ON STRONGLY π -REGULAR RINGS AND PERIODIC RINGS

Masayuki ÔHORI

Throughout, R will represent a ring with Jacobson radical J. Let N=N(R) be the set of nilpotent elements in R. Given an integer q>1, we put $E_q=|u\in R\mid u^q=u\mid$; in particular $E=E_2$. We denote by E_∞ the set of potent elements in $R:E_\infty=\bigcup_{q>1}E_q$. Now, let x be an element of R.

First, x is said to be regular if xyx = x for some $y \in R$, while x is said to be right (resp. left) regular if $x^2y = x$ (resp. $yx^2 = x$) for some $y \in R : x$ is strongly regular if it is both right and left regular. We denote by S the set of strongly regular elements in R. Next, x is called a right p. p. element if there exists an $e \in E$ such that xe = x and r(x) = r(e), where r(*) denotes the right annihilator of * in R, and we denote by P the set of right p. p. elements in R. If every element in E is central, R is said to be normal. A ring R is called periodic if for every $x \in R$ there exist distinct positive integers h, k such that $x^h = x^k$, or equivalently, $x^n \in E_\infty$ for some positive integer n; R is called π -regular (resp. strongly π -regular) if there exists a positive integer n such that x^n is regular (resp. strongly regular). Finally, R is called a generalized right p. p. ring if for every $x \in R$ there exists a positive integer n such that $x^n \in P$. Obviously, every periodic ring is strongly π -regular, and every π -regular ring is a generalized right p. p. ring (see [5]).

The present objective is to prove the following theorems.

Theorem 1. If R is normal, then the following are equivalent:

- R is a generalized right p. p. ring.
- 2) Every $x \in R$ can be written in the form x = u + a, where $u \in P$, $a \in N$ and ua = au.

Theorem 2. (1) The following are equivalent:

- 1) R is strongly π -regular.
- 2) Every $x \in R$ can be written in the form x = u + a, where $u \in S$, $a \in N$ and ua = au.
- (2) Let R be a normal(strongly) π -regular ring. Then N forms an ideal, R/N is strongly regular, and R is a subdirect sum of nil rings and/or local rings with radical nil.

50 m. ôhori

Theorem 3. (1) The following are equivalent:

- 1) R is periodic.
- 2) For every $x \in R$ there exists a positive integer n and an $x' \in \langle x \rangle$ such that $x^n = x^{n+1}x'$.
- 3) Every $x \in R$ can be written in the form x = u + a, where $u \in E_{\infty}$, $a \in N$ and ua = au.
- (2) Let R be a normal periodic ring. Then N forms an ideal, R/N is a subdirect sum of periodic fields, and R is a subdirect sum of nil rings and/or local rings R_i such that $R_i/N(R_i)$ is a periodic field.

Proof of Theorem 1. 1) \Rightarrow 2). Given $x \in R$, we can find a positive integer m and an $e \in E$ such that $x^m e = x^m$ and $r(x^m) = r(e)$. Clearly, (xe)e = xe and r(xe) = r(e), and so $xe \in P$. Since e is central, we have $(x-xe)^m = 0$. Therefore x is the sum of $xe \in P$ and $x-xe \in N$.

2) \Rightarrow 1). Let x be an arbitrary element of R. Then x=u+a, where ue=u and r(u)=r(e) for some (central) idempotent e, $a^m=0$ for some positive integer m and ua=au. Since $(x-u)^m=0$, we can easily see that $x^me=x^m$. Furthermore, $r(x)\subseteq r(u^m)\subseteq r(e)$. Hence $x^my=0$ implies $x^{m-1}ey=ex^{m-1}y=0$, and therefore $x^{m-2}e^2y=0$; eventually, ey=0. This proves that $r(x^m)=r(e)$ and $x^m\in P$.

In advance of proving Theorem 2, we state the following easy lemma.

Lemma 1. Let R be a normal (strongly) π -regular ring. If R is indecomposable, then R is either a nil ring or a local ring with radical N.

Proof. Suppose $R \neq N$. Then R has a unity and every element of R is either nilpotent or invertible. Hence R is a local ring with radical N.

Proof of Theorem 2. (1) 1) \Rightarrow 2). Let x be an arbitrary element of R. Then, by [1, Lemma 1], there exists a positive integer n and $y \in R$ such that $x^{2n}y = x^n$ and xy = yx. It is easy to see that $(x^{n+1}y)^2x^{n-1}y = x^{n+1}y$ and $(x-x^{n+1}y)^n = 0$. Therefore x is the sum of $x^{n+1}y \in S$ and $x-x^{n+1}y \in N$.

- 2) \Rightarrow 1). Let x = u + a, where $u \in S$, $a \in N$ and ua = au. Again by [1, Lemma 1], there exists a $t \in R$ such that $u^2t = u$, ut = tu and at = ta. Since $x x^2t = (u + a) (u + a)^2t = a a(2u + a)t \in N$ and xt = tx, we conclude that x is strongly π -regular.
- (2) As was claimed in [4, Remark], every homomorphic image of R is normal and π -regular. Since every primitive local ring is a division ring, Lemma 1 shows that R/J is a subdirect sum of division rings and reduced.

Hence J coincides with N and R/J is strongly regular by (1). As is well known, R is a subdirect sum of subdirectly irreducible rings, and so the latter assertion is clear by Lemma 1.

Proof of Theorem 3. (1) By a theorem of Chacron (see, e.g., [2, Theorem 1]), 2) implies 1).

- 1) \Rightarrow 3). Let x be an arbitrary element of R. Then there exists a positive integer k such that $x^{2k} = x^k$. It is easy to see that $x = x^{k+1} + (x-x^{k+1}), (x^{k+1})^{k+1} = x^{k+1}$ and $(x-x^{k+1})^k = 0$.
- 3) \Rightarrow 2). Let x = u + a, where $u \in E_q$ for some q > 1, $a \in N$ and ua = au. Since $x x^q = (u + a) (u + a)^q = a + ay$ with some $y \in \langle u, a \rangle$, we see that $x x^q \in N$, proving 2).
- (2) This is an easy consequence of Theorem 2 (2) and Jacobson's commutativity theorem.

Corollary 1. Let R be a normal ring. If every $x \in R$ can be written in the form x = u + a, where $u \in E_q$, $a \in N$ and ua = au, then N forms an ideal, R/N is a subdirect sum of finite fields of order at most q, and R is a subdirect sum of nil rings and/or local rings R_i such that $R_i/N(R_i)$ is a finite field of order at most q.

As is well known, if every $x \in R$ may be written in at most one way in the form x = e + a, where $e \in E$ and $a \in N$, then R is normal. Hence we have

Corollary 2 (A. Yaqub). Suppose every element x of R can be written uniquely in the form x = e + a, where $e \in E$ and $a \in N$. Then N forms an ideal, R/N is Boolean, and R is a subdirect sum of nil rings and/or local rings R_i such that $R_i/N(R_i)$ is GF(2).

Remark 1. Suppose every element x in a periodic ring R may be written in at most one way in the form x = u + a, where $u \in E_{\infty}$ and $a \in N$, then $R = E_{\infty} \oplus N$ by [3, Theorem 3]. Now, let $R = \mathbb{Z}/4\mathbb{Z}$. Then R satisfies the hypothesis in Corollary 2, but E does not form an ideal.

Acknowledgement. The author wishes to express his indebtedness and gratitude to Prof. H. Tominaga and Prof. Y. Hirano for their valuable comments and helpful suggestions.

52 M. ÔHORI

REFERENCES

- [1] G. AZUMAYA: Strongly π-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I 13 (1954), 34-39.
- [2] H. E. BELL: On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hung. 36 (1980), 293-302.
- [3] H. E. BELL: On commutativity and structure of periodic rings, Math. J. Okayama Univ. 27 (1985), 1-3.
- [4] Y. HIRANO: Some studies on strongly π -regular rings, Math. J. Okayama Univ. 20 (1978), 141-149.
- [5] Y. HIRANO and H. TOMINAGA: Rings decomposed into direct sums of nil rings and certain reduced rings, Math. J. Okayama Univ. 27 (1985), 35-38.

SHINSHU UNIVERSITY AND OKAYAMA UNIVERSITY

(Received July 18, 1985)