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ON A THEOREM OF POSNER

Yasuvuki HHRANO, Hisao TOMINAGA and Anpbrzes TRZEPIZUR

Throughout, R will represent a (differential) ring with the non-zero
derivation d: r—= 7', K=|{r e R| r = 0}, and U a non-zero differential
ideal of R. Let &: r = r* be another derivation of R. Given a subset X
of R, we set Co(X) ={r € R| rc = xr for all x € X|; in particular,
C = Cx(R), the center of R. As for definitions and fundamental results
used in this paper without mention, we refer to [4, § 3].

The main theorem of this paper is the following generalization of
a theorem of Posner [6, Theorem 1].

Theorem 1. If R is a d-prime ring of characteristic not 2 and dd (or &d)
induces a derivation of U into R then & = 0. In particular, if R is a prime
ring of characteristic not 2 and do (or &d) induces a derivation of U into R
then & = 0.

As corollaries to this theorem, we shall give several results concerning
prime rings of characteristic not 2 and 2-torsion free d-semiprime rings.
In advance of proving Theorem 1, we state the following

Lemma 1. (1) Let R be a dprime ring. If a € R and aU' = 0 (or
Ua=0)then a= 0. :

(2) Let R be a dprime ring. If U* = 0 then & = 0 ; in particular,
U=+0.

(3) Let P be a d-prime ideal of R with U' € P. If d& (or 6d) induces
a derivation of U into R, then P* C P.

Proof. (1) As is easily seen, aUr'™® = 0 for all » € R and all
positive integers k. Hence, by R' # 0, we get a = 0.

(2) Foranyr € Rand u € U, we have r*u = (ru)*—ru* = 0, i.e.,
"R*U = 0. Hence R* = 0.

(3) Since dé (or 8d) induces a derivation of U into R, we have

(*) v +u*v =0 (u,ve U).
Ifu,v € Uand x € P, then ( *) shows that
ux*v = (ux)*v' —u*o' = —(ux)v*—u*x' € P.
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Hence UP*U’ C P. Noting that U & P, we get P*U' C P. Since U' & P,
(1) proves that P* C P,

Proof of Theorem 1. By repeated use of (*), we see that for any
u, v, w € U,

20 v'w = —u v wu*v'w
= uvw*+u*v'w o] (V) W+ () '
= (w') w*+(w')*w = 0.

Hence U*U'U' = 0. Then U* = 0 by Lemmal (1), and so & = 0 by
Lemma 1 (2).

Corollary 1. Let R be a d-prime ring of characteristic not 2, and let
a be an element of R. If [a, U] = 0, then a is in C.

Corollary 1 will suggest the conjecture that if a and b are elements of
a prime ring R of characteristic not 2 such that au’' = u'b for all u € U then
a or b is in C. However, the next example shows that the conjecture
is false : Let R be the Hamiltonian quaternion algebra over R: R=R-1®
R i® R-j® R-ij, and consider the non-zero inner derivation d: r - »’
= [i,r]. Then ir'—¢'(—i) =0 for all r € R.

We shall prove the following

Corollary 2. Let a, b be elements of a prime ring R of characteristic
not 2. Then the following are equivalent :

1) au' = u'b for allu € U.

2) Eithera= b &€ Cor Cila) = Kand a+b,ab € C.

Proof. 1)=> 2). If either a or bis in Cx(U’), then 1) gives U'(b—a)
=0 or (b—a)U = 0, which implies a= b by Lemma 1 (1). Hence a=
b € C by Corollary 1. We assume henceforth that neither a nor b belongs
to Ce(U’). For any u,v € U, 1) gives a(uv) = (uv)'b, that is, w'[b. v]
= [u, a]v'. Furthermore, for any r € R this gives

(%x) rulb, v] = [r, a]uv.

Now, suppose r' = 0. Then ( *#x) shows that [r, a]uv' = 0, i.e., [r, a]JUU
= 0. Hence [r.a] = 0 by Lemma 1 (1). Conversely, if [r,a] = 0 then
(**) shows that »'U[b, v] = 0 for any v € U. Since b & Ci(U), we get
r" = 0. Hence Ci(a) = K, and similarly Ci(b) = K. In particular, a =
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b= 0 and @b = ba. Then, by 1), for any u € U we have au—ub € K, and
so ala, u]—[a, u]lb = [a, au—ub] = 0. By repeated use of this relation,
we see that

[u, a]la+b, v] = [a, u][v, a]+[u, a][b, v] :
= {au[v, a]+ [u, a]bvi—{ua[v, a] +[u, a]vb}
= {aulv, a]+alu, a]vli—|ulv, a]lb+[u, a]vb}
= a[uv, a]—[wv,a]b=0 (u.v € U),

which implies that [U, a][a+ b, v] = 0 for all v € U. Hence, by Lemma
1 (1), we get a+b € C. Furthermore, [ab,u] = a[b, u]+[a ulb =
a[b, u]+ala, u] = ala+b,u] = 0 for all w € U, and therefore Corollary
1 proves that ab is in C.

2) = 1). It suffices to consider the case that Cila) = K and a+ b,
ab € C. Since Cr(b) = Cila) = K, we get (au—ub) = av'—u'b(u € U).
Further, noting that ab = ba, we see that [a, au—ub] = a[a, u]—[a, u]b
= a[(a+b)—b,u]—[a ulb = afu. b]+[u, alb = [u,ab] = 0 (w € U).
Hence au—ub € K. so that au' = u'b for all u € U.

Corollary 3. Let R be a prime ring. If & is non-zere and dS is also
a derivation of R, then R is of characteristic 2 and d = ab for some non-zero
element a in the extended centroid of R (and conversely).

Proof. By hypothesis, there exists an element a in R such that ¢* # 0.
In view of (*), we can easily see that

(#) adrd*+a*ry = d(rx)*+a*(rx) =0 (r,x € R).

By [3, Lemmas 1.3.1 and 1. 3. 2], the extended centroid of R is a field and
a = — aa® with some « in the extended centroid of R. Then (4 ) shows that
a*R(—ax*+x) = 0 for all x € R, which implies that x = ax* for all
x € R. Nothing to say, R is of characteristic 2, by Theorem 1.

Next, we consider the case that R is a 2-torsion free d-semiprime ring,
for which Theorem 1 is no longer valid. However, we can prove the fol-
lowing which together with LLemma 1 (2) derives Theorem 1.

Theorem 2. Let R be a 2-torsion free d-semiprime ring. If d& (or 8d)
induces a derivation of U into R, then there exisis a differential ideal V and
a &-stable differential ideal T of R such that U CV, R* C Tand VN T
= 0.
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Proof. Let | Palaca be the set of all d-prime ideals of R, and put
A=IA€A|2RE Pl and A; ={A€ A, | U & Pi}l. First, we claim
that AQ P, = 0. If not, there exists some r € (,\g PA)\(/\EQ1 P,), and then

2r € AﬂA P, = 0. But, this contradicts that R is 2-torsion free. Let
€

A€ A;. Then P¥ C P, by Lemma 1 (3), and hence by Theorem 1 we have
R* C P,. Therefore if we put V= () Py and T = ,\DA P,, then V and

AEANA2

T satisfy the conditions required.

Corollary 4. Let R be a 2-torsion free d-semiprime ring. If d* induces
a derivation of U into R, then U = 0. In particular, if {U) = 0 then d’

cannot induce a derivation of U into R.

Proof. If d* induces a derivation of U into R, then Theorem 2 shows
that ' = 0. Since r'u = (ru)—rv' =0 for all r € R and u € U, we get
R'U = 0. Hence, if {U) = 0 then R’ = 0, a contradiction.

Corollary 5. Let R be a 2-torsion free d-semiprime ring. If U is 6-
stable and d& (or 8d) induces a derivation of U into R, then (U*)Y = 0.

Proof. Under the notation in Theorem 2, we have (U*) C VN T= 0.

Corollary 6. Let R be a 2-torsion free semiprime ring. If d& (or 8d) is
a derivation of R then d6 = 8d = 0.

A d-prime ideal P of R is said to be &-d-prime if P is d-prime with
respect to the derivation &, and an ideal Q is said to be &-d- semiprime if Q is
the intersection of §-d-prime ideals containing Q. The ring R is called
a §-d-prime (resp. &-d-semiprime) ring if 0 is a §-d-prime (resp. &-d-semi-
prime) ideal. As an easy combination of Corollary 1 and [4, Lemma 7], we
see that if R is a 8-d-prime ring of characteristic not 2 with non-zero §,
U is d-stable and [U’, U*] = 0, then R is commutative.

Finally, we shall prove the following which may be regarded as
a generalization of [4, Theorem 3].

Theorem 3. Let R be a 2-torsion free 6-d-semiprime ring, and U a 8-
stable differential ideal of R with {U) =0. Let H=}{r € R| (+)* =
(r*) = 0. If H is commutative and [U', U*] = 0, then R is commutative.
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Proof. As is easily seen, YQFP-,= 0 with #-d-prime ideals P, such

that U & Py and R/Py is of characteristic not 2 (see the proof of Theorem
2. PutI'=|yeI'| RE Pyand R* L P,|, and let D be the commutator
ideal of R. (Note that D is a J-stable differential ideal.) Then, as was
claimed above, D € P, for all ye Il. If y € I'\I'} then either D' C P,
or D* C P,. Thus, (D)* U (D*) C Q’_Py = 0, which implies that

D C H. Then, by hypothesis, D is a commutative ideal. (It is easy to see
that every d-prime ring containing a commutative non-zero differential ideal
is commutative.) Now, the argument employed in the last part of the proof
of [3, Theorem 3] enables us to see that D C QrPy = 0, namely R

is commutative.

Remark. In [4, § 3], the hypothesis 2R = R may be replaced by the
weaker one that R is 2-torsion free.

Appendix. In what follows, R will always represent a prime ring of
characteristic not 2 with center C and with a non-zero derivationd : r — r'.
Let U be a Lie ideal of R, and put W = [U, U] and S = [W, W]. Obvi-
ously, W and S are Lie ideals of R and 8" C W’ C U. We consider the

following conditions :

(1-U) UvccC.

(2.U) UccC

(3-U) U ccC.

(4-U) (U,UlccC.

(5-U) There exists some a € R\C such that [a, U] C C.

(6-U) There exists a non-zero @ € R such that a" C C.

(7-U) [u,u] € Cforallu e U.

(8-U) There exists a non-zero derivation §:r = r* such that (U')*
C C.

Needless to say, if R is not commutative, (1-U) implies (2-U)—(8-U),
In connection with Corollary 1, we shall reprove all the results in [1] and
[5] by giving the following theorem.

Theorem A. If R is not commultative, then the conditions (1-U),
(2-5),(3-S),(4-5),(5-8),(6-S),(7-S) and (8-S ) are equivalent.
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All the preliminary results are summarized in the next lemma.

Lemma B. (1) (1-U), (1-S) and (2-S) are equivalent.
(2) U =0thenUC C.

(3) If[e, U] = 0 for some a € R\C then U C C.

(4) IfaU = 0 for some non-zero a € R then U C C.

(5) UL Cand U" = 0 thend® = 0.

Proof. (1) is clear by [2, Lemmas 3 and 6], and (2), (3), (4) and (5)
are Theorem 1, Theorem 2, Lemma 7 and Lemma 11 in [2], respectively.

Proof of Theorem A. In view of Lemma B (1), it suffices to show that
each of (3-S) and (4-U)—(8-U) implies (1-U).

(3-S)=> (1-U). Noting that 2[s".¢'] = [s,t]"€ C(s,t € S), we
get (4-S). Suppose. to the contrary, that S’ € C (Lemma B (1)). Then
[a, 8T C C for some a & C. If there exists a ¢ € C such that ¢’ # 0, then
cla, [s.r]] = [a, [s, cr]]—cla, [s.7]] € C(s € S, r € R), and so
la,{a,[S,R]]] = 0. By Lemma B (2), this implies [S,R] € C; in par-
ticular, [a, [a, S]] = 0. This forces a contradiction U C C(Lemma B (1)
and (2)). Thus, we assume henceforth that C' = 0. Since S" C C' =0,
Lemma B (5) proves that R” = 0. Now, let s be an arbitrary element of
S with s" = 0. Then, for any t € S, [s',#] € C and 2s'[s', t'] = [s, st]”
€ C. Hence[s',S] =0, and s' € C(Lemma B(3)). In what follows, let
s be an arbitrary element of S with s" # 0. Since [s. R"]" = 0, by what we
have just shown above we see that [s', R"] = [s, R"]' C C; in particular,
[s'.[s" R]] = 0. Thus s"[s".[s.R]] = [s" [s", (sR')]] = 0, whence
[s'.[s" R7] = 0 follows, and therefore s"[s’, [s'. R]] = [s". [s’, (s'R)]]
= 0. Hence[s,[s"R]] =0, andso s’ € C(Lemma B(2)). We have thus
seen that S’ € C, which is a contradiction.

Claim. In particular, we have seen that if [a,[a, S]] € C for some
a€ R\CthenU C C.

(5-U) = (3-S). If there exists a ¢ € C such that ¢' # 0 then, as
shown at the beginning of the above proof, U C C. Thus, in what follows,
we assume that C' = 0. Suppose, to the contrary, that S" € C. For any
we U, [a.[d,u]] = [a,[a,u]]—[a,[a,u]] € C. Hence a' is central
(Claim), and 2d'[a, [a, u]] = [a. [a®*.u]] € C, so that a'[a, [a, U]] C C.
Since [a, [a, U]] € C(Claim), this implies a' = 0. By making use of
[a, [U,U]] = 0 and [a, U] = [a, U] = 0, we see that [a, [w", u]]
= [a. [#', u]] € C and a[a, [w'. u]] = [a, [w, au]]—[a, [#. au]] =
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[a. [w, au]]—[w", alla,v] € Clu€ U, we W), and so [a, [W", U]] = 0.
But, this gives a contradiction U C C (Lemma B (3)).

(4-U)= (1-U). If not, (5-U) holds by Lemma B(1). But, we have
seen that (5-U) is equivalent to (1-U), a contradiction.

(6-U)=>(3-S). If ae C then UC C. We assume henceforth that
a & C. If there exists a ¢ € Csuch that ¢’ = 0, then c'a[u, r] = alu, cr]
—cafu,r]'€ C{lu e U, r € R), and so a[a, [U, R]] = [a,a[U,R]] = 0.
This implies [U, R] € C(Lemma B (4)), and hence U C C (Lemma B (1)).
Thus, in what follows, we assume that C' = 0. Suppose, to the contrary,
that S" & C. Obviously, afa, U] = [a, aU] =0, a[a’, U] = ala, U] C C,
and dw = (aw)—aw' € C(we€ W). Since ala’. w]w = ala'w', w] = 0,
we have a[a’, w] = 0, namely aw'a = aw'a (w € W). Suppose a' + 0.
Then aW’ + 0 (Lemma B (4)), and so there exists wo, € W such that a'w,
is a non-zero central element. Since a'wea = awga’, we see that @' weala, w]
= alawsa, w] = a[d’, wlaw, € C, and so a[a, w] € C(w € W). Further-
more. by making use of a[a, w] = 0. we see that 2a'wea[a, w] = awsa'[a. w]
+a[awsa. w] = aws(ala, w]) = 0. Hence ala, W] = 0, which is im-
possible (Lemma B (4)). Next, suppose @ = 0. Then alU" = (alU') = 0
and aU'S" = a[U’, S"]' € C. Since all/ + 0 (Lemma B (4)), we have
S"C C, and so aU'S" = a[U. 8] C C. But this forces a contradiction
S"cC.

(7-U) = (1-U). Suppose, to the contrary, that §' € C (Lemma B
(1)). Linearizing the relation [u,u] € C, we get [u,v]—[u'.v] € C
(u.v € U). Then. by making use of Jacobi identity. we see that [u, [u, v']]
= [u, [u, v]]—[u', [u. v]] € C. Hence [w', [w, u]] = [u. [u, w]]—
[u+w, [u+w, w]] € C, namely [w, [w', U]] € C for any w e W. But
this is impossible (Claim). ‘

(8-U)=>(3-S). Since [S*. 8] =([S.ST)*C C, if 8" E C then
there holds (5-S) (with respect to 8). Then S C C, a contradiction.
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