MAXIMAL LINEAR TOPOLOGIES
AND THE COMPLEMENT
OF LINEAR TOPOLOGIES

Dedicated to Professor Hisao Tominaga on his 60th birthday

HISAO KATAYAMA

Introduction. The purpose of this paper is two-fold. First, we characterize the maximal left linear topology on a ring. Applying this, we again prove the equivalence of conditions on a ring, obtained by Nicholson and Sarath [6], to have a unique maximal left linear topology. Secondly, as in parallel with Meijer and Smith [7], we investigate the complement of left linear topologies on a ring R. Thus we consider the collection $C(R)$ of those left ideals of R which do not belong to any proper left linear topology on R. Two extremes when $C(R)$ consists of all proper left ideals of R and $C(R) = |0|$ are examined.

0. Preliminaries. Let R be a ring with identity. We denote by $\mathcal{I}(R)$ the set of all left ideals of R, and by R-mod the category of all unital left R-modules. For $A \in \mathcal{I}(R)$ and a subset F of R, we set $AF^{-1} = \{x \in R \mid xF \subseteq A\}$. A nonempty subset \mathcal{I} of $\mathcal{I}(R)$ is called a left linear topology if the following conditions are satisfied:

T1. If $I \in \mathcal{I}$, $J \in \mathcal{I}(R)$ and $I \subseteq J$, then $J \in \mathcal{I}$.

T2. If I and J belong to \mathcal{I}, then $I \cap J \in \mathcal{I}$.

T3. If $I \in \mathcal{I}$ and $a \in R$, then $Ia^{-1} \in \mathcal{I}$.

A left linear topology \mathcal{I} on R is called a left Gabriel topology if \mathcal{I} satisfies a further condition:

T4. If $I \in \mathcal{I}(R)$ and there exists $J \in \mathcal{I}$ such that $Ij^{-1} \in \mathcal{I}$ for every $j \in J$, then $I \in \mathcal{I}$.

A left linear topology \mathcal{I} is called proper if $0 \notin \mathcal{I}$. If \mathcal{I}_1 and \mathcal{I}_2 are left linear topologies on R, we define $\mathcal{I}_1 \leq \mathcal{I}_2$ if every member of \mathcal{I}_1 is a member of \mathcal{I}_2. A subclass \mathcal{P} of R-mod is called a hereditary pretorsion class if \mathcal{P} is closed under isomorphisms, submodules, factor modules and direct sums. \mathcal{P} is called proper if $R \notin \mathcal{P}$. A preradical r for R-mod is called left exact if $r(N) = r(M) \cap N$ for every $M \in R$-mod and every submodule N of M. It is called proper if $r(R) \neq R$, and is called cofaithful if $r(Q) = Q$ for every injective $Q \in R$-mod. For preradicals r and s for
R-mod, we define a preradical $r+s$ by $(r+s)(M) = r(M) + s(M)$ for all $M \in R$-mod. For a module $Q \in R$-mod, we define a preradical t_Q for R-mod by $t_Q(M) = \sum \text{Ima. } a$ ranging over $\text{Hom}_R(Q, M)$, for each $M \in R$-mod. We remark that t_Q is cofaithful if and only if Q is cofaithful, i.e., Q generates all injective left R-modules, or equivalently, R can be embedded in a finite direct sum of copies of Q ([1, Proposition 4.5.4]). We naturally define the ordering of hereditary pretorsion classes of R-mod and that of left exact preradicals for R-mod. It is well known that there is an order preserving bijection correspondence between left linear topologies on R, hereditary pretorsion classes of R-mod and left exact preradicals for R-mod (see [9, p. 145]).

1. Maximal linear topologies. It is not assured that, for a given proper left Gabriel topology on R, there exists a maximal left Gabriel topology containing given one. In [7, Theorem 3.4], Meijer and Smith proved that the above property on a ring R holds if and only if every nonzero injective left R-module has a nonzero submodule whose annihilator is an M-ideal. If R satisfies the maximum condition for ideals, then R has the above property ([3, Proposition 3.2]). But we can prove the next

Proposition 1.1. For every proper left linear topology \mathcal{P} on R, there exists a maximal left linear topology containing \mathcal{P}.

Proof. This is done by Zorn's lemma.

Lemma 1.2. For every left linear topology \mathcal{P} on R and left ideal A of R, there exists a unique minimal left linear topology \mathcal{P}^* containing \mathcal{P} and A. For $J \in \mathcal{P}(R)$, J belongs to \mathcal{P}^* if and only if there exist $I \in \mathcal{P}$ and a finite subset F of R such that $J \supseteq I \cap AF^{-1}$.

Proof. Let \mathcal{P}^* be the set of left ideals J of R such that there exist $I \in \mathcal{P}$ and a finite subset F of R satisfying $J \supseteq I \cap AF^{-1}$. It is sufficient to show that \mathcal{P}^* is in fact a left linear topology. Clearly \mathcal{P}^* satisfies T1. Assume J_1 and J_2 belong to \mathcal{P}^*. Then there exist left ideals I_1 and I_2 and finite subsets F_1 and F_2 of R such that $J_i \supseteq I_i \cap AF_i^{-1}$ ($i = 1, 2$). Since $I_1 \cap I_2 \in \mathcal{P}$ and $AF_1^{-1} \cap AF_2^{-1} = A(F_1 \cup F_2)^{-1}$, we have $J_1 \cap J_2 \supseteq (I_1 \cap I_2) \cap A(F_1 \cup F_2)^{-1}$, proving \mathcal{P}^* satisfies T2. Now assume $J \in \mathcal{P}^*$ and $a \in R$. Then there exist $I \in \mathcal{P}$ and a finite subset F of R such that $J \supseteq I \cap AF^{-1}$. Now we have $Ja^{-1} \supseteq (I \cap AF^{-1})a^{-1} = Ia^{-1} \cap (AF^{-1})a^{-1}$.
MAXIMAL LINEAR TOPOLOGIES

\[= Ia^{-1} \cap A(aF)^{-1} \]. Since \(Ia^{-1} \in \mathcal{L} \), we obtain \(Ja^{-1} \in \mathcal{L}^* \), proving \(\mathcal{L}^* \)
satisfies T3.

Now we have a criterion of the maximality of left linear topologies.

Theorem 1.3. The following conditions are equivalent for a proper left linear topology \(\mathcal{L} \) on \(R \):

1. \(\mathcal{L} \) is maximal.
2. For each left ideal \(A \notin \mathcal{L} \), there exist \(I \in \mathcal{L} \) and a finite subset \(F \) of \(R \) such that \(I \cap AF^{-1} = 0 \).
3. For each left ideal \(A \notin \mathcal{L} \), there exist \(I \in \mathcal{L} \) and a natural number \(n \) such that \(R \) can be embedded in \(R/I \oplus (R/A)^m \).
4. For each left ideal \(A \notin \mathcal{L} \), there exists \(I \in \mathcal{L} \) such that \(R/I \oplus R/A \) is cofaithful.

Proof. \(\mathcal{L} \) is maximal if and only if, for each left ideal \(A \notin \mathcal{L} \), 0 belongs to the unique minimal left linear topology containing \(\mathcal{L} \) and \(A \). Hence by using Lemma 1.2, we have (1) \(\iff \) (2). Now assume, for each left ideal \(A \notin \mathcal{L} \), there exist \(I \in \mathcal{L} \) and a finite subset \(\{r_1, \ldots, r_n\} \) of \(R \) such that \(I \cap Ar_1^{-1} \cap \cdots \cap Ar_n^{-1} = 0 \). Then \(R \) is embedded in \(R/I \oplus R/Ar_1^{-1} \oplus \cdots \oplus R/Ar_n^{-1} \). But \(R/Ar_i^{-1} \cong (Rr_i + A)/A \leq R/A \) for each \(i = 1, \ldots, n \). Hence we have (2) \(\iff \) (3). The implication (3) \(\iff \) (4) is trivial. Finally, assume for each left ideal \(A \notin \mathcal{L} \), there exist \(I \in \mathcal{L} \) and a natural number \(n \) with a monomorphism \(f: R \to (R/I)^m \oplus (R/A)^m \). Put \(f(1) = (\tilde{s}_1, \ldots, \tilde{s}_n, \tilde{r}_1, \ldots, \tilde{r}_n) \), where \(s_i, r_i \in R \) and \(\tilde{s}_i = s_i + I \) and \(\tilde{r}_i = r_i + A \) for \(i = 1, \ldots, n \). Since \(f(x) = (x\tilde{s}_1, \ldots, x\tilde{s}_n, x\tilde{r}_1, \ldots, x\tilde{r}_n) = 0 \) implies \(x = 0 \), we have \(Is_1^{-1} \cap \cdots \cap Is_n^{-1} \cap Ar_1^{-1} \cap \cdots \cap Ar_n^{-1} = 0 \). Thus we have proved (4) \(\iff \) (2), because \(Is_1^{-1} \cap \cdots \cap Is_n^{-1} \in \mathcal{L} \).

Corollary 1.4. The following conditions are equivalent for a proper hereditary pretorsion class \(\mathcal{T} \) of \(R\)-mod:

1. \(\mathcal{T} \) is maximal.
2. For each (cyclic) left \(R \)-module \(M \notin \mathcal{T} \), there exist a cyclic left \(R \)-module \(C \in \mathcal{T} \) and a natural number \(n \) such that \(R \) can be embedded in \(C \oplus M^m \).
3. For each (cyclic) left \(R \)-module \(M \notin \mathcal{T} \), there exists a cyclic left \(R \)-module \(C \in \mathcal{T} \) such that \(C \oplus M \) is cofaithful.

Corollary 1.5. The following conditions are equivalent for a proper
left exact preradical \(r \) for \(R\text{-mod} \):
(1) \(r \) is maximal.
(2) For each (cyclic) left \(R\)-module \(M \) with \(r(M) \neq M \), there exists a cyclic left \(R \)-module \(C \) with \(r(C) = C \) such that \(t_C \) is cofaithful.

In [8] Rubin called a left ideal \(A \) of \(R \) weakly essential if \(AF^{-1} \neq 0 \) for every finite subset \(F \) of \(R \). Note that, if a left ideal \(A \) is weakly essential, then \(AX^{-1} \) is also weakly essential for every finite subset \(X \) of \(R \). We remark that every member of a proper left linear topology on \(R \) is weakly essential. Now we shall consider the case when a left linear topology is unique maximal.

Proposition 1.6. The following conditions are equivalent for a proper left linear topology \(\mathcal{L} \) on \(R \):
(1) \(\mathcal{L} \) is unique maximal.
(2) \(\mathcal{L} \) coincides with the set of all weakly essential left ideals of \(R \).
(3) \(\mathcal{L} \) contains all weakly essential left ideals of \(R \).

Proof. For a left ideal \(A \) of \(R \), we put \(\mathcal{L}_A \) a unique minimal left linear topology containing \(A \). Then \(\mathcal{L}_A \) consists of those left ideals \(B \) such that \(B \supseteq AF^{-1} \) for some finite subset \(F \) of \(R \).

(1) \(\Rightarrow \) (2). If \(A \in \mathcal{L} \), then \(AF^{-1} \in \mathcal{L} \) for every finite subset \(F \) of \(R \). Since \(\mathcal{L} \) is proper, we see that \(A \) is weakly essential. Conversely assume \(A \) is a weakly essential left ideal of \(R \). Then \(\mathcal{L}_A \) is proper and so \(\mathcal{L}_A \subseteq \mathcal{L} \). Hence we have \(A \in \mathcal{L} \).

(2) \(\Rightarrow \) (3). Clear.

(3) \(\Rightarrow \) (1). Let \(\mathcal{L}' \) be a proper left linear topology on \(R \). For each \(A \in \mathcal{L}' \), we have \(AF^{-1} \in \mathcal{L}' \) for every finite subset \(F \) of \(R \). Since \(\mathcal{L}' \) is proper, we see \(A \) is weakly essential, and so \(A \in \mathcal{L} \) by (3). Therefore we have proved \(\mathcal{L} \) is unique maximal.

The following corollary was proved by Nicholson and Sarath by using the notion of \(a \)-weak essentiality. But we can prove this directly.

Corollary 1.7 (Nicholson and Sarath [6, Theorem 1]). The following conditions are equivalent for a ring \(R \) with the set \(\mathcal{L} \) of all weakly essential left ideals of \(R \):
(1) \(R \) has a unique maximal left linear topology.
(2) \(\mathcal{L} \) forms a left linear topology.
(3) If \(A \) and \(B \) belong to \(\mathcal{P} \), then \(A \cap B \neq 0 \).

Proof. \((1) \iff (2)\). This is clear by using Proposition 1.6.

\((2) \Rightarrow (3)\). Clear.

\((3) \Rightarrow (2)\). Clearly \(\mathcal{P} \) satisfies T1. As noted above, \(\mathcal{P} \) also satisfies T3. Now assume \(A \) and \(B \) belong to \(\mathcal{P} \). For every finite subset \(F \) of \(R \), we see that \(AF^{-1} \) and \(BF^{-1} \) belong to \(\mathcal{P} \). Hence \((A \cap B)F^{-1} = AF^{-1} \cap BF^{-1} \neq 0 \) by (3). Thus \(A \cap B \) belongs to \(\mathcal{P} \). Therefore we showed that \(\mathcal{P} \) satisfies T2.

Example 1.8. Let \(R \) be a ring and \(\mathcal{P} \) the set of all essential left ideals of \(R \). It is well known that \(\mathcal{P} \) is a proper left linear topology on \(R \). By using Theorem 1.3, we notice that \(\mathcal{P} \) is maximal if and only if every weakly essential left ideal of \(R \) is essential. In this case, \(\mathcal{P} \) is unique maximal by Proposition 1.6. In case \(R \) is commutative, we remark that \(\mathcal{P} \) is maximal if and only if every nonzero ideal of \(R \) is essential. Thus we conclude that, if \(R \) is a commutative semiprime ring, \(\mathcal{P} \) is maximal if and only if \(R \) is prime.

2. The complement of linear topologies. In \([7]\) Meijer and Smith concerned with the collection \(N(R) \) of those left ideals of \(R \) which do not belong to any proper left Gabriel topology on \(R \). As mentioned in \([7, \text{Lemma } 2.1]\), a left ideal \(I \) belongs to \(N(R) \) if and only if \(\text{Hom}_R(R/I, E) \neq 0 \) for every nonzero injective left \(R \)-module \(E \). Now we shall consider the set

\[
\mathcal{C}(R) = \{ I \in \mathcal{L}(R) \mid I \notin \mathcal{P} \text{ for every proper left linear topology } \mathcal{P} \text{ on } R \}.
\]

Clearly \(0 \in \mathcal{C}(R) \) and \(R \notin \mathcal{C}(R) \). If \(A \in \mathcal{P}(R) \) and \(A \leq B \) for some \(B \in \mathcal{C}(R) \), then \(A \in \mathcal{C}(R) \). Remark that \(\mathcal{C}(R) \subseteq N(R) \).

Theorem 2.1. The following statements are equivalent for a left ideal \(A \) of a ring \(R \):

1. \(A \in \mathcal{C}(R) \).
2. \(A \) is not weakly essential, i.e., \(AF^{-1} = 0 \) for some finite subset \(F \) of \(R \).
3. \(R/A \) is cofaithful.

Proof. \((1) \iff (2)\). For a left ideal \(A, A \in \mathcal{C}(R) \) if and only if \(0 \in \mathcal{P} \) for every left linear topology \(\mathcal{P} \) containing \(A \), or equivalently
0 belongs to the unique minimal left linear topology containing \(A \). As noted in the proof of Proposition 1.6, 0 \(\in \mathcal{L}_A \) if and only if \(AF^{-1} = 0 \) for some finite subset \(F \) of \(R \).

(2) \(\iff \) (3). This is proved by the same method as is used in the proof of Theorem 1.3. (See [1, Proposition 4.5.4]).

A left linear topology \(\mathcal{L} \) is called super if \(\mathcal{L} \) contains a unique minimal member. Such a member is in fact a two-sided ideal. We denote by \(C_s(R) \) the set of those left ideals which do not belong to any proper super left linear topology on \(R \). Clearly \(C_s(R) \supseteq C(R) \). If \(R \) is left artinian, then every left linear topology on \(R \) is super, and so \(C_s(R) = C(R) \). For a ring \(R \) with Jacobson radical \(J \), it was proved in [7, Proposition 2.9] that \(N(R) \) consists of all proper left ideals of \(R \) if and only if \(J \) is right T-nilpotent and \(R/J \) is a simple artinian ring. By the definition, \(C_s(R) \) consists of all proper left ideals of \(R \) if and only if \(R \) is a two-sided simple ring.

Theorem 2.2. The following statements are equivalent for a ring \(R \):

1. \(C(R) \) contains all maximal left ideals of \(R \).
2. \(C(R) \) consists of all proper left ideals of \(R \).
3. \(R \) is a simple artinian ring.

Proof. (1) \(\implies \) (2). Clear.

(2) \(\implies \) (3). Assume (2). Then every nonzero cyclic left \(R \)-module is cofaithful by Theorem 2.1. Thus every nonzero left \(R \)-module is also cofaithful. In particular every nonzero left ideal of \(R \) is cofaithful, and so \(R \) is left strongly prime (see [5, Proposition 2.5]). Also since every faithful left \(R \)-module is cofaithful, \(\text{soc}(_R) \neq 0 \) by [2, Proposition 1]. Hence \(R \) must be simple artinian by [5, Theorem 4.3].

(3) \(\implies \) (1). Assume \(I \) is a maximal left ideal of \(R \). Then \(_R(R/I) \) is cofaithful and so \(I \) belongs to \(C(R) \) by Theorem 2.1.

In [7] the other extreme when \(N(R) = |0| \) was considered. It was shown in [7, Theorem 6.4] that \(N(R) = |0| \) if and only if \(R \) is a reduced ring and \(Ra + 0a^{-1} \) is essential left ideal of \(R \) for all \(a \in R \). We remark that \(C_s(R) = |0| \) if and only if every nonzero left ideal of \(R \) contains a nonzero ideal of \(R \).

Theorem 2.3. The following statements are equivalent for a ring \(R \):

1. \(C(R) = |0| \).
(2) Every nonzero left ideal of R is weakly essential.
(3) Every nonzero cyclic left ideal of R is weakly essential.
(4) For every nonzero element a of R and elements r_1, \ldots, r_n of R, there exist a nonzero element a' of R and elements r_i in R such that $a'r_i = r_ia (i = 1, \ldots, n)$.

Proof. (1) \iff (2). This is clear by Theorem 2.1.
(2) \iff (3). Clear.
(3) \iff (4). Let $A = Ra$ be a nonzero cyclic left ideal of R. Then A is weakly essential if and only if, for every elements r_1, \ldots, r_n of R, $Ar_1^{-1} \cap \cdots \cap Ar_n^{-1} \neq 0$ holds. This occurs if and only if, for every elements r_1, \ldots, r_n of R, there exists a nonzero element a' of R such that $a'r_i \in A = Ra (i = 1, \ldots, n)$.

Corollary 2.4 (cf. [7, Corollaries 5.2 and 6.5]). If R is a domain, then $C(R) = |0|$ if and only if R satisfies the left Ore condition.

Proof. Assume R is a left Ore domain with a classical left quotient ring $Q_0(R)$. For every nonzero element a of R and elements r_1, \ldots, r_n of R, there exist nonzero elements a'_i of R and elements s_i of R such that $r_ia^{-1} = a'_i s_i (i = 1, \ldots, n)$. As is well known (see [4, p. 392]), there exist a nonzero element a' of R and elements t_i of R such that $a'_i t_i = a^{-1} t_i (i = 1, \ldots, n)$. Put $r_i = t_is_i (i = 1, \ldots, n)$. Thus we have $a'r_i = r_ia (i = 1, \ldots, n)$, and so $C(R) = |0|$. We can also show this fact by using [7, Corollary 5.2] with $C(R) \subseteq N(R)$. The reverse implication is obvious.

Remark 2.5. The property that $C(R) = |0|$ of rings R is not a Morita invariant. To see this, let K be a field. By Theorem 2.3, we see $C(K) = |0|$. But consider the ring R of $n \times n$ matrices over K for some $n > 1$. As shown in Theorem 2.2, we have $C(R) \neq |0|$. On the other hand, the property that R has a unique maximal left linear topology is a Morita invariant ([6, Corollary to Theorem 2]). Hence we conclude that the above two properties on R are not equivalent.

By using Theorem 2.3, we shall prove the next two propositions.

Proposition 2.6. If R is a left order in a ring Q, then $C(Q) = |0|$ implies $C(R) = |0|$. Furthermore, if R is a domain, then $C(Q) = |0|$.

Proof. Suppose there are given elements $r(\neq 0), r_1, \ldots, r_n$ in R.
By \(C(Q) = |0| \), there exist elements \(q(\neq 0), q_1, \cdots, q_n \) in \(Q \) such that \(qr_i = q_i r \) \((i = 1, \cdots, n)\). We can find a regular element \(r' \) in \(R \) with \(r'q(\neq 0), r'q_1, \cdots, r'q_n \in R \). Thus we have \((r'q)r_i = (r'q_i)r \) \((i = 1, \cdots, n)\), and so \(C(R) = |0| \).

Now assume \(R \) is a domain. For every elements \(q(\neq 0), q_1, \cdots, q_n \) of \(Q \), there exist a regular element \(r \) in \(R \) with \(rq(\neq 0), rq_1, \cdots, rq_n \in R \). Since \(C(R) = |0| \) by Corollary 2.4, there exist \(r'(\neq 0), r'_1, \cdots, r'_n \) in \(R \) such that \(r'(rq_i) = r'_i(rq) \) \((i = 1, \cdots, n)\). Noting that \(r'r(\neq 0) \) and \(r_ir \) \((i = 1, \cdots, n)\) belong to \(Q \), we obtain \(C(Q) = |0| \).

Proposition 2.7. Suppose \(R = R_1 \times \cdots \times R_n \) is a direct sum of rings \(R_i \) \((i = 1, \cdots, n)\). Then \(C(R) = |0| \) if and only if \(C(R_i) = |0| \) for all \(i = 1, \cdots, n \).

Proof. We may assume \(n = 2 \). Let \(S \) and \(T \) be rings. Assume \(C(S) = |0| \) and \(C(T) = |0| \). Let \((s, t)(\neq 0), (s_1, t_1), \cdots, (s_n, t_n) \) be elements of \(S \times T \). We may assume that \(s \neq 0 \). By \(C(S) = |0| \), there exist \(s'(\neq 0), s_1', \cdots, s_n' \) in \(S \) such that \(s's_i = s_is \) \((i = 1, \cdots, n)\). If \(t = 0 \), then we have \((s', t)(s_1, t_1) = (s_1, t_1)(s, t) \) \((i = 1, \cdots, n)\). If \(t \neq 0 \), by \(C(T) = |0| \), there exist \(t'(\neq 0), t'_1, \cdots, t'_n \) in \(T \) such that \(t't_i = t_i t \) \((i = 1, \cdots, n)\), and so we have \((s', t')(s_1, t_1) = (s_1, t_1)(s, t) \) \((i = 1, \cdots, n)\). Therefore we have \(C(S \times T) = |0| \).

Conversely assume \(C(S \times T) = |0| \). To show \(C(S) = |0| \), let \(s(\neq 0), s_1, \cdots, s_n \) be elements of \(S \). For the elements \((s, 0), (s_1, 1), \cdots, (s_n, 1) \) in \(S \times T \), there exist elements \((s', t')(\neq 0), (s_1', t_1'), \cdots, (s_n', t_n') \) in \(S \times T \) such that \((s', t')(s_1, 1) = (s_1, t_1)(s, 0) \) \((i = 1, \cdots, n)\). Then we have \(s's_i = s_is \) \((i = 1, \cdots, n)\) and \(s' \neq 0 \) because \(t' = 0 \). Therefore we showed \(C(S) = |0| \).

Example 2.8. There may be many rings \(R \) such that \(C(R) \) are not extreme. To give such an example, we shall calculate \(C(R) \) where \(R \) is the \(2 \times 2 \) upper triangular matrix ring over a field \(K \). There are three types of minimal left ideals of \(R \), namely \(A = \begin{pmatrix} K & 0 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & K \\ 0 & 0 \end{pmatrix} \) and \(B = \left[\begin{array}{cc} xa & xb \\ 0 & 0 \end{array} \right] \) for some fixed nonzero elements \(a \) and \(b \) of \(K \). Let \(e_{11}, e_{12} \) and \(e_{22} \) be matrix units in \(R \). Since \(Ae_{12}^{-1} \cap Ae_{22}^{-1} = 0 \), \(A \) belongs to \(C(R) \). Also since \(Be_{11}^{-1} \cap Be_{22}^{-1} = 0 \), \(B \) belongs to \(C(R) \). But since \(C \) is an ideal of \(R \), it is weakly essential and so \(C \) does not belong to \(C(R) \). Now
let I be a left ideal of R which contains A or some B strictly. Then I also contains C and so I does not belong to $C(R)$. Thus we conclude that $C(R)$ consists precisely of A and those left ideals B.

REFERENCES

DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY

(Received September 28, 1985)