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ON COMMUTATIVITY AND STRUCTURE OF
PERIODIC RINGS

Howarp E. BELL*

A ring R is called periodic if for each x € R there exist distinct posi-
tive integers m, n for which " = z™. Years ago Herstein [8)] proved that
periodic rings with all nilpotent elements central must be commutative ; more
récently, I showed in [3] that for periodic R with commuting nilpotent ele-
ments, the commutator ideal is nil and the nilpotent elements form an ideal.
Since then several authors [1,2,6,9, 11] have found sufficient conditions for
commutativity of periodic rings with commuting nilpotent elements. The pur-
pose of this note is to provide two more conditions of this type, the second
being motivated by Theorem 1 of [11].
Before stating the results, we fix some notation and quote some back-
ground results. We shall denote by N the set of nilpotent elements of R, by
Z the center of R, and by P the set of potent elements of R — that is, the
set of x € R for which there exists an integer n = n(x) > 1 such that x"=x.
If P=R, we shall call R a J-ring; and we shall on occasion invoke Jacobson’s
“x™ = x theorem”, which asserts that J-rings are commutative., We shall
also use the following results on periodic rings R, proofs of which may be
found in [4]:
(i) for eachx € R, some power of x is idempotent ;
(ii) for each x € R, there exists an integer n = n(x) > 1 for which
x—x" € N;

(iii) if Iis an ideal of R and x+1 is a nilpotent element of R/I, there
exists u € N such that x = u(mod I).

Our commutativity results are expressed by the following two theorems.

Theorem 1. Let R be a periodic ring in which N is commutative. Then
R is commutative if there exists a prime p such that for each x € R, there is
an integer n = n(x) = 1 for which x*" € Z.

Theorem 2. Let R be a periodic ring with N commutative ; and suppose
that (1) each element x has a unique representation in the form a+u, where a
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€ Pand u € N. Then R is commulative.

Proof of Theorem 1. In view of (iii), we may assume that R is subdi-
rectly irreducible, in which case R contains no non-zero central idempotents
except possibly 1. We assume also that R # N. Noting (i) and observing
that all idempotents are central, we conclude that R has 1 and each non-
nilpotent element has a power equal to 1. The periodicity of R now guaran-
tees the existence of a prime q and a positive integer o for which ¢°R =
{0} ; and since Theorem 4 of [5] yields commutativity of R if ¢ # p, we may
assume henceforth that ¢ = p.

As we observed earlier, the hypothesis that N is commutative forces N
to be an ideal ; and (ii) implies that R = R/N is a J-ring. Thus, if a € N,
the subring of R generated by a+ N is a finite field GF (p%). Taking s such
that @’ € Z and noting that a®'—a € N, we see that [a, u] = 0 for all
v € N, Thus NC Z, and R is commutative by Herstein’s theorem.

Proceeding now to the proof of Theorem 2, we note that the commutativ-
ity of R follows at once from the commutativity of J-rings and the following,
perhaps surprising, structural result.

Theorem 3. Let R be any periodic ring satisfying (t). Then N and P
are both ideals, and R = P ® N.

Proof. Let e be an idempotent, and x an arbitrary element of R. The
element e+ ex—exe, which is easily verified to be idempotent, has two obvi-
ous representations in form a+u, witha € Pand u € N; one is obtained by
taking @ = e+ ex—exe- and u = 0, the other by taking a = e and v = ex—
exe. Applying (1) shows that ex—exe = 0 ; and since a similar argument
gives xe —exe = 0, we see that idempotents in R must be central.

Suppose now that S is a subring of R having a multiplicative identity,
and that w € NN S. Since 1 4w is invertible, it is clearly in P; hence it
has two representations of form a+u with a € P and u € N, one being a =
14w and u= 0, the other a=1 and u = w. Thus, (1) implies that S is
reduced (i.e. has no non-zero nilpotent elements). Taking S to be a subring
of form eR, where e is any non-zero idempotent of R, we see that eR is re-
duced ; and it is not difficult to argue that there is a reduced ideal containing
all idempotents of R. By [10, Theorem 1] it follows that R= P & N,

Remark. In the statement of Theorem 1, the prime P cannot be re-
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placed by an arbitrary positive integer k. For example, consider a non-

commutative finite ring with 1 in which N* = 0 and every non-nilpotent ele-

ment is invertible. (The rings discussed by Corbas in[7] provide examples.)

Clearly there exists an integer k = 2 such that for each x € R, either x*=
1 or x*= 0; hence x*€ Zfor all x € R.

B.
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