## A THEOREM ON SEMI-CENTRALIZING DERIVATIONS OF PRIME RINGS

Dedicated to Professor Hisao Tominaga on his 60th birhday

## ARIF KAYA

Let R be an (associative) ring with center C, and S a subset of R. A derivation  $d: x \mapsto x'$  of R is said to be centralizing (resp. skew-centralizing) on S if  $s's - ss' \in C$  (resp.  $s's + ss' \in C$ ) for every  $s \in S$ . More generally, d is defined to be semi-centralizing on S if  $s's - ss' \in C$  or  $s's + ss' \in C$  for every  $s \in S$ .

The following has been proved in [1, Theorem 1 (2)] and [2, Theorem 2].

**Theorem 1.** Let d be a non-zero derivation of a prime ring R, and S a non-zero ideal of R.

- (1) If d is centralizing or skew-centralizing on S, then R is commutative.
- (2) If d is semi-centralizing on R, then R is commutative.

In this very brief note, we improve the above theorem as follows:

**Theorem 2.** Let d be a non-zero derivation of a prime ring R, and S a non-zero ideal of R. If d is semi-centralizing on S, then R is commutative.

*Proof.* Suppose, to the contrary, that R is not commutative. In view of Theorem 1 (1), d is not centralizing on S and R is of characteristic not 2. Then, by [1, Lemma 4],  $S \cap C = 0$  and there exists  $t \in S$  such that  $t^2 \neq 0$  but  $(t^2)' = 0$ . Since R is a prime ring, so is the non-zero ideal  $T = Rt^2R$  of R. Moreover, by [1, Lemma 1 (3)],  $0 \neq T' \subseteq R't^2R + Rt^2R' \subseteq T$ . Hence d induces a non-zero derivation of T which is semi-centralizing on T. Thus, T is commutative by Theorem 1 (2), and therefore R itself is commutative by [1, Lemma 1 (1)]. This is a contradiction.

Acknowledgement. The author expresses his gratitude to Professor Hisao Tominaga for the final form of this paper.

## REFERENCES

[1] Y. HIRANO, A. KAYA and H. TOMINAGA: On a theorem of Mayne, Math. J. Okavama Univ.

12 ARIF KAYA

25 (1983), 125-132.

[2] Y. HIRANO and H. TOMINAGA: Some commutativity theorems for prime rings with derivations and differentially semiprime rings, Math. J. Okayama Univ. 26 (1984), 101-108.

DEPARTMENT OF MATHEMATICS

EGE UNIVERSITY

BORNOVA, İZMIR, TURKEY

(Received September 10, 1985)