ON A THEOREM OF POSNER

YASUYUKI HIRANO, HISAO TOMINAGA and ANDRZEJ TRZEPIZUR

Throughout, R will represent a (differential) ring with the non-zero derivation $d: r \mapsto r'$, $K = |r \in R| \ r' = 0|$, and U a non-zero differential ideal of R. Let $\delta: r \mapsto r^*$ be another derivation of R. Given a subset X of R, we set $C_R(X) = |r \in R| \ rx = xr$ for all $x \in X|$; in particular, $C = C_R(R)$, the center of R. As for definitions and fundamental results used in this paper without mention, we refer to $[4, \S 3]$.

The main theorem of this paper is the following generalization of a theorem of Posner [6, Theorem 1].

Theorem 1. If R is a d-prime ring of characteristic not 2 and $d\delta$ (or δd) induces a derivation of U into R then $\delta = 0$. In particular, if R is a prime ring of characteristic not 2 and $d\delta$ (or δd) induces a derivation of U into R then $\delta = 0$.

As corollaries to this theorem, we shall give several results concerning prime rings of characteristic not 2 and 2-torsion free d-semiprime rings. In advance of proving Theorem 1, we state the following

- Lemma 1. (1) Let R be a d-prime ring. If $a \in R$ and aU' = 0 (or U'a = 0) then a = 0.
- (2) Let R be a d-prime ring. If $U^* = 0$ then $\delta = 0$; in particular, $U' \neq 0$.
- (3) Let P be a d-prime ideal of R with $U' \nsubseteq P$. If $d\delta$ (or δd) induces a derivation of U into R, then $P^* \subseteq P$.
- *Proof.* (1) As is easily seen, $aUr^{(k)} = 0$ for all $r \in R$ and all positive integers k. Hence, by $R' \neq 0$, we get a = 0.
- (2) For any $r \in R$ and $u \in U$, we have $r^*u = (ru)^* ru^* = 0$, i.e., $R^*U = 0$. Hence $R^* = 0$.
 - (3) Since $d\delta$ (or δd) induces a derivation of U into R, we have

$$(*) u'v^* + u^*v' = 0 (u, v \in U).$$

If $u, v \in U$ and $x \in P$, then (*) shows that

$$ux^*v' = (ux)^*v' - u^*xv' = -(ux)'v^* - u^*xv' \in P.$$

Hence $UP^*U' \subseteq P$. Noting that $U \nsubseteq P$, we get $P^*U' \subseteq P$. Since $U' \nsubseteq P$, (1) proves that $P^* \subseteq P$.

Proof of Theorem 1. By repeated use of (*), we see that for any $u, v, w \in U$,

$$2u^*v'w' = -u'v^*w' + u^*v'w'$$

$$= u'v'w^* + u^*v'w' + u|(v')'w^* + (v')^*w'|$$

$$= (uv')'w^* + (uv')^*w' = 0.$$

Hence $U^*U'U'=0$. Then $U^*=0$ by Lemma 1 (1), and so $\delta=0$ by Lemma 1 (2).

Corollary 1. Let R be a d-prime ring of characteristic not 2, and let a be an element of R. If [a, U'] = 0, then a is in C.

Corollary 1 will suggest the conjecture that if a and b are elements of a prime ring R of characteristic not 2 such that au' = u'b for all $u \in U$ then a or b is in C. However, the next example shows that the conjecture is false: Let R be the Hamiltonian quaternion algebra over $R: R = R \cdot 1 \oplus R \cdot i \oplus R \cdot j \oplus R \cdot ij$, and consider the non-zero inner derivation $d: r \to r' = [i, r]$. Then ir' - r'(-i) = 0 for all $r \in R$.

We shall prove the following

Corollary 2. Let a, b be elements of a prime ring R of characteristic not 2. Then the following are equivalent:

- 1) au' = u'b for all $u \in U$.
- 2) Either $a = b \in C$ or $C_R(a) = K$ and a+b, $ab \in C$.

Proof. 1) \Rightarrow 2). If either a or b is in $C_R(U')$, then 1) gives U'(b-a) = 0 or (b-a)U' = 0, which implies a = b by Lemma 1 (1). Hence $a = b \in C$ by Corollary 1. We assume henceforth that neither a nor b belongs to $C_R(U')$. For any $u, v \in U$, 1) gives a(uv)' = (uv)'b, that is, u'[b, v] = [u, a]v'. Furthermore, for any $r \in R$ this gives

$$(**)$$
 $r'u[b, v] = [r, a]uv'.$

Now, suppose r'=0. Then (**) shows that [r,a]uv'=0, i.e., [r,a]UU'=0. Hence [r,a]=0 by Lemma 1 (1). Conversely, if [r,a]=0 then (**) shows that r'U[b,v]=0 for any $v\in U$. Since $b\in C_R(U)$, we get r'=0. Hence $C_R(a)=K$, and similarly $C_R(b)=K$. In particular, a'=0

b'=0 and ab=ba. Then, by 1), for any $u\in U$ we have $au-ub\in K$, and so a[a,u]-[a,u]b=[a,au-ub]=0. By repeated use of this relation, we see that

$$[u, a][a+b, v] = [a, u][v, a] + [u, a][b, v]$$

$$= |au[v, a] + [u, a]bv| - |ua[v, a] + [u, a]vb|$$

$$= |au[v, a] + a[u, a]v| - |u[v, a]b + [u, a]vb|$$

$$= a[uv, a] - [uv, a]b = 0 \quad (u, v \in U),$$

which implies that [U, a][a+b, v] = 0 for all $v \in U$. Hence, by Lemma 1 (1), we get $a+b \in C$. Furthermore, [ab, u] = a[b, u] + [a, u]b = a[b, u] + a[a, u] = a[a+b, u] = 0 for all $u \in U$, and therefore Corollary 1 proves that ab is in C.

 $2) \Rightarrow 1$). It suffices to consider the case that $C_R(a) = K$ and a+b, $ab \in C$. Since $C_R(b) = C_R(a) = K$, we get (au-ub)' = au'-u'b $(u \in U)$. Further, noting that ab = ba, we see that [a, au-ub] = a[a, u]-[a, u]b = a[(a+b)-b, u]-[a, u]b = a[u, b]+[u, a]b = [u, ab] = 0 $(u \in U)$. Hence $au-ub \in K$, so that au'=u'b for all $u \in U$.

Corollary 3. Let R be a prime ring. If δ is non-zero and $d\delta$ is also a derivation of R, then R is of characteristic 2 and $d = \alpha \delta$ for some non-zero element α in the extended centroid of R (and conversely).

Proof. By hypothesis, there exists an element a in R such that $a^* \neq 0$. In view of (*), we can easily see that

$$(\sharp) \qquad a'rx^* + a^*rx' = a'(rx)^* + a^*(rx)' = 0 \quad (r, x \in R).$$

By [3, Lemmas 1.3.1 and 1.3.2], the extended centroid of R is a field and $a' = -\alpha a^*$ with some α in the extended centroid of R. Then (\sharp) shows that $a^*R(-\alpha x^* + x') = 0$ for all $x \in R$, which implies that $x' = \alpha x^*$ for all $x \in R$. Nothing to say, R is of characteristic 2, by Theorem 1.

Next, we consider the case that R is a 2-torsion free d-semiprime ring, for which Theorem 1 is no longer valid. However, we can prove the following which together with Lemma 1 (2) derives Theorem 1.

Theorem 2. Let R be a 2-torsion free d-semiprime ring. If $d\delta$ (or δd) induces a derivation of U into R, then there exists a differential ideal V and a δ -stable differential ideal T of R such that $U' \subseteq V$, $R^* \subseteq T$ and $V \cap T = 0$.

Proof. Let $\{P_{\lambda}|_{\lambda \in \Lambda}$ be the set of all d-prime ideals of R, and put $\Lambda_1 = |\lambda \in \Lambda| \ 2R \nsubseteq P_{\lambda} \}$ and $\Lambda_2 = |\lambda \in \Lambda_1| \ U' \nsubseteq P_{\lambda} |$. First, we claim that $\bigcap_{\lambda \in \Lambda_1} P_{\lambda} = 0$. If not, there exists some $r \in (\bigcap_{\lambda \in \Lambda_1} P_{\lambda}) \setminus (\bigcap_{\lambda \in \Lambda \setminus \Lambda_1} P_{\lambda})$, and then $2r \in \bigcap_{\lambda \in \Lambda} P_{\lambda} = 0$. But, this contradicts that R is 2-torsion free. Let $\lambda \in \Lambda_2$. Then $P_{\lambda}^* \subseteq P_{\lambda}$ by Lemma 1 (3), and hence by Theorem 1 we have $R^* \subseteq P_{\lambda}$. Therefore if we put $V = \bigcap_{\lambda \in \Lambda_1 \setminus \Lambda_2} P_{\lambda}$ and $T = \bigcap_{\lambda \in \Lambda_2} P_{\lambda}$, then V and T satisfy the conditions required.

Corollary 4. Let R be a 2-torsion free d-semiprime ring. If d^2 induces a derivation of U into R, then U'=0. In particular, if l(U)=0 then d^2 cannot induce a derivation of U into R.

Proof. If d^2 induces a derivation of U into R, then Theorem 2 shows that U'=0. Since r'u=(ru)'-ru'=0 for all $r\in R$ and $u\in U$, we get R'U=0. Hence, if l(U)=0 then R'=0, a contradiction.

Corollary 5. Let R be a 2-torsion free d-semiprime ring. If U is δ -stable and $d\delta$ (or δd) induces a derivation of U into R, then $(U^*)'=0$.

Proof. Under the notation in Theorem 2, we have $(U^*)' \subseteq V \cap T = 0$.

Corollary 6. Let R be a 2-torsion free semiprime ring. If $d\delta$ (or δd) is a derivation of R then $d\delta = \delta d = 0$.

A d-prime ideal P of R is said to be δ -d-prime if P is d-prime with respect to the derivation δ , and an ideal Q is said to be δ -d-semiprime if Q is the intersection of δ -d-prime ideals containing Q. The ring R is called a δ -d-prime (resp. δ -d-semiprime) ring if 0 is a δ -d-prime (resp. δ -d-semiprime) ideal. As an easy combination of Corollary 1 and [4, Lemma 7], we see that if R is a δ -d-prime ring of characteristic not 2 with non-zero δ , U is δ -stable and $[U', U^*] = 0$, then R is commutative.

Finally, we shall prove the following which may be regarded as a generalization of [4, Theorem 3].

Theorem 3. Let R be a 2-torsion free δ -d-semiprime ring, and U a δ -stable differential ideal of R with l(U) = 0. Let $H = \{r \in R \mid (r')^* = (r^*)' = 0\}$. If H is commutative and $[U', U^*] = 0$, then R is commutative.

Proof. As is easily seen, $\bigcap_{\gamma \in \Gamma} P_{\gamma} = 0$ with δ -d-prime ideals P_{γ} such that $U \nsubseteq P_{\gamma}$ and R/P_{γ} is of characteristic not 2 (see the proof of Theorem 2). Put $\Gamma_1 = |\gamma \in \Gamma|$ $R' \nsubseteq P_{\gamma}$ and $R^* \nsubseteq P_{\gamma}|$, and let D be the commutator ideal of R. (Note that D is a δ -stable differential ideal.) Then, as was claimed above, $D \subseteq P_{\gamma}$ for all $\gamma \in \Gamma_1$. If $\gamma \in \Gamma \setminus \Gamma_1$ then either $D' \subseteq P_{\gamma}$ or $D^* \subseteq P_{\gamma}$. Thus, $(D')^* \cup (D^*)' \subseteq \bigcap_{\gamma \in \Gamma} P_{\gamma} = 0$, which implies that $D \subseteq H$. Then, by hypothesis, D is a commutative ideal. (It is easy to see that every d-prime ring containing a commutative non-zero differential ideal is commutative.) Now, the argument employed in the last part of the proof of [3, Theorem 3] enables us to see that $D \subseteq \bigcap_{\gamma \in \Gamma} P_{\gamma} = 0$, namely R is commutative.

Remark. In $[4, \S 3]$, the hypothesis 2R = R may be replaced by the weaker one that R is 2-torsion free.

Appendix. In what follows, R will always represent a prime ring of characteristic not 2 with center C and with a non-zero derivation $d: r \mapsto r'$. Let U be a Lie ideal of R, and put W = [U, U] and S = [W, W]. Obviously, W and S are Lie ideals of R and $S'' \subseteq W' \subseteq U$. We consider the following conditions:

- (1-U) $U \subseteq C$.
- $(2 \cdot U) \quad U' \subseteq C.$
- (3-U) $U'' \subseteq C$.
- $(4 \cdot U) \quad [U', U'] \subseteq C.$
- (5-U) There exists some $a \in R \setminus C$ such that $[a, U] \subseteq C$.
- (6-U) There exists a non-zero $a \in R$ such that $aU \subseteq C$.
- $(7 \cdot U) \quad [u, u'] \in C \text{ for all } u \in U.$
- (8-*U*) There exists a non-zero derivation $\delta: r \mapsto r^*$ such that $(U')^* \subseteq C$.

Needless to say, if R is not commutative, $(1 \cdot U)$ implies $(2 \cdot U) - (8 \cdot U)$. In connection with Corollary 1, we shall reprove all the results in [1] and [5] by giving the following theorem.

Theorem A. If R is not commutative, then the conditions (1-U), (2-S), (3-S), (4-S), (5-S), (6-S), (7-S) and (8-S) are equivalent.

All the preliminary results are summarized in the next lemma.

Lemma B. (1) $(1 \cdot U)$, $(1 \cdot S)$ and $(2 \cdot S)$ are equivalent.

- (2) If U'' = 0 then $U \subseteq C$.
- (3) If [a, U'] = 0 for some $a \in R \setminus C$ then $U \subseteq C$.
- (4) If aU' = 0 for some non-zero $a \in R$ then $U \subseteq C$.
- (5) If $U \subseteq C$ and U''' = 0 then $d^3 = 0$.

Proof. (1) is clear by [2, Lemmas 3 and 6], and (2), (3), (4) and (5) are Theorem 1, Theorem 2, Lemma 7 and Lemma 11 in [2], respectively.

Proof of Theorem A. In view of Lemma B(1), it suffices to show that each of (3-S) and (4-U)-(8-U) implies (1-U).

 $(3-S) \Rightarrow (1-U)$. Noting that $2[s', t'] = [s, t]'' \in C(s, t \in S)$, we get (4-S). Suppose, to the contrary, that $S' \subseteq C$ (Lemma B (1)). Then $[a, S'] \subseteq C$ for some $a \notin C$. If there exists a $c \in C$ such that $c' \neq 0$, then $c'[a, [s, r]] = [a, [s, cr]'] - c[a, [s, r]'] \in C (s \in S, r \in R)$, and so [a, [a, [S, R]]] = 0. By Lemma B(2), this implies $[S, R] \subseteq C$; in particular, [a, [a, S]] = 0. This forces a contradiction $U \subseteq C$ (Lemma B (1) and (2)). Thus, we assume henceforth that C'=0. Since $S'''\subseteq C'=0$, Lemma B(5) proves that R''' = 0. Now, let s be an arbitrary element of S with s'' = 0. Then, for any $t \in S$, $[s', t'] \in C$ and 2s'[s', t'] = [s, st']'' $\in C$. Hence [s', S'] = 0, and $s' \in C$ (Lemma B(3)). In what follows, let s be an arbitrary element of S with $s'' \neq 0$. Since [s, R'']'' = 0, by what we have just shown above we see that $[s', R''] = [s, R'']' \subseteq C$; in particular, [s', [s', R'']] = 0. Thus s''[s', [s', R']] = [s', [s', (sR')'']] = 0, whence [s', [s', R']] = 0 follows, and therefore s''[s', [s', R]] = [s', [s', (s'R)']]= 0. Hence [s', [s', R]] = 0, and so $s' \in C$ (Lemma B(2)). We have thus seen that $S' \subseteq C$, which is a contradiction.

Claim. In particular, we have seen that if $[a, [a, S]] \subseteq C$ for some $a \in R \setminus C$ then $U \subseteq C$.

 $(5 \cdot U) \Rightarrow (3 \cdot S)$. If there exists a $c \in C$ such that $c' \neq 0$ then, as shown at the beginning of the above proof, $U \subseteq C$. Thus, in what follows, we assume that C' = 0. Suppose, to the contrary, that $S' \nsubseteq C$. For any $u \in U$, $[a', [a', u]] = [a, [a, u]']' - [a, [a', u]'] \in C$. Hence a' is central (Claim), and $2a'[a, [a, u]] = [a, [a^2, u]'] \in C$, so that $a'[a, [a, U]] \subseteq C$. Since $[a, [a, U]] \subseteq C$ (Claim), this implies a' = 0. By making use of [a, [U', U']] = 0 and [a, U''] = [a, U']' = 0, we see that $[a, [w'', u]] = [a, [w', u]'] \in C$ and a[a, [w'', u]] = [a, [w', au]'] - [a, [w', au']] = [a, [w', au']] = [a, [w', au']] = [a, [w', au']]

 $[a, [w', au]'] - [w', a][a, u'] \in C(u \in U, w \in W)$, and so [a, [W'', U]] = 0. But, this gives a contradiction $U \subseteq C$ (Lemma B(3)).

 $(4-U) \Rightarrow (1-U)$. If not, (5-U) holds by Lemma B(1). But, we have seen that (5-U) is equivalent to (1-U), a contradiction.

 $(6 \cdot U) \Rightarrow (3 \cdot S)$. If $a \in C$ then $U \subseteq C$. We assume henceforth that $a \in C$. If there exists a $c \in C$ such that $c' \neq 0$, then c'a[u, r] = a[u, cr]' $-ca[u, r]' \in C(u \in U, r \in R)$, and so a[a, [U, R]] = [a, a[U, R]] = 0. This implies $[U, R] \subseteq C$ (Lemma B(4)), and hence $U \subseteq C$ (Lemma B(1)). Thus, in what follows, we assume that C'=0. Suppose, to the contrary, that $S'' \subseteq C$. Obviously, a[a, U'] = [a, aU'] = 0, $a[a', U] = a[a, U]' \subseteq C$, and $a'w' = (aw')' - aw'' \in C(w \in W)$. Since a[a', w']w' = a[a'w', w'] = 0, we have a[a', w'] = 0, namely $a'w'a = aw'a' (w \in W)$. Suppose $a' \neq 0$. Then $a'W' \neq 0$ (Lemma B(4)), and so there exists $w_0 \in W$ such that $a'w_0'$ is a non-zero central element. Since $a'w_0'a = aw_0'a'$, we see that $a'w_0'a[a, w]$ $=a[aw_0'a',w]=a[a',w]aw_0'\in C$, and so $a[a,w]\in C$ ($w\in W$). Furthermore, by making use of a[a, w] = 0, we see that $2a'w_0a[a, w] = aw_0a'[a, w]$ $+a[aw_0'a', w] = aw_0'(a[a, w])' = 0$. Hence a[a, W] = 0, which is impossible (Lemma B(4)). Next, suppose a'=0. Then aU''=(aU')'=0and $aU'S''' = a[U', S'']' \subseteq C$. Since $aU' \neq 0$ (Lemma B (4)), we have $S''' \subseteq C$, and so $aU'S'' = a[U, S'']' \subseteq C$. But this forces a contradiction $S'' \subseteq C$.

 $(7 \cdot U) \Rightarrow (1 \cdot U)$. Suppose, to the contrary, that $S' \nsubseteq C$ (Lemma B (1)). Linearizing the relation $[u, u'] \in C$, we get $[u, v'] - [u', v] \in C$ $(u, v \in U)$. Then, by making use of Jacobi identity, we see that $[u, [u, v']] = [u, [u, v]'] - [u', [u, v]] \in C$. Hence $[w', [w', u]] = [u, [u, w']] - [u+w', [u+w', w']] \in C$, namely $[w', [w', U]] \subseteq C$ for any $w \in W$. But this is impossible (Claim).

 $(8-U) \Rightarrow (3-S)$. Since $[S^*, S^*] = ([S, S']')^* \subseteq C$, if $S^* \nsubseteq C$ then there holds (5-S) (with respect to δ). Then $S \subseteq C$, a contradiction.

REFERENCES

- [1] R. AWTAR: Lie structure in prime rings with derivations, Publ. Math. Debrecen 31 (1984), 209-215.
- [2] J. BERGEN, I. N. HERSTEIN and J. W. KERR: Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
- [3] I. N. HERSTEIN: Rings with Involution, The University of Chicago Press, Chicago, 1976.
- [4] Y. HIRANO and H. TOMINAGA: Some commutativity theorems for prime rings with derivations and differentially semiprime rings, Math. J. Okayama Univ. 26 (1984), 101-108.

- [5] P. H. LEE and T. K. LEE: Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), 75-80.
- [6] E. C. POSNER: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Okayama University, Okayama, Japan Okayama University, Okayama, Japan Jagellonian University, Cracow, Poland

> (Received January 30, 1985) (Revised April, 1, 1985)