MAXIMAL LINEAR TOPOLOGIES AND THE COMPLEMENT OF LINEAR TOPOLOGIES

Dedicated to Professor Hisao Tominaga on his 60th birthday

HISAO KATAYAMA

Introduction. The purpose of this paper is two-fold. First, we characterize the maximal left linear topology on a ring. Applying this, we again prove the equivalence of conditions on a ring, obtained by Nicholson and Sarath [6], to have a unique maximal left linear topology. Secondly, as in parallel with Meijer and Smith [7], we investigate the complement of left linear topologies on a ring R. Thus we consider the collection C(R) of those left ideals of R which do not belong to any proper left linear topology on R. Two extremes when C(R) consists of all proper left ideals of R and $C(R) = \{0\}$ are examined.

- **0.** Preliminaries. Let R be a ring with identity. We denote by $\mathscr{L}(R)$ the set of all left ideals of R, and by R-mod the category of all unital left R-modules. For $A \in \mathscr{L}(R)$ and a subset F of R, we set $AF^{-1} = \{x \in R \mid xF \subseteq A\}$. A nonempty subset \mathscr{L} of $\mathscr{L}(R)$ is called a *left linear topology* if the following conditions are satisfied:
 - T1. If $I \in \mathcal{L}$, $J \in \mathcal{L}(R)$ and $I \leq J$, then $J \in \mathcal{L}$.
 - T2. If I and J belong to \mathscr{L} , then $I \cap J \in \mathscr{L}$.
 - T3. If $I \in \mathscr{L}$ and $a \in R$, then $Ia^{-1} \in \mathscr{L}$.

A left linear topology $\mathscr L$ on R is called a *left Gabriel topology* if $\mathscr L$ satisfies a further condition :

T4. If $I \in \mathscr{L}(R)$ and there exists $J \in \mathscr{L}$ such that $Ij^{-1} \in \mathscr{L}$ for every $j \in J$, then $I \in \mathscr{L}$.

A left linear topology $\mathscr L$ is called *proper* if $0 \notin \mathscr L$. If $\mathscr L_1$ and $\mathscr L_2$ are left linear topologies on R, we define $\mathscr L_1 \leq \mathscr L_2$ if every member of $\mathscr L_1$ is a member of $\mathscr L_2$. A subclass $\mathscr S$ of R-mod is called a *hereditary pretorsion class* if $\mathscr S$ is closed under isomorphisms, submodules, factor modules and direct sums. $\mathscr S$ is called *proper* if $R \notin \mathscr S$. A preradical r for R-mod is called *left exact* if $r(N) = r(M) \cap N$ for every $M \in R$ -mod and every submodule N of M. It is called *proper* if $r(R) \neq R$, and is called *cofaithful* if r(Q) = Q for every injective $Q \in R$ -mod. For preradicals r and s for

R-mod, we define a preradical r+s by (r+s)(M)=r(M)+s(M) for all $M \in R$ -mod. For a module $Q \in R$ -mod, we define a preradical t_Q for R-mod by $t_Q(M)=\sum \operatorname{Im}\alpha$, α ranging over $\operatorname{Hom}_R(Q,M)$, for each $M\in R$ -mod. We remark that t_Q is cofaithful if and only if Q is cofaithful, i.e., Q generates all injective left R-modules, or equivalently, R can be embedded in a finite direct sum of copies of Q ([1, Proposition 4.5.4]). We naturally define the ordering of hereditary pretorsion classes of R-mod and that of left exact preradicals for R-mod. It is well known that there is an order preserving bijective correspondence between left linear topologies on R, hereditary pretorsion classes of R-mod and left exact preradicals for R-mod (see [9, p. 145]).

1. Maximal linear topologies. It is not assured that, for a given proper left Gabriel topology on R, there exists a maximal left Gabriel topology containing given one. In [7, Theorem 3.4], Meijer and Smith proved that the above property on a ring R holds if and only if every nonzero injective left R-module has a nonzero submodule whose annihilator is an M-ideal. If R satisfies the maximum condition for ideals, then R has the above property ([3, Proposition 3.2]). But we can prove the next

Proposition 1.1. For every proper left linear topology $\mathscr L$ on R, there exists a maximal left linear topology containing $\mathscr L$.

Proof. This is done by Zorn's lemma.

Lemma 1.2. For every left linear topology $\mathscr L$ on R and left ideal A of R, there exists a unique minimal left linear topology $\mathscr L^*$ containing $\mathscr L$ and A. For $J \in \mathscr L(R)$, J belongs to $\mathscr L^*$ if and only if there exist $I \in \mathscr L$ and a finite subset F of R such that $J \geq I \cap AF^{-1}$.

Proof. Let \mathscr{L}^* be the set of left ideals J of R such that there exist $I \in \mathscr{L}$ and a finite subset F of R satisfying $J \geq I \cap AF^{-1}$. It is sufficient to show that \mathscr{L}^* is in fact a left linear topology. Clearly \mathscr{L}^* satisfies T1. Assume J_1 and J_2 belong to \mathscr{L}^* . Then there exist left ideals I_1 and I_2 and finite subsets F_1 and F_2 of R such that $J_i \geq I_i \cap AF_i^{-1}$ (i=1,2). Since $I_1 \cap I_2 \in \mathscr{L}$ and $AF_1^{-1} \cap AF_2^{-1} = A(F_1 \cup F_2)^{-1}$, we have $J_1 \cap J_2 \geq (I_1 \cap I_2) \cap A(F_1 \cup F_2)^{-1}$, proving \mathscr{L}^* satisfies T2. Now assume $J \in \mathscr{L}^*$ and $a \in R$. Then there exist $I \in \mathscr{L}$ and a finite subset F of R such that $J \geq I \cap AF^{-1}$. Now we have $Ja^{-1} \geq (I \cap AF^{-1})a^{-1} = Ia^{-1} \cap (AF^{-1})a^{-1}$

 $= Ia^{-1} \cap A(aF)^{-1}$. Since $Ia^{-1} \in \mathscr{L}$, we obtain $Ja^{-1} \in \mathscr{L}^*$, proving \mathscr{L}^* satisfies T3.

Now we have a criterion of the maximality of left linear topologies.

Theorem 1.3. The following conditions are equivalent for a proper left linear topology $\mathscr L$ on R:

- (1) \mathscr{L} is maximal.
- (2) For each left ideal $A \notin \mathcal{L}$, there exist $I \in \mathcal{L}$ and a finite subset F of R such that $I \cap AF^{-1} = 0$.
- (3) For each left ideal $A \notin \mathcal{L}$, there exist $I \in \mathcal{L}$ and a natural number n such that R can be embedded in $R/I \oplus (R/A)^{(n)}$.
- (4) For each left ideal $A \notin \mathcal{L}$, there exists $I \in \mathcal{L}$ such that $R/I \oplus R/A$ is cofaithful.

Proof. \mathscr{L} is maximal if and only if, for each left ideal $A \notin \mathscr{L}$, 0 belongs to the unique minimal left linear topology containing \mathscr{L} and A. Hence by using Lemma 1.2, we have $(1) \Leftrightarrow (2)$. Now assume, for each left ideal $A \notin \mathscr{L}$, there exist $I \in \mathscr{L}$ and a finite subset $|r_1, \dots, r_n|$ of R such that $I \cap Ar_1^{-1} \cap \dots \cap Ar_n^{-1} = 0$. Then R is embedded in $R/I \oplus R/Ar_1^{-1} \oplus \dots \oplus R/Ar_n^{-1}$. But $R/Ar_i^{-1} \cong (Rr_i + A)/A \leq R/A$ for each $i = 1, \dots, n$. Hence we have $(2) \Rightarrow (3)$. The implication $(3) \Rightarrow (4)$ is trivial. Finally, assume for each left ideal $A \notin \mathscr{L}$, there exist $I \in \mathscr{L}$ and a natural number n with a monomorphism $f: R \to (R/I)^{(n)} \oplus (R/A)^{(n)}$. Put $f(1) = (\bar{s}_1, \dots, \bar{s}_n, \bar{r}_1, \dots, \bar{r}_n)$, where $s_i, r_i \in R$ and $\bar{s}_i = s_i + I$ and $\bar{r}_i = r_i + A$ for i = 1, \dots, n . Since $f(x) = (x\bar{s}_1, \dots, x\bar{s}_n, x\bar{r}_1, \dots, x\bar{r}_n) = 0$ implies x = 0, we have $Is_1^{-1} \cap \dots \cap Is_n^{-1} \cap Ar_1^{-1} \cap \dots \cap Ar_n^{-1} = 0$. Thus we have proved $(4) \Rightarrow (2)$, because $Is_1^{-1} \cap \dots \cap Is_n^{-1} \in \mathscr{L}$.

Corollary 1.4. The following conditions are equivalent for a proper hereditary pretorsion class $\mathscr S$ of R-mod:

- (1) If is maximal.
- (2) For each (cyclic) left R-module $M \notin \mathcal{F}$, there exist a cyclic left R-module $C \in \mathcal{F}$ and a natural number n such that R can be embedded in $C \oplus M^{(n)}$.
- (3) For each (cyclic) left R-module $M \notin \mathcal{F}$, there exists a cyclic left R-module $C \in \mathcal{F}$ such that $C \oplus M$ is cofaithful.

Corollary 1.5. The following conditions are equivalent for a proper

left exact preradical r for R-mod:

- (1) r is maximal.
- (2) For each (cyclic) left R-module M with $r(M) \neq M$, there exists a cyclic left R-module C with r(C) = C such that $t_c + t_M$ is cofaithful.
- In [8] Rubin called a left ideal A of R weakly essential if $AF^{-1} \neq 0$ for every finite subset F of R. Note that, if a left ideal A is weakly essential, then AX^{-1} is also weakly essential for every finite subset X of R. We remark that every member of a proper left linear topology on R is weakly essential. Now we shall consider the case when a left linear topology is unique maximal.

Proposition 1.6. The following conditions are equivalent for a proper left linear topology $\mathscr L$ on R:

- (1) \mathscr{L} is unique maximal.
- (2) \mathscr{L} coincides with the set of all weakly essential left ideals of R.
- (3) \mathscr{L} contains all weakly essential left ideals of R.

Proof. For a left ideal A of R, we put \mathscr{L}_A a unique minimal left linear topology containing A. Then \mathscr{L}_A consists of those left ideals B such that $B \geq AF^{-1}$ for some finite subset F of R.

- $(1) \Rightarrow (2)$. If $A \in \mathscr{L}$, then $AF^{-1} \in \mathscr{L}$ for every finite subset F of R. Since \mathscr{L} is proper, we see that A is weakly essential. Conversely assume A is a weakly essential left ideal of R. Then \mathscr{L}_A is proper and so $\mathscr{L}_A \subseteq \mathscr{L}$. Hence we have $A \in \mathscr{L}$.
 - $(2) \Rightarrow (3)$. Clear.
- $(3) \Rightarrow (1)$. Let \mathscr{L}' be a proper left linear topology on R. For each $A \in \mathscr{L}'$, we have $AF^{-1} \in \mathscr{L}'$ for every finite subset F of R. Since \mathscr{L}' is proper, we see A is weakly essential, and so $A \in \mathscr{L}$ by (3). Therefore we have proved \mathscr{L} is unique maximal.

The following corollary was proved by Nicholson and Sarath by using the notion of α -weak essentiality. But we can prove this directly.

Corollary 1.7 (Nicholson and Sarath [6, Theorem 1]). The following conditions are equivalent for a ring R with the set $\mathscr L$ of all weakly essential left ideals of R:

- (1) R has a unique maximal left linear topology.
- (2) *L* forms a left linear topology.

(3) If A and B belong to \mathcal{L} , then $A \cap B \neq 0$.

Proof. (1) \Leftrightarrow (2). This is clear by using Proposition 1.6.

- $(2) \Rightarrow (3)$. Clear.
- $(3) \Rightarrow (2)$. Clearly $\mathscr L$ satisfies T1. As noted above, $\mathscr L$ also satisfies T3. Now assume A and B belong to $\mathscr L$. For every finite subset F of R, we see that AF^{-1} and BF^{-1} belong to $\mathscr L$. Hence $(A\cap B)F^{-1}=AF^{-1}\cap BF^{-1}\neq 0$ by (3). Thus $A\cap B$ belongs to $\mathscr L$. Therefore we showed that $\mathscr L$ satisfies T2.
- **Example 1.8.** Let R be a ring and $\mathscr L$ the set of all essential left ideals of R. It is well known that $\mathscr L$ is a proper left linear topology on R. By using Theorem 1.3, we notice that $\mathscr L$ is maximal if and only if every weakly essential left ideal of R is essential. In this case, $\mathscr L$ is unique maximal by Proposition 1.6. In case R is commutative, we remark that $\mathscr L$ is maximal if and only if every nonzero ideal of R is essential. Thus we conclude that, if R is a commutative semiprime ring, $\mathscr L$ is maximal if and only if R is prime.
- 2. The complement of linear topologies. In [7] Meijer and Smith concerned with the collection N(R) of those left ideals of R which do not belong to any proper left Gabriel topology on R. As mentioned in [7, Lemma 2.1], a left ideal I belongs to N(R) if and only if $\operatorname{Hom}_R(R/I, E) \neq 0$ for every nonzero injective left R-module E. Now we shall consider the set

$$\mathbf{C}(R) = \{I \in \mathscr{L}(R) \mid I \notin \mathscr{L} \text{ for every proper left linear topology } \mathscr{L} \text{ on } R\}.$$

Clearly $0 \in C(R)$ and $R \notin C(R)$. If $A \in \mathcal{L}(R)$ and $A \leq B$ for some $B \in C(R)$, then $A \in C(R)$. Remark that $C(R) \subseteq N(R)$.

Theorem 2.1. The following statements are equivalent for a left ideal A of a ring R:

- (1) $A \in C(R)$.
- (2) A is not weakly essential, i.e., $AF^{-1} = 0$ for some finite subset F of R.
 - (3) R/A is cofaithful.

Proof. $(1) \Leftrightarrow (2)$. For a left ideal $A, A \in \mathbb{C}(R)$ if and only if $0 \in \mathscr{L}$ for every left linear topology \mathscr{L} containing A, or equivalently

102 H. KATAYAMA

0 belongs to the unique minimal left linear topology containing A. As noted in the proof of Proposition 1.6, $0 \in \mathscr{L}_A$ if and only if $AF^{-1} = 0$ for some finite subset F of R.

 $(2) \Leftrightarrow (3)$. This is proved by the same method as is used in the proof of Theorem 1.3. (See [1, Proposition 4.5.4]).

A left linear topology $\mathscr L$ is called *super* if $\mathscr L$ contains a unique minimal member. Such a member is in fact a two-sided ideal. We denote by $C_s(R)$ the set of those left ideals which do not belong to any proper super left linear topology on R. Clearly $C_s(R) \supseteq C(R)$. If R is left artinian, then every left linear topology on R is super, and so $C_s(R) = C(R)$. For a ring R with Jacobson radical I, it was proved in I, Proposition 2. 9 that I that I consists of all proper left ideals of I if and only if I is right I-nilpotent and I is a simple artinian ring. By the definition, I consists of all proper left ideals of I if and only if I is a simple ring.

Theorem 2.2. The following statements are equivalent for a ring R:

- (1) C(R) contains all maximal left ideals of R.
- (2) C(R) consists of all proper left ideals of R.
- (3) R is a simple artinian ring.

Proof. $(1) \Rightarrow (2)$. Clear.

- $(2) \Rightarrow (3)$. Assume (2). Then every nonzero cyclic left R-module is cofaithful by Theorem 2.1. Thus every nonzero left R-module is also cofaithful. In particular every nonzero left ideal of R is cofaithful, and so R is left strongly prime (see [5, Proposition 2.5]). Also since every faithful left R-module is cofaithful, $\operatorname{soc}(_RR) \neq 0$ by [2, Proposition 1]. Hence R must be simple artinian by [5, Theorem 4.3].
- $(3) \Rightarrow (1)$. Assume I is a maximal left ideal of R. Then $_R(R/I)$ is cofaithful and so I belongs to C(R) by Theorem 2.1.
- In [7] the other extreme when N(R) = |0| was considered. It was shown in [7, Theorem 6.4] that N(R) = |0| if and only if R is a reduced ring and $Ra + 0a^{-1}$ is essential left ideal of R for all $a \in R$. We remark that $C_s(R) = |0|$ if and only if every nonzero left ideal of R contains a nonzero ideal of R.

Theorem 2.3. The following statements are equivalent for a ring R: (1) $C(R) = \{0\}.$

- (2) Every nonzero left ideal of R is weakly essential.
- (3) Every nonzero cyclic left ideal of R is weakly essential.
- (4) For every nonzero element a of R and elements r_1, \dots, r_n of R, there exist a nonzero element a of R and elements r'_i in R such that $a'r_i = r'_i a \ (i = 1, \dots, n)$.

Proof. $(1) \Leftrightarrow (2)$. This is clear by Theorem 2.1.

- $(2) \Leftrightarrow (3)$. Clear.
- $(3) \Leftrightarrow (4)$. Let A = Ra be a nonzero cyclic left ideal of R. Then A is weakly essential if and only if, for every elements r_1, \dots, r_n of R, $Ar_1^{-1} \cap \dots \cap Ar_n^{-1} \neq 0$ holds. This occurs if and only if, for every elements r_1, \dots, r_n of R, there exists a nonzero element a' of R such that $a'r_i \in A = Ra$ $(i = 1, \dots, n)$.
- Corollary 2.4 (cf. [7, Corollaries 5.2 and 6.5]). If R is a domain, then $C(R) = \{0 \mid \text{if and only if } R \text{ satisfies the left Ore condition.}$
- *Proof.* Assume R is a left Ore domain with a classical left quotient ring $Q_{cl}^{i}(R)$. For every nonzero element a of R and elements r_1, \dots, r_n of R, there exist nonzero elements a_i' of R and elements s_i of R such that $r_i a^{-1} = a_i'^{-1} s_i$ $(i = 1, \dots, n)$. As is well known (see [4, p. 392]), there exist a nonzero element a' of R and elements t_i of R such that $a_i'^{-1} = a'^{-1} t_i$ $(i = 1, \dots, n)$. Put $r_i' = t_i s_i$ $(i = 1, \dots, n)$. Thus we have $a' r_i = r_i' a$ $(i = 1, \dots, n)$, and so $C(R) = \{0\}$. We can also show this fact by using [7, Corollary 5.2] with $C(R) \subseteq N(R)$. The reverse implication is obvious.
- Remark 2.5. The property that $C(R) = \{0\}$ of rings R is not a Morita invariant. To see this, let K be a field. By Theorem 2.3, we see $C(K) = \{0\}$. But consider the ring R of $n \times n$ matrices over K for some n > 1. As shown in Theorem 2.2, we have $C(R) \neq \{0\}$. On the other hand, the property that R has a unique maximal left linear topology is a Morita invariant ([6, Corollary to Theorem 2]). Hence we conclude that the above two properties on R are not equivalent.

By using Theorem 2.3, we shall prove the next two propositions.

Proposition 2.6. If R is a left order in a ring Q, then $C(Q) = \{0\}$ implies $C(R) = \{0\}$. Furthermore, if R is a domain, then $C(Q) = \{0\}$.

Proof. Suppose there are given elements $r(\neq 0)$, r_1, \dots, r_n in R.

By $C(Q) = \{0\}$, there exist elements $q(\neq 0)$, q_1, \dots, q_n in Q such that $qr_i = q_i r$ $(i = 1, \dots, n)$. We can find a regular element r' in R with $r'q(\neq 0)$, $r'q_1, \dots, r'q_n \in R$. Thus we have $(r'q)r_i = (r'q_i)r$ $(i = 1, \dots, n)$, and so $C(R) = \{0\}$.

Now assume R is a domain. For every elements $q(\neq 0)$, q_1, \dots, q_n of Q, there exist a regular element r in R with $rq(\neq 0)$, $rq_1, \dots, rq_n \in R$. Since $C(R) = \{0\}$ by Corollary 2.4, there exist $r'(\neq 0)$, r_1', \dots, r_n' in R such that $r'(rq_i) = r_i'(rq)$ $(i = 1, \dots, n)$. Noting that $r'r(\neq 0)$ and $r_i'r$ $(i = 1, \dots, n)$ belong to Q, we obtain $C(Q) = \{0\}$.

Proposition 2.7. Suppose $R = R_1 \times \cdots \times R_n$ is a direct sum of rings R_i $(i = 1, \dots, n)$. Then $C(R) = \{0\}$ if and only if $C(R_i) = \{0\}$ for all $i = 1, \dots, n$.

Proof. We may assume n=2. Let S and T be rings. Assume $C(S)=\{0\}$ and $C(T)=\{0\}$. Let $(s,t)(\neq 0), (s_1,t_1),\cdots,(s_n,t_n)$ be elements of $S\times T$. We may assume that $s\neq 0$. By $C(S)=\{0\}$, there exist $s'(\neq 0), s_1',\cdots,s_n'$ in S such that $s's_t=s_t's$ $(i=1,\cdots,n)$. If t=0, then we have $(s',t)(s_t,t_i)=(s_t',t_i)(s,t)$ $(i=1,\cdots,n)$. If $t\neq 0$, by $C(T)=\{0\}$, there exist $t'(\neq 0), t_1',\cdots,t_n'$ in T such that $t't_t=t_t't$ $(i=1,\cdots,n)$, and so we have $(s',t')(s_t,t_t)=(s_t',t_t')(s,t)$ $(i=1,\cdots,n)$. Therefore we have $C(S\times T)=\{0\}$.

Conversely assume $C(S \times T) = \{0\}$. To show $C(S) = \{0\}$, let $s(\neq 0)$, s_1, \dots, s_n be elements of S. For the elements (s, 0), $(s_1, 1), \dots, (s_n, 1)$ in $S \times T$, there exist elements $(s', t')(\neq 0)$, $(s_1', t_1'), \dots, (s_n', t_n')$ in $S \times T$ such that $(s', t')(s_t, 1) = (s_t', t_t')(s, 0)$ $(i = 1, \dots, n)$. Then we have $s's_t = s_t's$ $(i = 1, \dots, n)$ and $s' \neq 0$ because t' = 0. Therefore we showed $C(S) = \{0\}$.

Example 2.8. There may be many rings R such that C(R) are not extreme. To give such an example, we shall calculate C(R) where R is the 2×2 upper triangular matrix ring over a field K. There are three types of minimal left ideals of R, namely $A = \begin{pmatrix} K & 0 \\ 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & K \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} xa & xb \\ 0 & 0 \end{pmatrix} \mid x \in K$ for some fixed nonzero elements a and b of K. Let e_{11} , e_{12} and e_{22} be matrix units in R. Since $Ae_{12}^{-1} \cap Ae_{22}^{-1} = 0$, A belongs to C(R). Also since $Be_{11}^{-1} \cap Be_{22}^{-1} = 0$, B belongs to C(R). But since C is an ideal of R, it is weakly essential and so C does not belong to C(R). Now

let I be a left ideal of R which contains A or some B strictly. Then I also contains C and so I does not belong to C(R). Thus we conclude that C(R) consists precisely of A and those left ideals B.

REFERENCES

- [1] J. A. BEACHY: Generating and cogenerating structures, Trans. Amer. Math. Soc. 158 (1971), 75-92.
- [2] J. A. BEACHY: On quasi-Artinian rings, J. London Math. Soc. 3 (1971), 449-452.
- [3] J. A. BEACHY: On maximal torsion radicals, Canad. J. Math. 25 (1973), 712-726.
- [4] C. FAITH: Algebra I, Springer-Verlag, 1981.
- [5] H. KATAYAMA: On rings for which various types of nonzero preradicals are cofaithful, Hokkaido Math. J. 12 (1983), 49-63.
- [6] W. K. Nicholson and B. Sarath: Rings with a largest topology, Comm. Alg. 13 (1985), 769-780.
- [7] A. R. MEIJER and P. F. SMITH: The complement of Gabriel topologies, J. pure and appl. Alg. 31 (1984), 119-137.
- [8] R. A. RUBIN: Absolutely torsion-free rings, Pacific J. Math. 46 (1973), 503-514.
- [9] B. STENSTORÖM: Rings of quotients, Springer-Verlag, 1975.

DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY

(Received September 28, 1985)