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Introduction. In [3], G. M. Bergman gave characterizations of semihe-
reditary and hereditary commutative rings in terms of their Pierce stalks.
In preparation for these, he also gave characterizations of commutative p.p.
rings by means of their Pierce stalks and classical quotient rings. The pur-
pose of this paper is to present some generalizations of these results.

The first section is preliminaries on Boolean spectra and Pierce
sheaves derived mainly from [10] and [12]. In section 2 we give a theorem
on normal, generalized p.p. rings with classical quotient rings, from which
the result of G. M. Bergman on commutative p.p. rings are deduced. In
section 3 we give characterizations of semihereditary and hereditary normal
rings with classical quotient rings.

Throughout this paper the word “ring” will mean ‘‘non-zero associative
ring with identity element”. For any ring R, (right or left) R-modules are
unital and subrings of R contain the same identity element as R. E(R) de-
notes the set of all idempotents of R. A ring R is called normal if every
idempotent of R is central. For any non-empty subset A of a right (resp.
left) R-module M, we set rg(A) =|{r € R | Ar = 0} (resp. lH(A) =|{r €
R|rA=0}). If ri{a) = lx{a) for an element ¢ € R, then we write it
anng(a). A right (resp. left) p.p. ring is a ring in which every principal
right (resp. left) ideal is projective. A ring R is called a generalized right
(resp. left) p.p. ring if for any element @ € R, there is a positive Integer n
such that a™R (resp. Ra™ is projective. A ring which is both (generalized)
right and left p.p. is said to be a (generalized) p.p. ring.

1. Preliminaries. In this section we will summarize fundamental facts
about Boolean spectra and Pierce sheaves which are needed in later sec-
'tions. Let R be a ring and let B(R ) be the set of all central idempotents of
R. B(R) forms a Boolean ring under the operations

e+f= e+f—2ef,
e-f = ef (product in R).
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The Boolean spectrum of R is the set Spec B(R) consisting of all prime
(equivalently, maximal) ideals of B(R ) endowed with the Zarisky topology,
which is a totally disconnected, compact Hausdorff space. For simplicity we
write X(R) for Spec B(R). For any central idempotent e of R we set V, =
lx € X(R) | e€ x}. As is well known, the set|{V. | e € B(R)| coincides
with the open and closed subsets of X(R ) and forms a basis for the topology
of X(R). The space X(R) has the following partition property ([10, p. 12],
see also [8, Chap. I]):

If | Ul,es is an open covering of X(R ), then there is a finite set | V,,---,
V.| of open and closed subsets of X(R) such that

(1) foreachl < j < r, thereisani € Isuchthat V,;C U, ;

(2) Vi Ve=¢ for j +k;

(3) U V.= X(R).

For e, f € B(R), we define e < f if ¢f = e. Then B(R) becomes an
ordered set, in fact a lattice, where lattice operations are given by

eV f=e+f—ef,
e N\ f= ef.

For any e, f € B(R ), the following hold :
(a) Ve U Vf = Vef-
(b) Ve m Vf = Vev.f-
(¢) VeC V,ifandonly if f< e, thatis, 1—e < 1—/.
(d XR)=V.UVi_cand V. Vi_e= &
We begin with the following elementary

Lemma 1. Let R be a ring and let a be a subset of B(R). Then ais
an ideal of the Boolean ring B(R) if and only if a is an ideal of the lattice
B(R).

Proof. The proof is immediate from identities e V f= e(1—f)+/,
etf=e(l1—f)V f(1—e) in B(R).

Let R be a ring and let a, b be ideals of the Boolean ring B{R). As is
easily seen, the suma+6=le+f|e € a, f€ b} in B(R) is contained in
the sum a+b in R and, if ab = 0, then they are equal. Although they do not
coincide in general, for simplicity we write a+ b instead of a+b. Similarly
we do for any family of ideals of B(R).

Let{e,, - ",e,l be a finite set of orthogonal idempotents of a ring R.
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The set {e,,  *, el is said to be complete if e+ +e, = 1.
The next lemma is well known.

Lemma 2. Let e;,>*.en € B(R) and let fy=1—e; for i = 1,-,n.
Then X(R) = p Ve, and Vo, (\ V., = ¢ for i + j if and only if | i, ful

is a complete sel of orthogonal idempotents.

Let R be a ring and let M be a right R-module. The Pierce sheaf of R
(resp. M) has X(R) as the base space and has R, = R/Rx (resp. M, =
M/Mzx) as the stalk at x for each x € X(R ). The ring R is then isomorphic
to the ring of global sections of this sheaf. The module M has an analogous
sheaf representation [10, Theorems 4.4, 4.5, pp. 17—19]. For m € M
and x € X(R), m, denotes the image of m in the stalk M,. The support of
an element m € M is the set suppm = |x € X(R) | m, %+ 0.}, which is
always closed (see Lemma 4 below). For any non-empty subset A of M, the
support of A is defined to be supp A = aLEJA supp a. For any e € B(R), it is

easily verified that suppe = V,_. and |a € R | suppa S V.| = R(1—e)
{cf. Lemma 7 (2)).

Lemma 3 ([12, (2.8)]). Let A be a non-empty finite subset of a right
R-module M and let x € X(R). If ax = Oy for all a € A, then there is an
e € x such that a(l—e) = 0 for all a € A.

Lemma 4 ([10, Lemma 4.3, p. 16] or (12, (2.9)]). Let M be a right
R-module and let a, b € M, x € X(R). If ax = b, then there is an e €
B(R) withx € V. such that ay = by for all y € V,.

Lemma 5 ([12, (2.10)]). Let A be a subset of B(R). Then the follow-

ing are equivalent:

1) X(R) =eLg4lfe.
2) B(R) =eZEAB(R)(1—e).
3) R=2.R(1—e).

e€aA

Lemma 6. Let A be a subset of B(R) and let f € B(R). Then the
Jollowing are equivalent:

1) Vf :eLeJA Ve.
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2) B(R)(1-f) = L BR)(1—e).
3) RA—f) =S R(1—e).

Proof. Easy consequence of Lemma 5.

Lemma 7 ([12, (2.9)]). Let M be a right R-module and let a, b € M,
e € B(R).

(1) Ifay=b;forallx € V,, thena(l—e) = b(1—e).

(2) Ifax= by for all x € X(R), then a = b.

Let f: M » M be an R-module homomorphism. Then for every x €
X(R), f induces an R,-module homomorphism f. : M, = M. If f is a mono-
morphism, then so is f;. Hence for any submodule N of M, we regard N, as
a submodule of M, for every x € X(R).

Lemma 8 ([12, (2.11)]). Let N be a submodule of a right R-module
M. IfN.= M. forallx € X(R), then N= M,

2. Generalized p.p. rings. Let M be a right module over a ring R and
let x € X(R). Then the stalk M, is a right R, -module in the natural way.
As for annihilators of elements of M, in R,, the following holds.

Lemma 9. Let a,, ", a, be finitely many elements of a right R-module
M. Then for everyx € X(R ), we have

e (1 (a)z, o (@n):l) = (rx(lar, -, anl)) .

Proof. Since the inclusion “2”" is obvious, we prove the inverse inclu-
sion. Let 7, be an arbitrary element of rkx({(a,)x,---,(an)xf).. Then (a;7), =
0,(i=1,--,n), whence there is an e € x such that a;7(1 —e) = 0 for every
i=1,,n (Lemma 3). Consequently r(1—e) € ri(|a,, -, anl), so that
72 € (rllai, ,anl))z, as desired.

Lemma 10. Let R be a ring with classical right quotient ring Q. Sup-
pose that for any element a € R there is a positive integer n such that for
every inleger m = n, supp a” = supp a” is open and closed, and that for any
x € X(R) every zero-divisor of the stalk R is nilpotent. Then for any x €
X(R), the stalk Q. is a classical right quotient ring of Ry.

Proof. Letx € X(R) and let a, be an arbitrary non-zero-divisor of R,.
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By hypothesis there is a positive integer n such that for every integer m =
n, suppa™ = suppa™ = V, with some e € B(R). Put a' = a"+e. Then
for every y € V., a, = aj is non-nilpotent by the choice of n, hence it is a
non-zero-divisor of R, by hypothesis. If y & V,, then ay, = 1,. Thus a} is
a non-zero-divisor of R, for every y € X(R). Consequently, by Lemma 7
(2), @' is a non-zero-divisor of R. Since x € V., we have a, = a%, whence
it follows that a, is invertible in @,. The rest of the proof is obvious.

A ring R is called strongly m-regular if it satisfies one of the following
equivalent conditions (see, [5, Théoréme 1]):

1) For every element a € R, there is a positive integer n and an
element b € R such that ™ 'b = a”.

2) For every element a € R, there is a positive integer n and an
element b € R such that ba™' = o™

Proposition 1. Let R be an algebra over a commutative ring C. Then
the following are equivalent:

1) R is a strongly mregular ring.

2) For any x € X(C), the stalk R, is either zero or a strongly n-
regular ring.

Proof. 1) = 2). Trivial.

2)=>1). Assume 2) and let a be an arbitrary element of R. By hy-
pothesis for every x € X(C) there is a positive integer n(x) and an element
b € R such that a2 = a2®*'b%. By Lemma 4 there is an idempotent
e(x) € C with x € Vo such that ai® = a2 6% for all y € V,u. Since
X(C) =xpm) Ve, by the partition property there are finitely many idempo-

tents e, -+, e, € Csuchthat V, (" V,, =¢ for i #+j, X(C) = tLjJ] Ve, and
for every i = 1,-+-,7, there is anx; € X(C) with V,, © Veu,. Clearly we
have o)™ = o™ 'b5" for all y € V,, (i = 1,--+,7). Let n = max {n(x,),

,n{x,)l. Then it is easy to see that a} = a3*'65" forally € V, (i =1,
s 7). Put b= ;Z,fib"“", where fi=1—e; (i =1,-,7). As is easily

verified, by = (fi),057 = b5 for ally € V, (i = 1,---,7). Hence we have
a=a¥'b, forally € Ve, (i = 1,-++,r), that is, afy = a3 'b, for all x €
X(C). By Lemma 7 (2) we conclude that a” = a™ 'b, showing that R is a
strongly n-regular ring.
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Remark. Let R be a ring and let C be a subring of the center of R.
Then, as is easily seen, the stalk of R at any point of X(C) is non-zero.
Furthermore for any prime ideal P of R, P() B(C) = x € X(C) and so
R/ P is a homomorphic image of R,. Hence in this case Proposition 1 follows
from (6, Theorem 2.1].

Let R be a ring. R is called local if R/J(R) is a division ring, where
J(R ) is the Jacobson radical of R. R is said to be a mregular ring if for every
element ¢ € R, there is a positive integer n and an element b € R such that
a"a™ = a". As was shown by G. Azumaya [2, Corollary], every strongly
m-regular ring is m-regular.

Theorem 1. Let R be a normal ring with classical right quotient ring
Q. Then the following are equivalent:

1) R is a generalized p.p. ring and for any x € X(R), the set of nil-
potent elements of the stalk Qy is invariant under right multiplication by ele-
ments of Q.

2) (i) For any a € R, there is a positive integer n such that for
every integer m = n, supp a” = supp a” is open and closed.

(ii) For any x € X(R), every zero-divisor of the stalk R, is nilpo-
tent.

(iii) For any x € X(R ), the set of nilpotent elements of the stalk
Q. is invariant under right multiplication by elements of Q..

3) Forany x € X(R), the stalk Q. is a local ring with Jacobson
radical nil.

4) Qis a mregular ring and E(Q) = E(R).

Proof. 1) =>2), Assume 1) and let a be an arbitrary element of R.
By [9, Corollary 4 and Lemma 3], there is a positive integer n and an idempo-
tent e € R such that for every integer m = n, anng(a™) = anng{a™ = Re.
Let m = n be an arbitrary integer. Then by Lemma 9 (and its left-right
symmetry) we have ann,_(a?) = Re, for every x € X(R ). Evidently af +
0, if and only if e, = 1,. Hence we have supp a™ = supp(l—e) = V,,
which is open and closed. Since e is a central idempotent, we have e, = 0,
or 1., leading to ann,(a?) = 0, or R,. This implies a, is either a non-zero-
divisor or nilpotent.

2) =>3). Assume 2) and take any x € X(R). Let g = (ab™ "), =
ax(by)""' (a, b € R) be an arbitrary element of Q.. If a, is a zero-divisor,
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then it is nilpotent by (ii), hence q. is nilpotent by (iii). If a; is a non-zero-
divisor, then by Lemma 10 a, is invertible in @, and so ¢, is invertible.
Thus Q. is a local ring with Jacobson radical nil.

3) = 4). Assuming 3), we first show that Q is a #-regular ring. For
any x € X(R), we easily see that Q; is a strongly n-regular ring, hence by
Proposition 1 @ is a strongly mn-regular ring. Therefore Q is a n-regular
ring. Next we show that E(Q) = E(R). Lete € E(Q) and let x € X(R).
Since @ is a local ring, it has no idempotents other than 0, and 1,. Hence
we have e, = €7, where ¢ = 0 or 1. By Lemma 4 there is an idempotent
e(x) € R withx € Ve, such that e, = ¢ for all y € V. Since X(R) =
xg‘m Veix. by the partition property there are finitely many idempotents e, , -,
er € Rsuch that V, MV, = gfori #j, X(R) = [L;Jl Ve, and ey = &Y for
all y € V,, (i =1,---,r), where each ¢ =0 or 1. By Lemma 7 (1) we

have (e—¢'")f, = 0, where f; = 1—e,;(i = 1,:-.r). Since Z:;f‘ = 1 (Lem-

T N r ! r
ma 2), we then have 0 = X (e—¢")f; = e— 2 '“f;. Hencee = ) ¥, €
i=1 i i=1

i=1

R, as desired.

4) = 1). Assume 4) and let g be an arbitrary element of Q. Since Q is
a normal m-regular ring, as in the proof of [9, Theorem 1] we have ¢"Q =
Qq¢" = Qe for some positive integer n and e € E(Q) = E(R). For any
x € X(R) we then have ¢7Q; = Q.q% = Qzex, and e, = O or 1,. Ife, =
0,. then g is nilpotent. If e, = 1., then g, is invertible. Thus Q, is a
local ring with Jacobson radical nil. It is immediate from [9, Theorem 2]
that R is a generalized p.p. ring.

From the preceding theorem we obtain the following three corollaries,
the first of which contains [3, Lemma 3.1].

Corollary 1. Let R be a normal ring with classical right quotient ring Q.
Then the following are equivalent:

1) Ris a p.p. ring.

2) (i) For any a € R, suppa is open and closed.

(ii) For any x € X(R), the stalk R, is a (not necessarily commutative)

integral domain.

3) For anyx € X(R), the stalk Q, is a division ring.

4) Q is a von Neumann regular ring and E(Q) = E(R).
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Proof. This follows from Theorem 1, Lemma 10 and [7, Theorem 1].

Corollary 2. Let R be a normal ring. Then the following are equiva-
lent:
1) R is a generalized p.p. ring in which every non-zero-divisor is
invertible.
2) (i) For any a € R, there is a positive integer n such that for
every integer m = n, supp a” = supp a” is open and closed.
(ii) For any x € X(R ), every zero-divisor of the stalk R is nilpo-
tent.
(iii) Ewvery non-zero-divisor of R is invertible.
3) For any x € X(R), the stalk R, is a local ring with Jacobson radi-
cal nil.
4) R is a mregular ring.

The next contains [3, Corollary 3.2].

Corollary 3. Let R be a normal ring. Then the following are equiva-
lent:

1) R is a p.p. ring in which every non-zero-divisor is invertible.

2) For any x € X(R), the stalk R, is a division ring.

3) R is a von Neumann regular ring.

Remark. The equivalence of 1) and 3) in Corollary 3 has been obtained
in [7, Corollary 2]. Incidentally, in [7, Remark], “torsion free” should be
read as “torsion free divisible”.

3. Semihereditary and hereditary rings. Let R be a subring of a ring
S and let A be a submodule of S considered as a right R-module. As in the
commutative case, we define A to be inveriible in S if there are finitely many
elements a,,:**,a, € A, sy,"**,s» € S such that s,A C R fori =1,---,n and

iﬁi a;s; = 1. It follows from [4, Proposition 3.1, p. 132] that if A is invert-
ible in S, then A is finitely generated and projective as a right R-module.
Lemma 11. Let R be a subring of a ring S and let A = a,R+--+a,R

be a finitely generated submodule of the right R-module S with a, € A (i =
1,-:,n). Then A is invertible in S if and only if there are elements s, "+,
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n
sp € S such that sA C Rfori =1.---,n and Z{a,stz 1.

Proof. Since the if part is obvious, we prove the only if part. Suppose
that A is invertible in S and let ai,***,an € A. s1,**,sn» € S be elements

m n
such that s;A C R for j=1,-.m and > a;s;= 1. Write a; = 2 ascy,
=1 =1

with ¢, € R(i=1,-,n; j=1,--.m). Then it is easy to see that

i ai(g ci,s,’>:1 and (,g c“s,'>A C R(i=1,"-.n), completing the proof.

=1

Proposition 2. Let R be a subring of a ring S and let A be a sub-
module of the right R-module S. Then the following are equivalent:

1) A is invertible in S.

2) A is finitely generated over R and for any x € X(R), A, is invert-
ible in the stalk S.

Proof. 1) = 2). Trivial.

2) =>1). Let A= a,R+++anR witha, € A(i =1,-,n) and sup-
pose that A, is invertible in S, for any x € X(R). Let x € X(R). By
Lemma 11 there are elements s, +:«, s € S such that (s%):A, C R, for

i=1,-,nand iz (a)x(s¥); = 1,. By Lemma 4 there is an e(x) € B(R)

with x € V. such that (s{*),Ay C R, (i = 1,---,n) and g (ady(s)y =1,
for all y € Vey. (Note that A is finitely generated.) Since X(R) =
xgm) Vew, by the partition property there are finitely many central idempo-
tents e,.+,e, € R such that Vo, (\ Ve, = § for j # &, X(R) = J V., and
for every j = 1,-:-,, there is an x; € X(R ) such that V,, € V.. Clearly
we have (sY"),A, € R, (i = 1,+++,n) and g}l (a)y(si)y =1, for all y € V,,
(j=1,+7). Put f,=1—e¢, for j=1,--.r. By Lemma 7 (1) we have

sSfACRGE =1, j=1,7r) and (,i, a s, = f,(G=1,-7).
Setting s, = i', s, for i = 1,--,n, we have ssAC R(i = 1,"-,n) and
=1

i}, a;5;= ji_‘{fj = 1 (Lemma 2). Thus A is invertible in S.

Let R be a subring of a ring Q. R is called a right order in Q if every
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element of Q has the form ab™' with some a, b € R. From the proof of [11,
Lemma 1.2] we obtain the following

Lemma 12. Let R be a right order in a ring Q and let A be a submod-
ule of the right R-module Q which contains an invertible element of Q. If A is
R-projective, then A is invertible in Q.

Let a be a cardinal. A ring is called right a-hereditary if every right
ideal generated by at most a elements is projective as a right module. Thus
a right semihereditary ring is a right o-hereditary ring for every finite car-
dinal o and a right hereditary ring is a right a-hereditary ring for every car-
dinal a.

Lemma 13. Let a be an arbitrary cardinal. If R is a right a-hereditary
ring, then for any x € X(R) the stalk R, is also a right a-hereditary ring.

Proof. Let A, be a right ideal of R, generated by a family of elements
(@) xtie; of cardinal at most a, where a; € A for each i € [ and A is a right
ideal of R containing Rx. Setting B = 1;:‘ a,R, we have A = B+ Rx and

hence isomorphisms B ®; R, = B, = A,. By hypothesis B is R-projective
and so A, is R :projective. Therefore R, is a right a-hereditary ring.

A ring which has a classical right quotient ring is called a right Ore
ring. We can now prove the following theorem which contains [3. Theorem

4.1].

Theorem 2. Let R be a normal. right Ore ring. Then R is right semi-
hereditary if and only if

(i) Risp.p., and

(ii) for any x € X(R), the stalk R is right semihereditary.

Proof. The only if part being immediate from Lemma 13, we prove the
if part. Suppose that R satisfies conditions (i) and (ii). Let Q be a classical
right quotient ring of R and let A be a non-zero finitely generated right ideal
of R. By Corollary 1 supp A is open and closed and hence supp A = V, for
some idempotent ¢ € R. Then we have A C R(1—e) and, as is easily
verified, R(1 —e) is a right Ore, normal p.p. ring. We now claim that for
any y € X(R(1—e)), (R(1—e)), is a right semihereditary ring. To see
this, first note that B(R) = B(Re) ® B(R(1—e)). Hence for any y €
X(R(1—e)), x=B(Re)®y€ X(R)and R, = R/Rx= (Re ® R(1—e¢))/
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(Re ® R(1—e)y) =R(1—e)/R(1—e)y =(R(1—e))y. Thus (R(1—e)),
is a right semihereditary ring. Viewing A as a right ideal of R(1—e) as
well as a right ideal of R, for any y € X(R(1 —e)) we have x = B(Re) &
y € V. and A, = A,, which is non-zero. Furthermore if A is R(1—¢)-
projective, then A is R-projective. Hence we may suppose that supp A =
X(R). For any x € X(R), R, is a right semihereditary integral domain and
Q: is a classical right quotient ring of R, (Corollary 1). Therefore A, is a
non-zero projective right ideal of R, and so it is invertible in Q, for all x €
X(R) (Lemma 12). By Proposition 2 A is invertible in Q, hence is R-pro-
jective. This completes the proof.

Lemma 14. Let M be a right R-module and let N, N' be submodules of
M. Then for any x € X(R ),

N Ne= (NN N

Proof. Since the inclusion “2" is obvious, we prove the inverse in-
clusion. In order to do this, let a; = a; (a € N, @’ € N') be an arbitrary
element of N, () N>. By Lemma 3 there is an ¢ € x such that (a—a')(1—¢)
= 0, that is, a(l—e) = a'(1—e), which belongs to N[ N. Hence a, =
(a{l—e)), € (N N ). as desired.

Lemma 15. Let A, B be right ideals of a ring R. If supp A () supp B
= ¢, then A() B= 0. IfR is a right Ore, normal p.p. ring, then the con-
verse holds.

Proof. Suppose first that A( ) B = 0. Then by Lemma 7 (2) there is
an x € X(R) such that (A() B): #+ 0., whence x € supp A () supp B.
Therefore supp A () supp B # ¢, as was to be shown.

Next suppose that R is a right Ore, normal p.p. ring and that supp A
supp B # ¢. Take any x € supp A () supp B. Then A, and B, are non-zero
right ideals of R,. By Corollary 1 R, is a right Ore domain. Consequently
by the preceding lemma we have (A() B), = A.() By #= 0, whence A ()
B # 0, completing the proof.

Let X be a set and let | X;|,e; be a family of subsets of X. Recall that
1 X:lier is a partition of X provided (i) X, # ¢ for every i € I, (ii) X;( X,
= ¢ for i #+ j and (iii) X = er,X,-.

Proposition 3. Let R be a right Ore, normal p.p. ring and let A be a
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non-zero right ideal of R. Then there is a bijection from the set of all decom-
positions of A into direct sums of non-zero right ideals o the set of all parti-
tions of supp A consisting of open sets. The map is given by

A= @Ai > {supp Alier,
where each A, is a non-zero right ideal. The converse of this map is given by
(Ulhher> A= DA,
i€l

where { U,l,c; is a partition of supp A consisting of open sets and A, = la €
A |suppa S Ul for everyi € I

Proof. The proof consists of three parts.
Part1l. Let A = @Ai, where each A; is a non-zero right ideal of R.

Then supp A = | supp A; and the supp A, are non-empty disjoint open sets
iel

(Lemma 7 (2), Corollary 1, Lemma 15). For every i € I set B,={a €
A | supp a C supp A;}. As is easily seen, each B; is a right ideal of R con-
taining A,. Hence by the modular law we have B, = A, ® ((;@A;) M By).

On the other hand supp B; C supp A,, hence in view of Lemma 15 and Lemma
7 (2) we get B, = A,.
Part 2. Let U be an open set of X(R ) and let U= zU: U,, where the U,

are disjoint open sets, Put A = {a € R |suppe S Ul and A, = |la € R |
supp a & U,} for every i € I. Evidently 2 and the U, are ideals of R. We
claim that ¥ = zéeB: A;. Let a € A. Since suppa is open and closed (Corol-

lary 1), there is an idempotent e € R such that supp a = V.. We then have
supp a = Ve = iLEJ!(Veﬂ U) and X(R) = V.U Vi_e = (iLGJI(Veﬂ U)) U

Vi_e. Note that the V() U; and V,_. are disjoint open sets. Hence every
Ve () U;, being the complement of an open set, is open and closed. Conse-
quently V. U, = V,, for some idempotent e; € R. It follows from suppa
= V. that a € R(1—e), which is equal to ‘EZ;R(I—ei) by Lemma 6. Now

1—e; € U, for every i € I, since supp (1—e;) =V, C U,. Hence a €
:Z: A;, showing that A = tZ'_,l A,. That the sum is direct follows immediately
€ €

from Lemma 15.
Part 3. Setting supp A = U, we see that U is an open set (Corollary
1), Let U= H U;, where the U, are non-empty disjoint open sets. Put A =
€
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la€ R|suppa C Ul, A, ={a E R |suppa S U,} and 4, = AN U, for
every i € I. We claim that A = _EEB’Ai. Since A D :Z:Ai = @IA, is obvi-

ous, we have only to show that A € @ A,. For an arbitrary element ¢ € A,
iel

we know that supp a = V, for some idempotent e € R (Corollary 1). Noting
that supp(l—e) = V. C U, we see that 1 —e € A = P U,. Hence we have
i€efl

a€ A(NR(1—e) = A(1—e) C lQEBIAi. whence A C .EB,A"’ as was to be
shown. We then have U = H supp A;. On the other hand, U = H U, is a

disjoint union and supp A; € U, for every i € I, whence it follows that supp
A, =U,foralli € I

Lemma 16. Let M be a right R-module and let M = QM;-‘ where

{M;l;c1 is a family of submodules of M. Then
(1) M,= EPI (M,), for all x € X(R).

(2) For any element m = tZEImi of M, where m; € M; (i € I) and m,
= 0 for all but a finite number of i, we have supp m = iLeJI supp m;.

Proof. (1) First note that Mx = z@:M'x for any x € X(R). The
assertion follows from the isomorphism M, = M/Mx = LE?/ (M.); and the

identification of each (M,), with its image in M.,.
(2) Immediate from (1).

The following theorem, which contains [3, Proposition 4.2], is essential
in the proof of Theorem 4.

Theorem 3. Let R be a right Ore, normal p.p. ring and let a be an
infinite cardinal. Then the following are equivalent:
1) Every right ideal of R generated by at most a elements is a direct
sum of finitely generated right ideals.
2) (i) Foranyx € X(R), the stalk R, is right Noetherian.
(ii) For any non-zero-divisor a € R, a, is invertible in the stalk
R for all but a finite number of x € X(R).
(iii) B(R) is a-hereditary.

Proof. 1) =>2). Assuming 1), we first show (i). In order to do this,
it suffices to prove that every countably generated right ideal of R, (x €
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X(R)) is finitely generated. Let x € X(R) and let A, be an arbitrary nen-
zero, countably generated right ideal of R, where A is a countably generated
right ideal of R. By hypothesis we then have A = 169; A;, where each A, is a

finitely generated right ideal of R. Since x € supp A = | supp A; and
el

the supp A; are disjoint (Lemma 15), there is a unique i € I such that x €
supp A;. Then A, = (A,),, which is finitely generated, as was to be shown.

Secondly, we show (ii). Let @ € R be a non-zero-divisor and let A be
any countably generated right ideal of R containing a. Noting that supp A =
X(R) (Lemma 3), which is compact, we see by Proposition 3 that A cannot
be an infinite direct sum of non-zero right ideals. Hence by hypothesis it
follows that A is finitely generated.

Now suppose that I' = {x € X(R) | a; is not invertible in R.| is an
infinite set and let |x;|5~, be a countably infinite subset of I". Take any e, €
x:\x,. Then either e, or 1 —e, is contained in infinitely many x,. Let e, be
contained in infinitely many x, and let {x"}7, be the infinite subset of |ax;}7Z,
consisting of those x; such that e, € x;. Then as in the above argument, we
can pick an idempotent e, such that e, is contained in infinitely many x}’ but
not contained in all of them. Continuing this process, we obtain an infinite
ascending chain

aR (_-; aR +e|R g aR +elR +ezR g tee
of right ideals of R. (To show that the inclusion is strict everywhere, we
use the fact that each R, is right Noetherian.) Then aR +f‘, e,R is a count-
i=1

ably generated right ideal containing a, but it is not finitely generated. This
contradiction completes the proof of (ii).

Finally we show (iii). Let a be a non-zero ideal of B(R) generated by
at most a elements. Then aR is an ideal of R having the same set of genera-
tors as a. Hence by hypothesis aR = ;@: A,;, where each ¥; is a finitely gen-

erated right ideal of R. Then supp a = supp aR = UI supp A;, and the supp
te

A, are disjoint open sets (Corollary 1, Lemma 15). Settinga, = {a € a |

supp a € supp ;| for each i € I, we see that every a; is an ideal of B(R)

and ¢ = @a; (Proposition 3). For any i € I we have a,R € aR and supp
il

a;R = supp a; C supp ;, hence by Proposition 3 we get a;R € ¥U,. On the
other hand, aR = tZ',] a,R = t@] A,, whence it follows that a,R = 2, for every
€ €
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i € I. We now claim that every a; is a principal ideal. Indeed, there is a
finitely generated ideal b; of B(R) with b, C a; such that 2, = b,R. Then
b; is generated by an idempotent and hence is a direct summand of a;. Let a,
= b, ® ¢,, where ¢, is an ideal of B(R ). We observe that supp b, = supp U,
= supp a; = supp b; | supp ¢; and supp b,( ) supp ¢, = ¢(Lemma 15), whence
supp ¢; = ¢, so that ¢; =0 (Lemma 7 (2)). Thus a, = b, is principal, as
claimed. Therefore the ideal a, being the direct sum of principal (hence
projective) ideals, is projective. This establishes (iii).

2)=>1). Assume 2). Let A be a right ideal of R generated by a
family of elements {a;l;e; of cardinal at most a. We know by Corollary 1
that for every i € I, supp a; = V., for some idempotent e; € R, whence it
follows that supp 4 = LUe: Ve, Seta= \ >, B(R)1—e), which is equal

‘e © supp A

to tZ}IB(R)(l—e,.) (see, Lemma 6). By (iii) a is projective, hence has an

orthogonal family of generators {filie; [3, Lemma 1.1]. Then supp A =
supp a = ILJJ V.-, (disjoint), hence by Proposition 3 A = ‘@,AJ. where each

A, is a right ideal of R with supp A; = V,_,. To complete the proof, it
suffices to show that each A, is finitely generated. This follows from the
following lemma.

Lemma 17, Let R be a right Ore, normal p.p. ring which satisfies
conditions (i) and (ii) of Theorem 3. If A is a right ideal of R with open and
closed support, then A is finitely generaied.

Proof. By hypothesis there is an idempotent e € R such that supp A =
Ve. By virtue of Lemma 15 we see that A{) eR = 0. Setting A’'= A ® eR,
we have supp A' = X(R). It suffices to show that A’ is finitely generated.
By the partition property there are finitely many idempotents e,,:*,e, € R

such that V, () Ve, = ¢ for i #+ j, X(R) = ,Unl Ve, and for every i = 1,--,

n, there is an a; € A" such that V, C supp a;. Letf,=1—e;fori=1,
-««.n. We know by Lemma 2 that | f;,***.fx} is a complete set of orthogonal

n

idempotents. Put a = 2} a,fi € A'. Noting that supp (a;f;) = supp f; = V,,
1

i=

n
for every i = 1,-*-,n, we see by Lemma 16 (2) that supp a = iU supp (a,f;) =
=1

lL_Jnl Ve, = X(R). Since R is an integral domain for all x € X(R) (Corollary

1), it then follows from Lemma 7(2) that @ is a non-zero-divisor. Let|x €
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X(R) | ax is not invertible in R.| = |x,,***,xnf, which is finite by (ii).

By (i) A%, is a finitely generated right ideal of R, for j = 1,-:*,m, so we
iJ)

write A';, = Zl‘j (a)z,Rx, with a¥ € A' (=1, ,m; k= 1,,n(j)). Set-

k=1
m ) .
ting Ao = aR +J_Z{k§a°,§’R, which is a right ideal contained in A’, we have

(Ao)z = A% for all x € X(R ). It follows from Lemma 8 that A, = A’, show-
ing that A’ is a finitely generated right ideal. This completes the proof.

Corollary 4 (cf. [3, Corollary 4.3]). Let R be a right Ore, normal
p.p. ring. Then the following are equivalent:

1) Every countably generated right ideal of R is a direct sum of finitely
generated right ideals.

2) R satisfies conditions (i) and (ii) of Theorem 3.

3) Every right ideal of R containing a non-zero-divisor is finitely gener-
ated.

4) Every right ideal of R with open and closed support is finitely gen
eraled.

Proof. Noting that every Boolean ring is Nj-hereditary [3, Lemma
1.1], the corollary follows from Theorem 3, Lemma 17 and their proofs.

We state here the following result of F. Albrecht [1, Theorem], which
will be needed in the proof of Theorem 4: Let R be a right semihereditary
ring. Then every projective right R-module is a direct sum of submodules,
each of which is isomorphic to a finitely generated right ideal of R.

Theorem 4 (cf. [3, Theorem 4.4]). Let R be a normal, right Ore ring.
Then R is right hereditary if and only if

(i) Risp.p.,

(ii) for anyx € X(R), the stalk R, is right hereditary,

(iii) for any non-zero-divisor a € R, a, is invertible in the stalk R, for
all but a finite number of x € X(R), and

(iv) B(R) is hereditary.

More generally, for any infinite cardinal a, R is right a-hereditary if and
only if R satisfies (i), (ii), (iii) and

(iv')) B(R) is a-hereditary.

Proof. Let o be an infinite cardinal. If R is right a-hereditary, then by
the above result of F. Albrecht, every right ideal of R generated by at most a
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elements is a direct sum of finitely generated right ideals. Hence the only if
part follows from Theorem 3 and Lemma 13.

Conversely, suppose that R satisfies conditions (i), (ii), (iii) and (iv').
It follows from (i) and (ii) that R is right semihereditary (Theorem 2). For
any x € X(R), R, is a right Ore domain (Corollary 1). This together with
(ii) implies that R, is right Noetherian (Lemma 12). Therefore, every right
ideal of R generated by at most « elements, being a direct sum of finitely gen-
erated (hence projective) right ideals (Theorem 3), is projective. This
completes the proof.

Corollary 5 (cf. [3, Corollary 4.5]). Let R be a normal, right Ore
ring. Then the following are equivalent:

1) R is right No-hereditary.

2) R satisfies conditions (i), (ii) and (iii) of Theorem 4.

3) Ris pp and every right ideal of R containing a non-zero-divisor is
(finitely generated and) projective.

4) R is p.p. and every right ideal of R with open and closed support
is finitely generated and praojective.

Proof. The equivalence of 1) and 2) is a direct consequence of Theo-
rem 4. 1) = 3) and 4) = 1) follow from Corollary 4. 3) => 4) follows from
Lemma 12 and the proof of Lemma 17.

Corollary 6 (cf. [3, Corollary 4.6]). Let a be any cardinal.
(1) Let R be a strongly regular ring. Then the following are equiva-
lent:
(a) R is right (a-)hereditary.
(b) R is left (a-)hereditary.
(¢) B(R) is (a-)hereditary.
(2) Let S be a normal, right Ore, right (a-)hereditary ring and let R
be a von Neumann regular subring of S. Then R is right (and left) (a-)
hereditary.

Proof.. (1) (a) = (c) is immediate from Theorem 4. (c) => (a) follows
from Corollary 4 and Theorem 3.

(2) By Theorem 4 B(S) is (a-)hereditary, hence by [3, Proposition
1.2] B(R) is (a-)hereditary. Since R is a strongly regular ring, the con-
clusion follows from (1).
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