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RINGS OF QUOTIENTS FOR RINGS
WITH SETS OF LOCAL UNITS

ManTtHrRAM PARVATHI and Pusipa Ray ADHIKARI

Introduction. In this paper we introduce suitable notion of rings of
quotients for rings with sets of local units and prove that the rings of quotients
of two Morita equivalent rings with sets of local units are again rings with
sets of local units and they are Morita equivalent. Since it has been
observed in [6] that two rings with sets of local units are Morita equivalent
if and only if they are the right and left operator rings of a gamma ring with
right and left local units, we construct the gamma ring of quotients for gamma
rings with right and left local units. Using our construction of rings of
quotients for rings with sets of local units which coincide with the rings of
quotients for rings with unities ([8]) we prove that right and left operator
rings of a gamma ring of quotients are nothing but the rings of quotients for
the right and left operator rings of the original gamma ring. Hence we
extend the result of Turnidge [9. Th. 2. 4] to rings with sets of local units.

1. Preliminaries. Throughout this paper all rings considered are
associative without assuming the existence of unity elements. We recall the
following definitions and theorems which will be needed later.

Definition 1.1. Let R be any ring. A set E of commuting idempotents
in the ring R is called a set of local units for R (abreviated slu) if for each
r € Rthere exists e € E with er = re = r.

Let E be a set of local units for R. Then for e,, e, € E, e, < e, &> e,e,
= e, defines a binary relation on E. This binary relation ‘<’ is a partial
order relation on E and (E. <) is an upward directed set. For e, < e, in E

é ,e, : e1Re; = esRe,
is a canonical injection which preserves addition and multiplication and
R= li_r)ng eRe (nn
Definition 1.2. Let R be a ring and let I be an upward directed set.

Suppose that for each i € I there exists a left R-module X;, and for each
pair i < j in I there exist
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AJ,;: Xi d .XJ and BU: Xj_) Xi.

We call the collection | X;, Ay, By | i € I} compatible in the category of
left R-modules in case

(1.2.1) A,=B;, =1y, foreachi€ I

(1. 2. 2) Akj.Aji = Aki and ngBjk = Bik for each < ] <kinl

(1.2.3) ByA;; =1y, foreachi<jinI

(1. 2. 4) A};JB_;);A}NB;& = AkiBikAijjk for each k = i, j in I.

Definition 1.3. Let|X;, Ay, By, | i € I} be compatible in R-Mod. By
li_fg'll End; (Xz)

we mean the limit as constructed in {1, Prop. 2. 3].
Definition 1.4. Let R be a ring with slu. By a progenerator for R we
mean a compatible set { X;, A;;, B;; | i € I'l in R-Mod such that

(a) for each i € I, X, is a finitely generated projective left R-module
by X= li];n, (X, A;;) is a generator for R-Mod.

We need the following
Theorem 1.1 ([1, Th.4.2]). Let R and S be iwo rings with slu.

Then R and S are Morita equivalent if and only if there exists a progenerator
[ X:, As, By | i € I for R such that

S - lgn, Eﬂd}z (Xi).
Definition 1.5. Let A and I" be two additive abelian groups. If there
exists a mapping
AXTIXA- A
({a, a,b) = aab for all a, b € A and o € I') which is additive in each
variable and associative, then we call A a I'-ring.
Definition 1.6 ([4]). Let A be a I'-ring. Consider the mapping
[e,a] : A—> A

defined by b[e, a] = baa for fixed « € I"and a € A. Then [a, a] € End(4).
Again the mapping
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I'XA - End(A)
defined by (a, @) = [a, a] is Z-bilinear. Hence there exists a linear mapping
I' ® ;A- End(A)

which takes X (a; ® a;) = X; [a:, a;) for a; € I" and a; € A. Due to the
associativity of A, the image of I' ® ;A in End(A) is an associative ring
with the following rule of multiplication

2 [az, az] Zu [/91, b.i] = Zu [01, aiﬂjb;].

we denote this ring by R(A4, I') or simply by R and call it the right operator
ring of A. Similarly, we can construct the left operator ring of A, denoted
L(A, I') or simply by L, by considering the mapping

la,a]l: A> A
defined by [a, a]b = aab for fixed ¢ € I" and @ € A, and with the following

rule of multiplication

Zt [at, Clz] Zj [b_,-, BJ] = Zu [aiaibj, /9.1]
Then A is a faithful L-R bimodule.

Let A be a I'-ring with the left and right operator rings L and R. Then

Definition 1.7. Let A be a I'-ring. Then A is said to be a I'-ring
with right local units (resp. left local units) if the following conditions are
satisfied :

1) Foreverya€ AandfE T,

(a) there exist y;(1 <i<n) in A and ;(1 < i< n) in I (resp.
there exist y,(1 < p<m) in Aand 2, (1 < p < m) in I') such that

aZt [aty yil = a(reSp. Zp [yp, a‘p]a-: a) :

(d) vy, D leyd =35 JE€11,2,...,n) (resp. Zplys, aplye = yq for
g€ 11,2,...,ml);

(¢) (xX[ei, yJ)Ba = xBa(resp. af(L, [yo, aplx) = apfx) for all x
in A,

2) Given a;, a, in A (resp. by, b, in A) and B\, B; in I" (resp. 6., 6.
in I'), there exist 2 [es, yd, 2, [85, wi in R (resp. 2 [0, a0), X
[wq, B4 in L) respectively satisfying (1) and for every x in A

JC( Zz [Gi, yf] EJ [51- ’Wj]) = -1'(21 [51', WJ] Zt [an yﬂ)
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(reSP- (Zp [ypa ap] Eq [wm ﬂq])x = (24, [wth ,Bq] Zp [ym ap]x))-

We record the following theorems, without proof, for reference.

Theorem 1.2 ([7, Lemmas 2.2 and 2.4]). Let A be a I'-ring with
right and left local units. Then the right and left operator rings of A are
rings with slu,

Theorem 1.3 ([7, Th. 2.1]). Let A be a I'-ring with right and left local
units. Then the right and left operator rings R and L of A are Morita
equivalent rings.

Definition 1.8. A [-ring A is said to be a left (resp. right) I'-weakly
semiprime I'-ring if [x, I'] = 0 (resp. [I",x] = 0) for x € A implies x =
0. A is said to be I'-weakly semiprime if it is both left and right I'-weakly
semiprime.

Definition 1.9. A I'-ring A is said to be weakly semiprime if it is
I'-weakly semiprime and further satisfies the condition AI’'A = A.

Definition 1.10 ([6, p.5]). Assume that a ring S satisfies the con-
ditions

(1.10.1) S*=

(1.10.2) Sa=0oraS =0 impliesa=0, a € S.
Then two rings S and T satisfying the above conditions are said to be I'-
context equivalent, S+ T, if there exists a weakly semiprime I'-ring A such
that its left and right operator rings are isomorphic to S and T respectively.

2. Since it has been observed in [7, Th. 2. 2] that given two rings R
and S with slu which are Morita equivalent, then there exists a I'-ring with
right and left local units (for a suitably chosen I') whose left and right
operator rings are isomorphic to R and S respectively, we begin with the
study of localization for gamma rings.

Throughout this chapter by a I'-ring A we mean A is a I'-ring with left
and right local units. If L and R designate the left and right operator rings
of A, then L and R are rings with slu (Th. 1. 2), say F and E respectively.

The following results are easily obtained as in the case of I'-rings with
left and right unities [4, pp. 191—193].
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Lemma 2.1. (a) If A is a I'-ring with left and right local units, then
ATA = A and A is a weakly semiprime I'-ring.
(b) The lattices of all right ideals of A and its left operator ring L are
isomorphic via the mapping I = I*', where I is a right ideal of A and
I = {Zz [at» Gt] €L I (Z; [’1;‘, a(])A crIi
(¢) The lattices of all left ideals of A and its right operator ring R are
isomorphic via the mapping J = J*, where J is a left ideal of A and
J* = iZu [ﬂj, b}] €ER ‘ A(Zi [.31, b,]) c J}-

(d) The lattices of all two sided ideals of A and L are isomorphic via
the mapping I = I*', where I is a two sided ideal of A. By symmetry, we have

(e) The lattices of all two sided ideals of A and R are isomorphic via
the mapping J = J*, where J in a two sided ideal of A.

We recall Gabriel topology for a I'-ring.

Definition 2.1. A nonempty family F(A) of right ideals of A is said to
be a topology on A, if

(1) IT€ FA) implies(I: x),€ J(A) forallx € Aand e € T,

(2) IT€ HA), IC JimpliesJ € FA) for all right ideals J of A4,

(3) I,Je HA) impliesINJ € FHA),

(4) (I:x)e€ HA)foralla€E Tandx € J, JE FA) implies [ €
F(A) where

(I:x)g=I|y€ A| xay € Il.
Then we obtain the following results as in the case of I'-rings with left
and right unities [7, pp. 34 —44].
Proposition 2.1. (a) Let 7(A) be a topology on A. Then
F(R) = | right ideals Pof R| P € ¥ A) for all « € I'}
is a topology on R where,
P*=|x€ Al [a,x] € Pl
(b) Let F#(R) be a topology on R. Then
HA) =lright ideals Iof A| [I: x]x € JR) forallx € Al
is a topology on A where,
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[I:x)g={r€R|2reIl

Moreover, we have

(¢) Let #(A) be a topology on A. Then
(L) = |all right ideals I*' | T € F(A)|
is a topology on L where,
Y ={Zilan a] € LI(Zi[a, a)AC I
(d) Let #(L) be a topology on L. Then
HA)=1{Q* | Qis aright ideal in L and Q € (L)}
is a topology on A where,
QT =lx€ Al [x, T]C QI
Combining all the above propositions, we obtain the following
Theorem 2.1. There is a one to one order preserving correspondence
between the topologies on A; L; R.
Proof. Follows from(a), (b), (c) and (d) of Prop. 2. 1.

Let J(A) be a topology on A. Then there exist corresponding topologies
#R) and F(L) on R and L respectively.
For any M € ob™**, we define

(M) ={m &€ M | Amng(m) € FR)I.
If Ann§’ (m) = {a € A | maa = m[a, a] = 0}, then it is easily seen that
tM) ={me M| Amm® (m) € F(A) for all « € T}.
Likewise
tM)={me M| AmP(m) € #A) for all « € T},
where Amn? (m) = {a € A | aam = [a, e]m = 0} for M€ ob™** Since A

is an R-module, as in [7, Lemma 3. 1.25], we have

Proposition 2.2. Let 5(A) be a topology on A and F(R) and (L) be
the corresponding topologies on R and L respectively. If t and t' are the
Jfunctors, corresponding to the respective topologies, on Mod-R and Mod-L,
then
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(2.2.1) t(A) is a two sided ideal of A.
(2.2.2) t(R) =((A)* = [T, t«4)].
(2.2.3) t(L) =AY =[t(4), I.

We call an R-module M torsion free if t{M ) = 0. Then we have the
following

Corollary 2.1. The following statements are equivalent.
(C1) A is t-torsion free.
(C2) R is t-torsion free.
(C3) L ist'-torsion free.

We observe that if S’ is a two sided proper ideal in a ring S with slu
U, then UZ S'. Then S = S/S’ becomes a ring with slu U. If 4 is not
t-torsion free, then A = A/t(A) represents the quotient I'-ring of A where
the multiplication is defined by xey = xay = xay+t(A4) ([2]) for all z,
y€ A and a € I. Let R(4, I') and L(A, I') designate the respective right
and left operator rings of the I'-ring A, then R(A, I') = [I', A] and L(4, I'")
= [A, I'] respectively.

On the other hand if R = R/(t(A))* and L = L/(t(A))* then both R
and L are rings with slu E and F respectively and we have the following

Lemma 2.2. The mappings
m . R(xq_, F) - R
defined via 71'1(21 [Olz, J—:i]) = Zt [Q’i, -l‘i] and
s @ L(x‘i, I ) - L
defined via m(2; (35, B1) = 25 Ly, 8] are ring isomorphisms.

3. Having established the necessary one to one correspondence between
topologies on A, L and R, we now proceed to the construction of right I"-ring
of quotients for I'-rings with sets of local units.

Let 7(A), #R) and (L) be (fixed) corresponding topologies on A, R
and L and let t, t’ be the corresponding functors defined in Mod-R and Mod- L.
We recall the following

Definition 3.1. For any subset X C Rand ¢ € T, we define

X?={zx € A|[a. x] € X}I.
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The following lemma follows as in [7, Lemma 3. 2. 1].

Lemma 3.1. (a) If P is a right ideal of R, then
(P“+t(A))/t(A) is contained in ((P+t(R))/t(R))® for all a € T.

(b) IfI, JE€ HA) and g: J > A is an R-homomorphism, then

g ((I+t(A))/H(A)) € F(A).
(¢) IfP, Q€ ¥R) and g: Q> A is an R-homomorphism, then

g ((P+t(A))/t(A)) € HR) foralla € T.
(d) IfP, Q€ ¥R) and g: Q— A is an R-homomorphism, then
g '(((P+1(R))/HR))®) € #R).

Let us recall that #{R) becomes a downwards directed set with the
partial order relation ‘<’ defined as P< Q<> QC P, P, Q€ FR). For
each P < Q, if we define

Qep : Homy (P, R) - Hom, (Q, R)

by Qe (é’) = ng, g € Homg (P, R ), then |Homg (P, R ), QOP}PE.?'(R'J becomes
a directed system of abelian groups. Let

R = li_I)nPey(m HomR(P, R)

represent the direct limit of this directed system. Then R' is an abelian
group.

We introduce the rule of multiplication in R’ as in [8, IX(Lemma 1.6)]
by the following rule.

Let {g), (k) € R’ have the representations g € Homy (P, R) and
h € Homg (Q, R) respectively. Then

(&) (h) = (gh)

where {gh) is represented by the composite homomorphism
R'((P+t(R))/t(R)) » (P+t(R))/t(R) - R/t(R).

With this rule of multiplication R’ becomes an associative ring.

Let
RHomy (P,R) ={X;r.*g, | 7, € R, g, € Homx (P, R)}
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where (3, 7,%g.)(r) = X rgfr) for r € P. Then | RHomx(P,R), Qqrlpesn
is again a directed system and let

R" ]i_I)npey(R)RHomR (P,R).

Moreover, we have

Lemma 3.2. R" is a subring of R'.

Proof. It is quite a routine work and hence omited.

For any element r € R, we have a right R-homomorphism
hr:R—-R

defined by k. (r.) = 77;, 7, € R. Since R is a ring with slu E, for every
r € R, there exists an e € E such that er = re = r. So (e*h,)(r,) =
e(7ry) = (er)r, = 771 = ho{r,) implies e*h, = h, € RHomz(P,R). In
particular, e *he = he € RHom; (P, R) for all e € E. Hence we have a
well defined homomorphism

6: R = R" = limpe s RHom, (P,R)
via 8(r) = {h,), which gives the following
Lemma 3.3. 0 is a ring homomorphism of R into R". In particular, if
R is torsion-free as a right R-module, then 8 is a monomorphism.

From now onwards we identify (h.) with e in R and note that {k.) in R”
is an idempotent and we have a natural inclusion

tee: eR'e > e'R"e’.
The set {eR"e, teelees is a directed system of subrings of R". If
R;= li_r)neEE eR’e

then R; C R".

Proposition 3.1. Ry is a ring with slu E.

Proof. 1t follows by the construction of R; and E itself will be the set
of commuting idempotents.

By the one to one correspondence between the topologies of right ideals
on R and L, there is a topology #(L) on L corresponding to the topology
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F(R) on R. Then as in the previous case, if
L' = li_lppresm Hom, (P‘, 1—4)
and
L" = limpese LHom, (P, L),

then L’ is an associative ring and L" is a subring of L. Moreover, there is
a ring homomorphism from L into L" which is a ring monomorphism when L
is torsion free as right L-module. If Fis the slu for L, then

L;= IE)UJEF.[L"f
and L;C L". As in Proposition 3.1, we have

Proposition 3.2. L is a ring with siu F.
Let
A = IH)nPEJlR) Hom, (P, A)

which is an additive abelian group. By Lemma 3. 1(d), if P, @ € ¥ R) and
g: Q= Ais an R-homomorphism, then

g (((P+4R))/R))®) € HR).
with the help of this, we define a composition
A'XTXA - A
as follows. Let {(g), (h) € A’and e € I'. If {g) and (k) have repre-

sentations
g:P->Aandh: Q- A
respectively, we define, as in [7, Th. 3. 2. 4],
(g)alh) = (&¢ah)

where the representation of {g¢.h) is given by the following composite
homomorphism

ETH((P+t(R))/H(R))®) = ((P4+t(R))/(R))® -
(P+t(R))/t(R) - A/t(A)

whefe g: (P+t(R))/t(R) = A/t(A) is the homomorphism induced by g: P
= A, @qis the restriction of ¢,: A > R (¢ola) = [a, a]).
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Since A~ (((P+t(R))/t(R))®) € HR), (g¢ch) € A’. This multipli-
cation is well defined and the rest of the proof that A’ is a I'-ring follows
exactly as in [7, Th.3.2.4]. If

LHomR(P’A) 312111*#;' | l1,€ Land s € HomR(P,A)l

then the set LHom, (P, A) is the set of all R-homomorphisms of the form
1 %4 where (1% u)(r) = 1u(r) € A. As FR) is a downwards directed
set, the collection | LHom; (P, A)lpe s forms a directed system of abelian
groups and let

A= li_l)nPeJ(R)LHOmR (P, A)

Proposition 3.3. A" is a I'-subring of A'.

Proof. It is routine and hence omitted.

With each a € A, we associate a map
hea:R- A

defined by kg (r) = ar for all r € R. h, is clearly an R-homomorphism.
Now, as there exists an f€ FC L such that fa = af = a, f*ha(_r) =
flar) = (fa)r = ar = ho(r) implying that f*h, = h, € LHomg (P, A). If

n: A A"
via r{a) = hq, then ris a well defined mapping and
Lemma 3.4. 7 is a I'-ring homomorphism from A into A". Inparticular
if A is t-torsion free, then m is a ring monomorphism with ker r=t(A) = 0.

Proof. mis a group homomorphism is clear. To prove it is a I'-ring
homomorphism, let a, b € A and a € I'. Then (ko) a{hy) = {hadohs) is
represented by the composite mapping

(he) '((R/H(R))®) - (R/{R))® - R/t(R) - A/H(A).
So (haas) and (hapahs) coincide on k3 ((R/t(R))®), since if
r € (he) '((R/t(R))®),
then

(i‘za¢a o)(r) = holla, br]) = ho[a, br]) =
a([a, br]) = (aab)(r) = haas(r).
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Hence {haas) = (hqo) @ {h,) proving that 7 is a I'-ring homomorphism. If A
is t-torsion free, then 7 becomes a ring monomorphism, for if (h.) =0,
then aP =0 for some PE€ FR). So a € t(A). But when A is t-torsion
free right R-module, t(A) = 0, hence a = 0. Thus the Lemma follows.

If we designate the right and left operator rings of A", as a I'-ring, by
R(A", I') and L(A", I') respectively then we have the following
Lemma 3.5. R is embedded into R(A", I').
Proof. Let
@: R— R(A", TN

be defined as follows. If r € R and r =33 [a,, x;], then &(r) =3, [a;. (hxi)].
Then it is easily verified that @ is a ring monomorphism.
Likewise, we can prove the following

Lemma 3.6. L is embedded intoL{(A", I').

By Lemma 3.5, every element e = 2 [a;,,x;] € E goes to $e) =
Yilai, (hx)] € R(A", T). Let

Ac={(0 €A"| (Ne= (W]

A, is not empty, because (hy) € A; for 1 < i<n, and A; is a left
L-submodule of A", since A" is a left L-module. Further, for any (1) € 4.,

(A) 25 [ats <hxz>] = </\> > 2% [l, O't] <hx1> = (/\)
= 25 Vo, (A (hz) = (X)

where ¥, € Hom; (A", L). Therefore A; is a finitely generated left L-
submodule of A",
For e<e in ECR, ee =e=> dle)< d(e’) and P(e) Ple) = dle)
in R(A", I'). So we have an inclusion mapping
te'e: A; nd A;’.
Then | A., teel is a directed system of submodules of A”. If
A,’; == ]_i_l;ﬂeeE A;~

then Ay is a I"-subring of A",
Let R(A4y, I') and L(Ay, I') designate the right and left operator rings of
Ay as a I'-ring. With each [A] € 45, A= 2., 1,%#A,: P> A, and § €T,
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we associate a map ¢4 such that
¢§A: P- R
defined by (¢sA)(2) = [&, A(t)]. Then

Lemma 3.7. (a) Let A=241,%¥A: P> Aand 6 € I then ¢sA €
RHom; (P, R).

(b) If(A) € Aiand 8 € T, then [¢sA] € R;.

(¢) Ifg € RHomg (P, R), then for anyx € A, h.g € LHom; (P, A).

Proof. (a) If t € P, then (¢sA)(2) = 21: [, 1,A(t)]. Since each 1,
is of the form 2; [w'", £Y], we have

(¢a/\)( Zw [5 Wm (”/\(i ] = Zu [3 W(i] [ﬁm /\z(t)]
= (2w Tu¢ﬁy’/\l)(t )

implies ¢sA = 2505 7i* ¢ A, € RHomg (P,R). (b) and (c) follow easily.
Hence we have the following

Proposition 3.4. The mapping
U:R(4. T) = Ry
via ¥(Xn [0m. [An]]) = Zm [Ssalnl is a ring isomorphism.
The proof follows as in [7, Prop. 3. 2.6]. Similarly, we can prove the
following
Proposition 3.5. L(4;, I') = L.

Since both R; and L; are rings with slu, they satisfy the conditions in
Def.1.10. Our aim is to prove Ly and Ry are Morita equivalent. First we
prove the following

Proposition 3.6. A; is a weakly semiprime I'-ring.

Proof. Follows from the fact that for every x € Ay there exists an
e € E such that xe = x.

Now we prove the main result.

Theorem 3.1. Lj; and Ry are Morita equivalent rings.

Proof. Ryand Ljyare I'-context equivalent since there exists a weakly
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semiprime I -ring Ay such that
R(4; I') = Ryand L(4;, T") = L;,
Therefore, R(A4y, I') and L{A4,, I') are both rings with slu. Let
H.=1[Al € 4| [Ae=T[All

Then H. can be easily seen to be a left L(A;, I')-submodule of A; which is
finitely generated projective ([6, Th. 2.1]). Moreover we have

L(A;.r)Ai = li_f)ﬂz (He, Aee) where
Ae'e . He = He’

is the natural inclusion. Then set {He, Ace, Bee | € € E |, where
Bee' H He' - He

is the right multiplication by e, is compatible in L(4j; I")-Mod and A4y is a
generator for L(Ay I')-Mod. Therefore the set | He, Ace, Bee | ¢ € E| is
a progenerator for L(Ay, I")-Mod (Def. 1. 4) and

eR(A:f, F)e = E“dL(A;,n(He) ([6, Th. 2. 1])
Since R(4,, I') = li_x;n,; (eR"e) and eR"e = Endy, ,r(He), we obtain
R = lim; (Endvw,, r(He)).
Hence R(4;, I') and L(4;, I') are Morita equivalent by Theorem 1. 1.
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