criterion of the maximality of left linear topologies.

Theorem 1.3. The following conditions are equivalent for a proper left
linear topology  on R :

(1) % is maximal.

(2) For each left ideal A ¢ &, there exist | € & and a finite subset
Fof R suchthat IN AF~' = 0.

(3) For each left ideal A & %, there exist ] € & and a natural
number n such that R can be embedded in R/I ® (R/A )™,

(4) For each left ideal A & @, there exists I € & such that R/I @
R/A is cofaithful.

Proof. % is maximal if and only if, for each left ideal A & @,
0 belongs to the unique minimal left linear topology containing & and A.
Hence by using Lemma 1. 2, we have (1)<=>(2). Now assume, for each left
ideal A & 7, there exist ] € & and a finite subset |7,,-,7,| of R such
that IN Ar, ' NN Ary, ' = 0. Then R is embedded in R/I ® R/Ar: ' @
-® R/Ar;'. But R/Ari' = (Rri+A)/A < R/A for each i=1,-+-,n.
Hence we have (2) = (3). The implication (3) = (4) is trivial. Finally,
assume for each left ideal A & &, there exist ] € & and a natural number
n with a monomorphism f: R = (R/I)™ @& (R/A)™. Put f(1) = (51,*,
Sn, T1,°**,Tn), where s;,, 7, € R and 5, = s;+] and 7, = r;+Afori=1,
... n. Since f(x) = (x5,.**,x50, xr1,"**,xrn) = 0 implies x = 0, we have
Isc' NN Isy ' N Ar' N Ary ' = 0. Thus we have proved (4)
= (2), because Is,”' NN Is, ' € £.

Corollary 1.4. The following conditions are equivaleni for a proper
hereditary pretorsion class & of R-mod :

(1) &% is maximal.

(2) For each (cyclic) left R-module M & &, there exist a cyclic left
R-module C € .9 and a natural number n such that R can be embedded in
Cod M™,

(3) For each (cyclic) left R-module M & &, there exists a cyclic left
R-module C € & such that C ® M is cofaithful.

Corollary 1.5. The following conditions are equivalent for a proper
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left exact preradical v for R-mod :

(1) r is maximal.

(2) For each (cyclic) left R-module M with r(M) # M, there exists
a cyclic left R-module C with v(C) = C such that tc+ ty is cofaithful.

In [8] Rubin called a left ideal A of R weakly essential if AF™' % 0 for
every finite subset F of R. Note that, if a left ideal A is weakly essential,
then AX™' is also weakly essential for every finite subset X of R. We
remark that every member of a proper left linear topology on R is weakly
essential. Now we shall consider the case when a left linear topology is
unique maximal,

Proposition 1.6. The following conditions are equivalent for a proper
left linear lopology & on R :

(1) £ is unique maximal.

(2) & coincides with the set of all weakly essential left ideals of R.

(3) & contains all weakly essential left ideals of R.

Proof. For a left ideal A of R. we put £, a unique minimal left linear
topology containing A. Then £, consists of those left ideals B such that
B = AF~' for some finite subset F of R.

(1)=>(2). IfA € &, then AF™' € £ for every finite subset F of R.
Since & is proper, we see that A is weakly essential. Conversely assume
A is a weakly essential left ideal of R. Then &, is proper and so £, C £.
Hence we have A € £. '

(2) = (3). Clear.

(3) =>(1). Let #' be a proper left linear topology on R. For each
A€ £, wehave AF™' € &’ for every finite subset F of R. Since ¢’ is
proper, we see A is weakly essential, and so A € # by (3). Therefore we
have proved £ is unique maximal.

The following corollary was proved by Nicholson and Sarath by using
the notion of a-weak essentiality. But we can prove this directly.

Corollary 1.7 (Nicholson and Sarath [6, Theorem 1]). The following
conditions are equivalent for a ring R with the set ¥ of all weakly essential
left ideals of R :

(1) R has a unique maximal left linear topology.

(2) @ forms a left linear topology.
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(3) If A and B belong to #, then AN B =+ 0.

Proof. (1)<=(2). This is clear by using Proposition 1. 6.

(2) =>(3). Clear.

(3) = (2). Clearly ¢ satisfies T1. As noted above, &% also satisfies
T3. Now assume A and B belong to ¢. For every finite subset F of R, we
see that AF™' and BF~' belong to . Hence (AN B)F ' = AF~'N BF™'
#+=0 by (3). Thus AN B belongs to . Therefore we showed that &
satisfies T2,

Example 1.8. Let R be a ring and ¢ the set of all essential left
ideals of R. It is well known that & is a proper left linear topology on R.
By using Theorem 1. 3, we notice that ¢ is maximal if and only if every
weakly essential left ideal of R is essential. In this case, & is unique
maximal by Proposition 1.6. In case R is commutative, we remark that
# is maximal if and only if every nonzero ideal of R is essential. Thus we
conclude that, if R is a commutative semiprime ring, ¥ is maximal if and
only if R is prime.

2. The complement of linear topologies. In [7] Meijer and Smith
concerned with the collection N(R) of those left ideals of R which do not
belong to any proper left Gabriel topology on R. As mentioned in [7, Lemma
2.1], a left ideal I belongs to N(R) if and only if Homu(R/I. E) = 0 for
every nonzero injective left R-module E. Now we shall consider the set

C(R)=1|I€ £(R) | I & & for every proper left linear topology
<4 on RI.

Clearly 0 € C(R) and R& C(R). If A€ #(R) and A < B for some
B e C(R). then A € C(R). Remark that C(R) € N(R).

Theorem 2.1. The following statements are equivalent for a left ideal

AofaringR:

(1) A e C(R).

(2) A is not weakly essential, i.e., AF™' = 0 for some finite subset
F of R.

(3) R/Ais cofaithful.

Proof. (1)&>(2). For a left ideal A, A€ C(R) if and only if
0 € £ for every left linear topology ¥ containing A, or equivalently
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0 belongs to the unique minimal left linear topology containing A. As noted
in the proof of Proposition 1.6, 0 € ¢, if and only if AF™' = 0 for some
finite subset F of R.

(2)<=2>(3). This is proved by the same method as is used in the proof
of Theorem 1. 3. (See [1, Proposition 4. 5. 4]).

A left linear topology & is called super if & contains a unique minimal
member. Such a member is in fact a two-sided ideal. We denote by Cs(R)
the set of those left ideals which do not belong to any proper super left
linear topology on R. Clearly Cs(R) D C(R). If R is left artinian, then
every left linear topology on R is super, and so Cs(R) = C(R). For a ring
R with Jacobson radical J, it was proved in [7, Proposition 2. 9] that N(R)
consists of all proper left ideals of R if and only if J is right T-nilpotent and
R/J is a simple artinian ring. By the definition, Cs(R) consists of all
proper left ideals of R if and only if R is a two-sided simple ring.

Theorem 2.2. The following statements are equivalent for a ring R :
(1) C(R) contains all maximal left ideals of R.
(2) C(R) consists of all proper left ideals of R.

(3) R is a simple artinian ring.

Proof. (1)=>(2). Clear.

(2) = (3). Assume (2). Then every nonzero cyclic left R-module is
cofaithful by Theorem 2.1. Thus every nonzero left R-module is also
cofaithful. In particular every nonzero left ideal of R is cofaithful, and so
R is left strongly prime (see [5, Proposition 2.5]). Also since every
faithful left R-module is cofaithful, soc (zR) # 0 by [2. Proposition 1].
Hence R must be simple artinian by [5, Theorem 4. 3].

(3) = (1). Assume I is a maximal left ideal of R. Then x(R/I) is
cofaithful and so I belongs to C(R) by Theorem 2. 1.

In [7] the other extreme when N(R) = |0| was considered. It was
shown in [7, Theorem 6. 4] that N(R) = {0} if and only if R is a reduced
ring and Ra+0a™' is essential left ideal of R for all a € R. We remark
that Cs(R) = {0} if and only if every nonzero left ideal of R contains
a nonzero ideal of R.

Theorem 2.3. The following statements are equivalent for a ring R :
(1) C(R) = {0l
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(2) Every nonzero left ideal of R is weakly essential.

(3) Every nonzero cyclic left ideal of R is weakly essential.

(4) For every nonzero element a of R and elements r,,***,r, of R,
there exist a nonzero element @' of R and elements v, in R such that oa'r,
=ria(i=1,-,n).

Proof. (1)<=>(2). This is clear by Theorem 2. 1.

(2)<=>(3). Clear.
(3)<=>(4). Let A = Ra be a nonzero cyclic left ideal of R. Then

A is weakly essential if and only if, for every elements r,,+--,r, of R,
Ar7'N--N Ary ' = 0 holds. This occurs if and only if, for every
elements 7,,*+,7, of R, there exists a nonzero element ¢ of R such that

dr; € A= Ra(i=1,--,n).

Corollary 2.4 (cf. [7, Corollaries 5.2 and 6.5]). If R is a domain,
then C(R) = {0} if and only if R satisfies the left Ore condition.

Proof. Assume R is a left Ore domain with a classical left quotient
ring Q&(R ). For every nonzero element a of R and elements r,,*,r, of R,
there exist nonzero elements a; of R and elements s; of R such that r,a™"
=a; 's; (i=1,---,n). As is well known (see [4, p.392]), there exist
a nonzero element a' of R and elements #; of R such that a;”' = o™ 't; (i =
1,-»-n). Put r;i=ts; (i=1,---,n). Thus we have a'r, = ria (i=1,
=.,n), and so C(R) = |0]. We can also show this fact by using [7,
Corollary 5. 2] with C(R) € N(R). The reverse implication is obvious.

Remark 2.5. The property that C(R) = |0} of rings R is not a Morita
invariant. To see this, let K be a field. By Theorem 2. 3, we see C(K)
= |0{. But consider the ring R of nXn matrices over K for some n > 1,
As shown in Theorem 2.2, we have C(R) = {0]. On the other hand, the
property that R has a unique maximal left linear topology is a Morita
invariant ([6, Corollary to Theorem 2]). Hence we conclude that the above
two properties on R are not equivalent.

By using Theorem 2. 3, we shall prove the next two propositions.

Proposition 2.6. If R is a left order in a ring Q, then C(Q) = |0}
implies C(R) = {0}. Furthermore, if R is a domain, then C(Q) = |01}.

Proof. Suppose there are given elements r(# 0), 7,,---, 7, in R.
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By C(Q) = |0}, there exist elements q(# 0), q1,**-,gn in @ such that
qri = qr{(i=1,--n). We can find a regular element r' in R with
r'q(# 0), 7'q1,***,r'qn € R. Thus we have (r'g)r, = (¥'q)r (i=1,-,n),
and so C{R) = {0}.

Now assume R is a domain. For every elements q(+ 0), ¢1,***,qn of Q,
there exist a regular element r in R with rq(+ 0), rq:,***,7¢g» € R. Since
C(R) = {0} by Corollary 2. 4, there exist 7'(% 0), r/,+*+, 7 in R such that
r(rq;) = r{(rq) (i=1,---,n). Noting that #'#(5 0) and 7/r (i=1,-*,n)
belong to @, we obtain C(Q) = {01.

Proposition 2.7. Suppose R = R, X:--X R, is a direct sum of rings
R (i=1,--,n). Then C(R) =1|0| if and only if C(R;) = |0} for all

i=1,-n

Proof. We may assume n = 2. Let S and T be rings. Assume
C(S) = {0} and C(T) = {0}. Let (s, t)(#F 0), (s1, t1),***, (sn, tn) be
elements of SXT. We may assume that s = 0. By C(S) = {0}, there
exist s'(#+ 0), s/,**,s» in S such that s's, = s;s(i=1,--+,n). Ift = 0,
then we have (s', t)(s., ;) = (s¢, t)(s,t) (i=1,-,n). If t = 0, by C(T)
= |0}, there exist t(% 0), t/,+**, 2, in T such that t't, = t;t (i=1,---,n),
and so we have (s', t')(s;, ) = (s;, t;)(s, t) (i=1,--,n). Therefore we
have C(SX T) = |04.

Conversely assume C(SX T') = {0}. To show C(S) = {01, let s(= 0),
S1,***,sn be elements of §. For the elements (s, 0), (s,,1),--*.(s,,1) in
SXT, there exist elements (s', t')(= 0). (s/, t\),***.(sn, tn) in SXT such
that (s, #')(s;, 1) = (s/, t,)(5,0) (i=1,+--,n). Then we have s's; = s/s
(i=1,---,n) and s’ # 0 because ¢’ = 0. Therefore we showed C(S) =10].

Example 2.8. There may be many rings R such that C(R.) are not
extreme. To give such an example, we shall calculate C(R) where R is the
2X 2 upper triangular matrix ring over a field K. There are three types

of minimal left ideals of R, namely A = (I(;' 8), C= (g Ig) and B=

(xa xb
0 0
ez and ez, be matrix units in R. Since Ae;; ' N Ae:s' = 0, A belongs to
C(R). Also since Be;,"' N Be;; ' = 0, Bbelongs to C(R). But since C is
an ideal of R, it is weakly essential and so C does not belong to C(R). Now

) | x € K] for some fixed nonzero elements a and b of K. Let e;;.
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let I be a left ideal of R which contains A or some B strictly. Then I also
contains C and so I does not belong to C(R). Thus we conclude that C(R)
consists precisely of A and those left ideals B.

REFERENCES

A. BEAcHY : Generating and cogenerating structures, Trans. Amer. Math. Soc. 158
(1971), 75—92.

. A. BEACHY : On quasi-Artinian rings, J. London Math. Soc. 3 (1971), 449 —452.
. A, BEACHY : On maximal torsion radicals, Canad. J. Math. 25 (1973), 712 —726.
. FAITH : Algebra I, Springer-Verlag, 1981.

. KaTayaMA : On rings for which various types of nonzero preradicals are cofaithful,

Hokkaido Math. J. 12 (1983), 49 —63.

/. K. NIcHOLSON and B. SARATH : Rings with a largest topology, Comm. Alg. 13 (1985),

769 —780.

. R. MEUER and P. F. SMITH : The complement of Gabriel topologies, J. pure and appl.

Alg. 31(1984), 119—137.

. A. RUBIN : Absolutely torsion-free rings, Pacific J. Math. 46 (1973), 503 —514.
. STENSTOROM : Rings of quotients, Springer-Verlag, 1975.

DEPARTMENT OF MATHEMATICS
YAmagucH UNIVERSITY

(Received September 28, 1985)



