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ON LEFT EXACT PRERADICALS
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Suos1 MORIMOTO

In [7]. we have given the conditions for a left exact preradical to be a
radical and to be stable by means of the notions of weakly divisibility and
divisibility.

In the first part of this note, we study the divisible hulls of modules.
Especially, for a left exact preradical r, we give a necessary condition for
every module to have the r-divisible hull (Theorem 1.8). Next we character-
ize left exact preradicals which satisfy the condition that every divisible
module is injective (Theorem 1.11). Finally, we investigate left exact pre-
radicals for which every weakly divisible module is injective { Theorem 2.6).

Throughout this note, R means a ring with identity and modules mean
unitary left R-modules, unless otherwise stated. The category of all mod-
ules is denoted by R-mod and the injective hull of a module A by E(4). For
the terminologies and basic properties of preradicals and torsion theories,
we refer to (8]). For each preradical r, we denote the r-torsion class (resp.
r-torsionfree class) by T(r) (resp. F(r)). Also the left linear topology
corresponding to a left exact preradical r is denoted by L(r). Now, for two
preradicals r and s, we shall say that r is larger than s if r(A) 2 s(A) for
all modules A. For a preradical r, r means the smallest radical larger than

r. As is well-known, F(r) = F(+).

1. The divisible hulls of modules. ILet » be a preradical. We call a
module A r-weakly divisible (resp. r-divisible) if the functor Homs(—,A4)
preserves the exactness of all sequences of modules O - L - M > N -0

with M in T(r) (resp. N in T(r)).

The following lemma is well-known.

Lemma 1.1. Let r be an idempotent preradical and A a module. Then
the following are equivalent :
1) A is divisible.
2) »(E(A)/A) = 0.
' 3) A is rdivisible.
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Let 7 be a preradical and let A be a module. We call a module D an
r-divisible hull of A if D is an r-divisible module containing A, A is essential
in D and D/A is in T(r).

As is easily seen, an r-divisible hull of A is the smallest r-divisible
module containing A.

Lemma 1.2. For a preradical r and a module A, an r-divisible hull of
A (if it exists) is unique up to isomorphism.

Proof. Let both D and D’ be r-divisible hulls of A. Consider the
diagram

O——A——D

D
where i and j are inclusions. Since D/A is in T(r) and A is essential in
D, there exists a monomorphism g: D = D’ such that g-i{ = j. Since A C
g(D) €D and D'/g(D) is in T(r), g(D) is a direct summand of D". Since
g(D) is essential in D', g{D) = D'. Hence D = D"

We may use D(A) to denote the r-divisible hull of A, if it exists.

Proposition 1.3. If r is an idempotent preradical and a module A has
the r-divisible hull, then D(A)/A = r(E(A)/A).

Proof. We put r(E(A)/A) = B/A. Since A C D(A) C E(A) and
D(A)/Aisin T(r), D{A) € Band B/D(A) is in T(r). Also since D(A)
is a direct summand of B and is essential in B, B = D(A). Hence D(A)/A
= r(E(A)/A). ’

Corollary 1.4. Let v be an idempotent preradical and A a module. A
has the r-divisible hull if and only if r(E(A)/A) = ®(E(A)/A).

Corollary 1.5. If r is an idempotent radical, then every module has the
r-divisible hull.

We can provide an idempotent preradical for which there exists a
module having no divisible hull (see Example 1.9).
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Lemma 1.6. For a left exact preradical r, the following conditions are
equivalent :

1) ris a radical.

2) r(H/v(H)) = O for all r-weakly divisible modules H.

3) r(D/r(D)) = O for all r-divisible modules D.

4) r(E/r(E)) = O for all injective modules E.

Proof. 1) =2) = 3) =>4) are clear. 4) =>1). Let A be a module.
Then A/r(A) = A/(r(E(A)) N A) = (A++(E(A)))/r(E(A)) C E(A)/
r(E(A)) € F(s). Thus by assumption r is a radical.

Now let r be a left exact preradical. We define a left exact preradical
72 larger than r by r:(A)/r(A) = r(A/7(A)) for each module A.

Proposition 1.7. For a left exact preradical r, the following conditions
are equivalent :

1) r;is a radical.

2) r(A/r(A)) = 7(A/r(A)) for all modules A.

3) r(H/r(H)) = #H/r(H)) for all r-weakly divisible modules H.

4) r(D/#(D)) = #(D/r(D)) for all r-divisibie modules D.

5) r(E/v(E)) = #(E/r(E)) for all injective modules E.

6) r.E) is r-divisible for all injective modules E.

Proof. 1) =>2). Let A be a module. Since r)(A/r:(A)) = O and
F(r) = F(7), 7(A/r:(A)) = O. Thus 7(A/r(A)/rA)/r(A)) = O, name-
ly, r(A)/r(A) 2 7(A/r(A)). Therefore r(A/7(A)) = 7(A/r(A)). 2) =
3) =>4) =>5) = 6) are clear. 6) = 1). Let E be an injective module. We
put r(E/r(E)) = B/rE). Since r.(E) is r-divisible, there exists a
submodule Y of B such that B = r,(E) @ Y. Also since r(B) = r(r,(E)),
Y is in F(r). Clearly since Y is in T(r), B = r.(E). Hence E/r.(E) is
in F(r). However F(r) = F(r,) = F(7) and thus r, is a radical by Lemma
1.6.

Theorem 1.8. Let r be a left exact preradical. If every module has the
r-divisible hull, then r. is a radical.

Proof. Let E be an injective module. We show that r.(E) is r-divisi-
ble. By Proposition 1.3, D(+(E))/r(E) = r(E(+(E))/r(E). and so it is
contained in r(E/r(E)) = rE)/r(E). Thus D(+(E)) C r.E). Since
D(r(E)) is r-divisible and 7.(E)/D((E)) is in T(r), D(+(E)) is a direct
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summand of r,(E). Hence there exists a submodule X of 7.(E) such that
roE) =D(r(E)) ® X. Sincer(E) C ry(E) C Eand r(E) € D(r(E)) C
E, r(ro(E)) = r(D(+(E)). And so X is in F(r). Also since X = r,(E)/
D(r(E)), Xis in T(r). Therefore r,(E) is r-divisible.

The converse of this theorem is not necessarily true (see Example
1.13).

Now we give an example of a left exact preradical r for which there
exists a module having no r-divisible hull.

Example 1.9. Let K be a field and R the ring of all 3 X3 upper

(O K K

triangular matrices over K. f weput T=|0 O K
000

Rand T2 T? 2 T® = 0. Let r be a left exact preradical corresponding to
the left linear topology which has the smallest element T. By [4, Theorem

., then T is an ideal of

6], r, is not a radical. Thus by Theorem 1.8 there exists a module which
does not have the r-divisible hull.

Now let Z(A) be the singular submodule of a module A. As is well-
known, Z is a left exact preradical and L(Z) is the set of essential left
ideals of R. Furthermore if B is an essential submodule of a module A, then
Z(A/B) = A/B. Also the smallest radical larger than Z is called the
Goldie torsion radical and is denoted by G.

Lemma 1.10. For a left exact preradical r, the following conditions
are equivalent :
1) 7 is larger than Z.
2) If Bis an essential submodule of a module A, then r(A/B) = A/B.
3) r(E(A)/A) = E(A)/A for all modules A.
4) For each module A, the injective hull E(A) of A is the r-divisible
hull of A.

Proof. The implications 1) => 2) = 3) = 4) are clear. 4) = 1). Let
I be an element of L{Z). Since I is essential in R, E(I) = E(R). Also
since E(I)/I = E(R)/I is in T(r) by assumption and r is left exact, R/I
is in T(r). Thus I is in L(r). Hence r is larger than Z.

Now we consider the following condition (*) :

(*) Every r-divisible module is injective.
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FEach one of them in above lemma implies (*). For, let A be an r-divisible
module. Then +{E(A)/A) = O by Lemma 1.1. By assumption +(E(4)/A)
= E(A)/A. Thus E(A) = A.

But the converse is not true in general (see Example 2.4). As concerns
the equivalent conditions of (*), we state it in the following theorem.

Theorem 1.11. Let r be a left exact preradical. Then the following
conditions are equivalent :

1) Every r-divisible module is injective.

2) 7 is larger than G.

3) If a module A has the r-divisible hull, then it is the injective hull
of A.

Proof. 1) =>2). Let I be an essential left ideal of R. Then 7 is a
left exact radical and I has the 7-divisible hull D(I). Since D(I) is -
divisible and is essential extension of I, D(I) = E(I) = E(R). Hence R/I
€ D(I)/Iand R/Iis in T(#). I'is in L(7) and so 7 is larger than Z. Thus
7 is larger than Z = G. 2) => 3). Assume that a module A has the r-
divisible hull D(A). Since D{A) is also the r-divisible hull of A and 7 is
larger than Z, D(A) is injective by Lemma 1.10. Thus D(A) = E(A).
3) = 1) is clear.

Corollary 1.12. Let 7 be a left exact preradical for which each module
has the r-divisible hull. Then every r-divisible module is injective if and

only if r is larger than Z.

Example 1.13. Let R be the 3 X3 upper triangular matrix ring over

K KK
afieldK. If we put T={0 O K|, then T is an ideal of R and T? =
K KK 000
0 O O | = soc(xR). Let r be a left exact preradical corresponding to the
00O

left linear topology which has the smallest element T. Since T % T?, r is
not a radical. On the other hand, since R is artinian and T° =T%, r, = G
by [4, Theorem 6]. If R has the r-divisible hull D(R), then D(R) is the
ro-divisible hull of R. By Lemma 1.10, D(R) = E(R). But +(E(R)/R)
4+ E(R)/R. Thus R does not have the r-divisible hull.

2. Weakly divisible and divisible modules. We call a preradical r
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stable if T(r) is closed under injective hulls.

Proposition 2.1. For a left exact radical r, the follwing conditions are
equivalent :

1) Every r-torsion r-divisible module is injective.

2) Every r-torsion r-weakly divisible module is .injective.

3) 1 is stable.

Proof. Refer to [7, Proposition 2.6] for the equivalence of 2) and 3).
1) =5 3). Let A be an r-torsion module. Since r(E(A)) is in T(r) and is
r-divisible, it is injective. Also r(E(A)) 2 r(A) = A implies that r(E(A))
is essential in E(A). Hence r(E(A)) = E(A) and thus r is stable. 2) =

1) is clear.

Now combining Theorem 1.8, Lemma 1.10 and Corollary 1.12 with
Proposition 2.1, we readily obtain.

Corollary 2.2. [5, Proposition 2.1] Let r be a left exact preradical.
If r is larger than Z, then v; is a radical and stable.

Proposition 2.3. For a left exact preradical r for which every module
in F(r) is injective, the following conditions are equivalent :

1) Every r-divisible module is injective.

2)  Every r-torsion r-divisible module is injective.

3) Ewvery 7-torsion r-divisible module is injective.

Proof. 1) = 2)=>3) are clear. 3)=>1). Let A be an r-divisible
module. Then 7(E(A)/A) = Oand A D #(E(A)). Since 7(E(A)) = 7(4)
is r-divisible and 7-torsion, 7(A) is injective. There exists a submodule B
of A such that A = B® 7(A). Since r is left exact, we have r(7(4)) =
r(A). And so r(A) = »(B) ® r(#(4)) = r(B) ® +(A). Thus B is in
F(r). Hence A is injective.

We give an example to show that the assumption that every module in
F(r) is injective cannot be removed in the preceding proposition.

Example 2.4. Let R be the 3 X3 upper triangular matrix ring over a

K KK
O KK
000

field K. If we put I = , then I is an idempotent two-sided ideal
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and R/I is flat as a right R-module. Let r be a left exact radical corre-
sponding to the left Gabriel topology which has the smallest element I. Since
R/I is a flat right R-module, r is stable. Thus r satisfies 2) by Proposition
2.1. Also since I 2 soc (rR), 7 is properly smaller than G. Hence r does
not satisfy 1).

Let r be a preradical. We call r splitting if r(A) is a direct summand
of A for each module A. Also r is called pseudo-cohereditary if every

homomorphic image of A/(A N 7(E(A))) is in F(r) for each module 4.

We quote the following.

Lemma 2.5. [6, Theorem 3.3 and Corollary 3.5]

(1) For an idempotent preradical r, it is pseudo-cohereditary if and
only if every r-weakly divisible module is r-divisible.

(2) For a left exact preradical r, it is pseudo-cohereditary if and only
if r is an exact radical.

For a class @ of modules, we put
¢! ={A € R-mod | Hom(A4,X) = O for all X in ¢! and
@7 =1{A € R-mod | Homg(X,A) = O for all Xin C!.

Theorem 2.6. For a left exaci preradical r. the following conditions
are equivalent :

1) Every r-weakly divisible module is injective.

2) r is splitting (stable) and every module in F(r) is injective.

3) ris splitting (stable) and R/r(R) is a semisimple artinian ring.

4) 7 is pseudo-cohereditary and every r-divisible module is injective.

5) (T(r)4, T(r), F(r)) is a 3-fold torsion theory with length 2 and
r is larger than Z.

6) (T(r), F(r), F(r)") is a 3-fold torsion theory with length 2 and

r is larger than Z.

Proof. 1) =>2). Since r is a left exact preradical, F(r) is closed
under injective hulls and so every module in F(r) is r-weakly divisible. By
assumption it is injective. Now let A be a module. Since r is stable by
[7, Proposition 2.6], if 7(A) is essential in A, then r(A) = A. Thus we
assume that (A ) is not essential in A. Then there exists a submodule B of
A such that r(A) @ B is essential in A. Since (A) N B= 0, B is in
F(7). Thus B is injective. Hence there exists a submodule C of A such that
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A=B®C. Sincer(A) =r(C), r(A) € C. Also since r(A) is essential
in C, C=7r(C). Hence C = r(4), namely, A = +(4) ® B. Therefore r
is splitting. 2) = 3) follows from [1, Theorem 3.2]. 3) = 1). Let A be
an r-weakly divisible module. Since r is splitting, there exists a submodule
B of A such that A =7(A) ® B. Bis in F(r) and so is injective by
[2, Theorem 2.2]. Since r(E(A)) = r(4), 7(A) is injective. Hence 4 is
injective. 1) & 4) follows from Lemma 2.5. 1) = 5). T(r)! is a heredi-
tary torsion class by [7, Theorem 2.7]. Also r is a cotorsion radical by
Lemma 2.5. Thus T(r)' = F(r) by [3, Theorem 2.7]. 5) = 6). Since
T(r) =F(r), T(r) = T(+)" = F(r)". 6) = 4) follows from Corollary
1.12 and Lemma 2.5.

Corollary 2.7. For a left exact radical r. the following conditions are
equivalent :

1) Every r-weakly divisible module is injective.

2)  Every r-divisible module is injective and every module in F(r) is
injective.

3) Every r-torsion r-divisible module is injective and every module in
F(r) is injective.

Proof. The implications 1) => 2) = 3) are clear. 3) =>1). By Prop-
osition 2.1, r is stable. Therefore r is splitting by [1, Theorem 3.2].
Thus the implication follows from Theorem 2.6.

Corollary 2.8. For a left exact radical larger than G, the following
conditions are equivalent :

1) Every r-weakly divisible module is injective.

2) 1 is pseudo-cohereditary.

3) Every module in F(r) is injective.

4) R/r(R) is a semisimple artinian ring.

5) (T(r), T(r), F(r)) is a 3-fold torsion theory with length 2.

6) (T(r), F(r), F(r)") is a 3-fold torsion theory with length 2.

Now we fix a module M. Let T be the left annihilator of M in R and let
r be a left exact preradical corresponding to the left linear topology which
has the smallest element T.

We call a module A strongly M-injective if every homomorphism of any
submodule of M” into A can be extended to a homomorphism of M* into A for
any index set J.
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A strongly M-injective module is nothing but an r-weakly divisible
module [7, Theorem 1.3]. By Theorem 2.6 we readily obtain.

Corollary 2.9. The following conditions are equivalent :

1)
2)

Every strongly M-injective module is injective.
T = Re for some central idempotent e in R and T is a direct

summand of soc(rR).
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