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1. Introduction

Let M be a compact C”-Riemannian manifold. Suppose that M admits
commutative and linearly independent Killing vector fields X and Y. In this
paper, we shall study the following problems ; What kind of restrictions to
Riemannian structure of M should be imposed by the existence of such vector
fields ? Conversely, does the Riemannian structure of M give any restric-
tion to such vector fields X and Y?

Let M be a compact Riemannian manifold of non-positive sectional cur-
vature. The following fact is known by Lawson-Yau [5] ; There exists an
abelian subgroup of rank k£ in the fundamental group m(M) if and only if
there exists a flat k-torus isometrically and totally geodesically immersed
in M. In particular, this shows Preissman’s result [6] in the case when
M has negative sectional curvature, that is, every abelian subgroup of m(M)
is rank one (i.e., cyclic). Now, let M be a covering space of M. A subgroup
of m(M) determined by the covering map is identified with a group I' of
isometries of M, so-called the group of all deck transformations. From this
point of view, we shall consider our problems in the case that M has no
assumption on sectional curvature and that I' is replaced by a torus (or R?)
group acting on M. Therefore, our problem may be seen to be a trial at the
problem of Lawson-Yau type concerning an abelian subgroup of the fundamen-
tal group. In fact, our Corollary 2 is an extention of the fact “Every abelian
subgroup in the fundamental group of the spherical space form is cyclic”.

Before we state our results, we give some typical examples of Rie-
mannian manifolds with commutative and linearly independent Killing vector

fields.

Example 1. Let S* (m = 2) be the standard 2m-sphere. S*™ has
commutative and linearly independent Killing vector fields. In this case,
every Killing vector field on S*" has a zero. Generally, if M is an even
dimensional compact Riemannian manifold with positive sectional curvature,
every Killing vector field on M has a zero [1 or 4, Cor. 5.7].
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Example 2. Let S* = {(z1,2:): z; € C and | z:|*+ | z:|* = 1} be the
standard 3-sphere. Let {@:l:cr and {¢s)sern be 1-parameter groups of the
unitary group U(2) defined by

¢ _ [exp(\/j 1t) 0 ]
o 0 exp (V=1 pat) ],
o= [0 /T o]
. 0 exp (vV—T1 gs) ],

where p; and ¢, are non-zero real numbers such that (p:,p.) and (g, q:)
are linearly independent. For each t € R, ¢, acts isometrically on S° by
#(21,22)] = (exp (WV—1 pit) 21, exp (V—1 pst)-2z,). Then, Killing vector
fields X and Y generated by ¢, and ¢ are commutative and linearly independ-
ent. In this case, we have |#:[(1,0)] : t € R} = {¢[(1,0)] : s € RI.

Example 3. Let G be a compact Lie group of rank m (m = 2) and
g a left and right invariant Riemannian metric on G. We take vectors x and
y of its Lie algebra 8 such that [x,y] =0, lixll=Ilyll=1 and g(x,y)
= 0. For the vector x, we define a 1-parameter group ¢ of isometries by
o(g) = exp(ix)-g for g € G. We denote by X the Killing vector field
generated by ¢.. Similarly, we have a 1-parameter group ¢s of isometries
and a Killing vector field Y fromy. X and Y are commutative and linearly
independent. Then, we can define an isometric immersion x of R* into M by
x(?,5) = exp (ix+ sy), where R? is the real 2-plane with canonical metric.
This immersion is an orbit under ¢, and ¢ in G through the unit, and we
have

K(X/\ Y)_x,:t.s) = O,

where K(X A Y)..s is a sectional curvature of the plane spanned by Xz:.s
and Yy [see § 2, Ex.4].

Our result is that we have at least one of the characteristics stated in
above examples with respect to either manifold M or vector fields X and Y.
We denote by g the Riemannian metric on M, by Il ull the norm of vector
u and by T,(M ) the tangent space to M at a point p. For vectors u and v of
T,(M), we denote by K(u A v) the sectional curvature of the plane in T,(M)
spanned by u and v. Let F be the covariant differentiation with respect to g.
The curvature tensor R(u,v)w on M is given by R{u,v)w = F,Fw—FVw

— Ruwe.
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Theorem 1. Let (M, g) be a compact C*-Riemannian manifold, and X
and Y Killing vector fields on M with [X. Y] = 0. Let | ¢ |1cn (resp. | g |sen)
be a 1-parameter group of isometries generated by X (resp. Y). Then, we
have at least one of the following results (1), (2) and (3).

(1) There exists a point p of M such that either X, = 0 or Y, = 0
holds.

(2) There exists a common integral curve of X and Y (as an image of
the curves).

(3) There exist an isomeiric immersion x of R* into M and vector
fields Z and V defined on x(R?) such that Z € x«(T(R?)), V,Z =0, and
K(ZAV)=0 and ZA V #+ 0 on x(R?). Furthermore, the immersion x
and vector fields Z and V satisfy the following conditions (a) and (b).

(a) K[xx(0/dt) N\ xx(8/3s)] is non-negative constant on x(R?), where
(t,s) is the canonical coordinate system in RZ.

(b) The image x(R*) and vecior fields Z and V are preserved by the
action of group | ¢,, ¢y : t,7 € R|.

Remark 1.1. In(a) of the statement (3) in Theorem 1, if K[xx(8/3t)
A xx(8/3s)] = 0, then we have V € x«(T(R?Y)).

By Theorem 1, if X and Y are linearly independent at each point of M,
we have only the case (3) in Theorem 1.

Theorem 2. In Theorem 1, we assume further that M has non-negative
sectional curvature, Then, we have at least one of the following results (1),
(2) and (3).

(1) There exists a point p of M such that either X, =0 or Y, =0
holds.

(2) There exists a common integral curve of X and Y,

(3) There exist an isometric immersion x of R® into M and vector
fields Z and V defined on x(R*) such that Z € x«(T(R?), V,Z=10, BV
=0, and R(V,Z)Z= R(ZV)V=0and ZA V += 0 onx(R?). Further-
more, the immersion x and vector fields Z and V satisfy the conditions (a)
and (b) of the statement (3) in Theorem 1.

By the difference between Lawson-Yau’s result and (3) of Theorem 2,
it seems to be difficult, even if the manifold has non-negative sectional
curvature, to find a direct relation between higher dimensional space of
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commutative Killing vector fields and a geometric structure on M [see § 2,

Ex.6].

Corollary 1. In Theorem 1, we assume further that M has positive
sectional curvature. Then, we have at least the following (1) or (2).

(1) There exists a point p of M such that either X, =0 or Y, =0
holds.

(2) There exists a common integral curve of X and Y.

Corollary 1 was given Takagi [10] and Sugahara [8] in somewhat weak
conclusion, that is, X and Y are linearly dependent at some point of M.
But, we can draw the following Corollary 2 from our statement of Corol-
lary 1. This corresponds to Preissman’s result in positive curvature case.

For a Riemannian manifold M, we denote by M the universal covering
space of M. Then, we have M = I \M, where I' is the group of all deck
transformations. And the fundamental group m(M ) of M is identified with I".
For a subgroup A of m(M), we denote by A the subgroup of I corresponding
to A.

Corollary 2. Let M be a compact Riemannian manifold with positive
sectional curvature. Let A be an abelian subgroup of m(M). Assume thal
A is contained in a subgroup of isometric group generated by several Killing
vector fields on M, which are commutative to each other. Then, A is cyclic.

Remark 1.2. (1) Let M be a compact Riemannian manifold with
positive sectional curvature. It is known by Synge [9 or 4, Th.5.6] that,
if M is even dimensional and orientable, M is simply connected. Therefore,
if M is non-orientable, its double covering space is simply connected. If M
is odd dimensional, then M is orientable, i.e., each deck transformation of
M is an orientation preserving map.

(2) By the assumption for A in Corollary 2, we only consider the case

when M is odd dimensional [see Ex.1].

Let M be a spherical space form of dimension n. Then, it is known that
any abelian subgroup A of m(M) is cyclic, by the classification of spherical
space forms due to Wolf [11]. In this case, if # = odd, the condition that
A is abelian implies simultaneously our assumption for A in Corollary 2. In
fact, we have I' C SO(n+1) by Synge. Furthermore, since A is abelian,
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all elements of A are simultaneously diagonalizable by an orthogonal matrix
P. So, we can take some Killing vector fields satisfying the assumption in
Corollary 2.

In § 2, we shall give a full detail of our results and give several exam-
ples in connection with them. Also we shall prove Corollary 2 there. In
§ 3, we shall prove the results in § 2.

The author expresses his hearty thanks to Dr. K. Sugahara. He read
carefully the author’s manuscripts of this paper and gave him valuable ad-
vices, In paticular, Example 5 in § 2 is due to him. The author also
expresses his thanks to Professor T. Sakai for his kind advices. The author
was introduced to this problem by Dr. H. Takagi [10].

2. Detail of results and more examples

Theorems stated in introduction can be devided into several proposi-
tions. We use same notations as in introduction. We assume that X and Y
do not have zero on M. Let Y be a vector field on M defined by

Y= Y—[g(YV,X)/ 1 X1I*]X.
There exists a point p of M such that the square norm Il Y II* of Y is critical

at p. Then, the value Il YII*(p) is either zero or non-zero.

Proposition 1. If Y, = 0, then two integral curves of X and Y through
p coincide (as the image of curves).
We assume X, + 0, Y, + 0 and Y, = 0. Then, put
Z=Y-[gY.X)/ 1 X1I*)(p)X.

The vector field Z is also Killing. Let | ¢:}:cr (resp. | ¢s}ser) be a 1-param-
eter group of isometries generated by X/l X Il(p) (resp. Z/I Zll(p)). We
define an immersion x of R® into M by

x(t,s) = ¢t[(/’s(P )]

Proposition 2. The immersion x is isometric and

g(R(X,Z2)Z,X) = g( X, 2X) onx(R?).

By Proposition 2, we see that K[x«(8/dt) A xx(8/ds)] is non-nega-
tive constant on x(R®). Let 7 : s > x(s), s € R, be an integral curve of
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Z/ 1 ZI(p) through p, i.e., x(s) = ¢s(p). Then, the curve 7, is a geodesic
in M (see § 3, Prop.6 and Lemma 3.1). Let (7,)s denote the parallel trans-
lation from T,(M) onto Txs(M) along the curve 7,.

Lemma. There exist a system {u,,v:,---,ux, vi, e} of vectors of Tpo(M)
and non-zero real numbers {p,,---,px| such that

L3
(@) (X)us = E [cos pis(7e)sus+ sin pis(no)sv +(m0)se for s € R,

(b) The system| Zy,u,,vy,...,ux,vx, e | is orthogonal and |l u;|l = Il v, |l
(i=1,2,---,k).

In Lemma, put

Kk
(X)) ze = igl [cos p:s(no)sw+ sin Pis(ﬂo)osvt]-

If (Xi.), = 0, then we can take X as V stated in Theorem 1. In this case,
V is tangent to the image x(R?).

Proposition 3. If (X\), = 0, then (X)usy = (n0)eXp and K(Z N\ X)
=0 on n.

If (X)), #+ 0, then K(Z A X) e is positive constant on x(R?) by Prop-

osition 2.

Proposition 4. Take a point p at which || Y || attains a local minimum.
Assume (X\)p #+ 0 and e += 0 in Lemma. Then, K(Z N\ (no)se) is non-pos-

itive constant along 7.

Remark 2.1. In the case of Proposition 4, we can take, as V stated in
Theorem 1, some linear combination of X and (#:)x[(70)se]. And, as V
stated in Theorem 2, we can take (¢:)x[(n0)se].

Proposition 5. Take a point p at which | Y || attains a local minimum.

Assume e = 0 in Lemma. Then, we have that K(Z N\ W) is negative
constant along n,, where

K
(W)ze = 23 p."[sin pes (o) sui— cos pus(7)s4].
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Remark 2.2. (a) In the case of Proposition 5, we can take, as V
stated in Theorem 1, some linear combination of X and (¢,)xW.
(b) In Proposition 5, we have (W )ye = Il Zll(p) Xxs.

We note that, if M has non-negative sectional curvature, K(Z A V)
= 0 implies that R(V,Z)Z = R(Z,V)V = 0.

Corollary 2. Let M be a compact Riemannian manifold with positive
sectional curvature. Let A be an abelian subgroup of m(M). Assume that
A is contained in a subgroup of isometric group generated by several Killing
vector fields on M, which are commutative to each other. Then, A is eyclic.

Proof of Corollary 2. Take non-unit elements ¢ and ¢ of A. By the
assumption, we have ¢;,, = ¢ and ¢s, = ¢, where {¢:|:er and {¢s)ser are
1-parameter groups generated by some commutative Killing vector fields X
and Y, respectively. Since ¢ and ¢ have no fixed point, by Corollary 1 there
exists a point p of M such that

[gp) : t € R} = {¢gs(p) : s € RI.

Furthermore, since ¢ and ¢ have finite order, the set {¢:(p) : t € R} is
circle S'. The group (@,¢) generated by ¢ and ¢ is a discrete subgroup
acting isometrically on S'. So, the group (¢,¢) acting on S' is cyclic.
Since ¢ and ¢ are deck transformations, the group (@, ¢) acting on M is
also cyclic. If we take non-unit elements ¢;, ¢. and ¢; of A, then we have
(¢r,¢2) = (@) for some ¢ of A, by the above argument. Therefore, we
have (¢, 2, ) = (P.¢s) = {(¢) for some ¢ of A. Since A is finite, we
can show that A4 is cyclie.

g.e.d.

We give several examples of Riemannian manifolds with commutative
Killing vector fields in connection with the above propositions. The follow-
ing example is connected with Proposition 3.

Example 4. Let M = K/H be a naturally reductive homogeneous space
with an ad(H)-invariant decomposition k = +m, and K-invariant Rieman-
nian metric 8. Let 7: K> M = K/H be the natural projection and put z(H)
= o. We identify m with To(M) by n. Let B be a bilinear form on m which
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corresponds to g. Suppose that there exist vectors x and y of m such that
[x,y] =0, lixli(o) = llyli(o) =1 and B(x,y) = 0. Then, we define an
immersion x of R? into M by x(#, s) = n(exp tx-exp sy). This immersion
x is an orbit through the point o under 1-parameter groups generated by
some Killing vector fields X and Y such that [X, Y] = 0. Furthermore,
x is isometric and K(X A Y)yesy = 0. In particular, x is totally geodesic.

In fact, for k € K and z € m, let Znx be a vector tangent to a curve
nlexp tz+-k), t € R, at n(k). Then the vector field Z on M is Killing.
Furthermore, the curve r(exp tz), t € R, is a geodesic [cf. 3, Th.2.9 and
Th.3.3]. Take x and y as above, then [X,Y] = 0 and

K(XA Y)|o=KxAy)lo= gRxy)y,x)lo
= (1/4)B( [x,y]m,[x,y]m)—B([[x,y]b,y],x) =0 [ef. 3, Th.3.4].

From (e, X+ Y))o = (BX)o = (Y ), = 0, the immersion x is totally
geodesic. Furthermore, we can see that the length of Y—[g(Y, X )/ X1I*] X
is critical at o.

The following example is connected with Proposition 5.

Example 5. Let R® = |(x),x.,2;) : x; € R}|. We define a Riemannian
metric g on R® by

Bit 81z 83 14 ¢ cos xs ;‘sin X3 0
= |81 B2z 8u|=|{sinx 1—¢cosxs O
831 832 833 0 0 1],

where gi; = gles, e;), e, = 3/dx; and 0 < ¢ < 1. Then, e, and e; are
Killing vector fields on R®. Put Y = e;—(g1,/g1)ei. Then, |l Yl attains
the minimum on the plane {(x,x;,0)| and (Y )iz = (€2)emnzam.  Therefore,
an isometric immersion x of R’ into R® is given by

x(t,s) = (t/V1+¢, s/vV1-=¢, 0).

As for the sectional curvature of the plane spanned by e, and e., we have

K(er A e)mman = £/[4(1—¢%)]. And we have (see Remark 2.2,(b))

( Peres) iz = §/[2(1+§)](91)«:xnxz,0:--
K(e: A e3)izmos = —£(£+2)/[4(1—-8%)].

As for Lemma, we have

( |7ezel)(x1.xz.m = —2_‘§(€3)tx..xz,o)-
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Thus, we have

( Vezzel)-:xl.xz.m = — {2/ [4(1 + C)](el)(xx,xz.o),
( Vezze3)1x|.xz.0l = — {2/ [4( 1+ g)](ea)m.xz.m-

By the above equations and g(ei, €3)x .0 = 0, if we take a curve No: 8§ =
(0,5,0), s € R, then there exist vectors u and v of To(R®) such that g(u,v)
=0, llull = ll»ll and

(el)io,s.m = cos (§/2\/1+—§)s (Uu)gu
+ sin (§/2x/lT§ )s (no)sw,

(e)osor = 1/V1+¢ [sin (¢/2V1+¢)s (m)3u
—cos (£/2V1+¢)s (70)%0].

We note that this is also an example of 3-torus (T°, g).
The following example is connected with Proposition 4.

Example 6. Let (M, g) be a warped product of S* and S' defined by

M= S'%XS"=|(a,u) |a€ S*®and u= exp (v—1 )|
= |[(a1,a:,a3,a,2) | a; € R such that 3 a} = 1},

4
Eauw = ‘gl (dat)z"‘f(a)(do)z‘
where f(a) is a positive function on S°. Let r(a) = ai+ai. We take f(a)
= h[r(a)]. In particular, for a sufficiently small ¢ > 0, we take

1-16(r—1/4)+34(r—1/4)* for |r—1/4| < ¢

(1) hir) = [h(r) >0 forre[0,1].

Put

[(X)ia,u) = (— a9/ da\+ 0,8/ 3a,— a, 3/ das+ a; &/ da,+ 3/ 30) i,
( Y)ia,u; = ( —az a/aal +a a/aaz+ a, a/ das;— a; a/ alh)(a,u)-

Let 7: M = S* be a projection given by z[(a,u)] = a. For a vector field
w on 8°, let W be a vector field on M such that 7, (W) = w and g(w, 8/96)
=0. Put m({X) =xand 7, (Y) =y, then X=%x+6/9fand Y=y. X and
Y are Killing vector fields on M such that [X, Y] = 0, and X and Y are
linearly independent.

Put Y= Y—[g(Y. X))/ XII*]X, then the norm Il Y Il attains a local
minimum at a point (a,u) such that r(a) = 1/4. Put N={(a,u) € M| r(a)
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= 1/4}. For a point p of N, we have [g(Y,X)/1 XII’] = —1/4.

Put Z= Y+(1/4)X, then an integral curve 7,: s > x(s), s € R, of
Z through a point p of N is a geodesic in M. Then, there exists a system
{u,v,e} of vectors in Tp(M) such that { Z,,u,v,e| is an orthogonal in T,(M)
and llull = llvll. Furthermore, if put ¢ = /69 /4, we have

[(X)x:s) = cos cs(7no)su+ sin cs(no)sv+(70)se
(mo)se = (1/23){14(x—47)+60Z | 5s).

We denote by V the covariant differentiation with respect to g, then
we have

[K(X/\ Z)xls) = CZ(“ X—(no)gellz/ll Z“z“ X||2)[I(S)] >0
K[(p)3e A Z]we =0, K(TX A Z)nsf{= 261/128) > 0.

Furthermore, we have that, at a point (a,u) such that |r(a)—1/4| < &
(0 < & < ¢), all sectional curvatures are non-negative, i.e., K(x A 9/96)
=0, K(y A 8/a8) =0 and K(F- ¥ A 8/36) > 0.

We shall show the above statement. The vector fields on the standard
sphere S*

[X = —Q; 6/5a1+ ala/aaz—ma/aa;—!— a;z 3/0(14
Yy=— aza/ad,+ a, 6/3a2+ a.a/aas—aaa/am

are infinitesimal vector fields given by 1-parameter groups

[T ]

do = [exp(\/—l s) 0 J
5 0 exp (—v/—1 s)],

respectively. (We used the same notations as in Example 2.) Therefore,
[x.y] = 0 and every integral curves of x and y are geodesics in S°.

At a point p of N, the norm || Yl attains a local minimum. In fact, we
have | Y112 = 1—(27r—1)%/(14h(7)), 1Y 1?)'| r=1s = 0 and (Il Y11?)"| r= 14
= 1/4. Therefore, the curve 7, is a geodesic [see § 3, Prop.6 and L.emma
3.1].

We denote by V the covariant differentiation of S*®. Then, we have
(7w o= (VoW )aws. Furthermore, we denote by V' the covariant differen-

(2)

4
tiation of Euclidian space R'. Put e, = 9/da,— a;a, where a = X a,3/da,,

i=1
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then
(3) Vere; = T(S?)- component of Vs,e; = —aye;.
Using the above notations, we have
(4) {x= — a1+ ae;—ases+ aze,
Yy= —aeitae+ae;—ase,.
We have, at a point (a,u) such that r(a) +0 or r(a) + 1

[?a/ae( 3/80) = (1/2)k'( y)
Vosao(W) = —(h’/2h)g(w, V.y)é/ 8.

Proof of (5). Using [8/88,w] = 0, we have

»

(5)

28(Vs006(0/060,W) = —W-8(3/36,0/38) = —w-h

28(Voyse(3/86),3/36) = 0

28(VoraolW).¥) = 0

28(V,y00(W), 0/ 06) = W-g(0/06,3/36) = w-h.
Since h is a function with respect to r, we have w-h = 0 for w = x or
y, and w-h % 0 only for w such that g(w,grad r) + 0. By g(Fy,y) =
g(Vy,x) = 0, iy and grad r are linearly dependent at each point a such
that 7(a) # 0 or 7(a) # 1. Therefore, we shall calculate Fiy-r and Il F,yli%.
We have, by (2), (3) and (4),

Ry = —aiei—azer+ases+ aies+ 401X — 010X — a4a:X + aza,x
= —aie,— aze;+ azes+ ase;.

Thus, we have
(6) I Zyl?=4r(1—r) and Kiy-r = —4r(1—7).

Therefore, we have (5).

We have

iy = —aies—azex+ ases+ ase,
Py = —y+(2r—1)x

iy = —x+(27—1)y

Vly = — Ry.

(7)

Proof of (7). We have already shown the first equality in Proof of (5).
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By (2) and (3), we have

2
Viy = Vx[—alel_a2e2+ 0393+04€4]
2 2 2 2
= aze1—a1€,— a3+ azes+(al+ ai— al—al)x

= —y+(2r—1)x.

The other equalities in (7) are obtained in the same way.

We have, at a point p of N,

nX=—TNy
(8) 72X = (1/8)[21%+547]—6Z
X = (69/16)( Ry).

Proof of (8). By Z = y+(1/4)x+(1/4)d/ 36, (5) and (7), we have

%X = (Wx)+(1/4) Vs 00( 6/ 86)
= (Bx)+(1/8)k(Tiy).

Therefore, we have ;X = — Wy at a point p of N. And we have, at a point
p of N,

72X = — [y +(1/4) PEy+(1/4) Vosol Tiy)]
= [x+(1/2)§]+(1/4)[3+(1/2)%]1—(3/2) 8/ 36
= (1/8)[21%+54¥]—6Z.

In the same way, we have the last equality in (8).

By (8), put ¢ = v/69 /4, then there exist vectors u and v of Tp(M)
such that g(u,v) = 0, llull = llvll. And they satisfy

(72X ) e = c[—sin es(m)su+cos cs(o)sv].
Therefore, there exists a vector e of T5(M) such that

(X)xe = cos cs(no)su+sin cs(n0)sv+(m)se.
By (8), we have

(70)%e = (X )ueyt(16/69)[(1/8)(21%X+54¥)—6 Z]uiss
= (1/23)[14X—565+60Z] xs..

The equations of sectional curvature stated before are easily shown from (5)

and (6).
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3. Proof of propositions

In this section, we shall prove Lemma and Propositions in § 2. The
number of Proposition is same as in § 2, but the number of Lemma and
Remark is different from one in § 2. At first, we shall start with the fol-
lowing known Proposition [cf. 4, p.65 Rem.].

Proposition 6. Let X be a Killing vector field on M. Then, we have
the following facts ;

(1) The norm | X |l of X is constant along each integral curve of X.

(2) Let p be a point in M at which the square norm || X|I* of X is
critical and X, + 0. Then, the integral curve of X through p is a geodesic
in M.

Let X and Y be Killing vector fields on a compact Riemannian manifold
M such that [X,Y] = 0. We assume that X and Y do not have zero on M.
Let Y be a vector field on M defined by

Y=Y-[gY,X)/1X1}]X.

Then, there exists a point p of M at which the square norm Il YII? of Y is
critical. (For a while, we only assume that Il Y II* is critical at p. But,

later we add the assumption that Il Y |I* attains a local minimum at p.)

Proposition 1. If Y, = 0, then the integral curves of X and Y through
p coincide (as the image of curves).

Proof of Proposition 1. Because that X and Y are Killing and [X, Y]
= 0, we have X-g(X, X) =0, X-g(Y,X) = g([X,Y],X) = 0 and
X.g(Y,Y)=2g([X,Y),Y)=0. Therefore, by Yo = [g(Y, X))/ X1*](p)X,,
we have Y = cX along the integral curve of X through p, where ¢ =
[g(Y, X))/ 1 X1%](p).

q.e.d.

We assume X, =0, Y, =0 and Y, + 0. Then, put
Z=Y-[gV.X)/1X1I")(p)X.

The vector field Z is also Killing. Let | ¢¢lcer (resp. | ¢slser) be a 1-param-
eter group of isometries generated by X/ Il X ll(p) (resp. Z/ 1l ZII(p)).
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Lemma 3.1. The norm | Z Il (resp. 1 Y1) of Z (resp. Y) is critical
at each point ¢ of the integral curve of Z through p, and g(Z,X) = 0 along
its curve. Furthermore, if we assume that the norm || Yl attains a local
minimum at p, then | Z |l (resp. || Y |l) also attains the local minimum at each
point q of the integral curve of Z through p.

Proof of Lemma 3.1. Put ¢ = [g(Y,X)/I1 X1I*](p). We have

Z=Y—[g(V,X)/1 X111 X+ [g(Y,X)/ I XII*—c]X
= Y+ [g(V, X)/1 XII*—c]X.

By_g(?,X) = 0, we have I ZIl 2 IIYIl. Furthermore, by I Zll(p) =
HYl(p) and Z.g(X, X) = Z-g(X,Y)= Z.g(Y,Y)= 0, we have Lemma.
qg.e.d.

We only consider the case that M has the following Killing vector fields
X and Z;

(1) [X.Z] =0, g(X,Z)(p) =0.
(1) (2) X, 0, Z,+0.
(3) The norm Il Z|l is critical at the point p.

For the simplicity, we replace Z/ Il Zil(p) (resp. X/ Il XIi(p)) with Z (resp.
X). We define an immersion x of R? into M by

x(t,s) = ¢l ¢gs(p)) for (i, s) € R

Proposition 2. The immersion x is isometric and

(2) K(X,Z) = g( X, V:X) onx(R?).

Proof of Proposition2. For each s of R (resp. t of R), we denote by
x(t,s) (resp. x(t,s)) the vector tangent to the curve x(¢,s), ¢t € R, (resp.
x(t,s), s € R,) at each point x(¢,s). Then, we have

x(t.9s) = (¢s¢t)*xp, I(taé) = (¢£¢3)*ZP'
Thus, we have

(0/at, 3/at)y =1 = g(X,X)(p) = g(x(i,s),x(i,s))
(8/3s,0/ds)p =1 = g(Z,Z)(p) = g(x(t,5),x(,s))
(9/ot, 3/ ds)p =0 =g(X, Z)(p) = glx(i,s),x(t,s)).

I
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This shows that the immersion x is isometric.

We shall prove the equality (2). We consider the following equations
on x(R?) ;

K(XN Z) = g(R(X,Z)Z,X) = g( iV Z— V. Z,X)
= —Z.-g(ieX, X)+8(%Z Ve X) = g(V:X, 2 X),

because of 2Z =0, (¢)x(V2Z) = Z and (¢o)x(WVZ) = W Z.
qg.e.d.

Lemma 3.2. Let n: s - x(s), s € R, be an integral curve of Z
through p, i.e., x(s) = ¢s(p). Put As = (70)s[(¢s)x]p, where (70)5 denotes
the parallel iranslation of Txs{M) onto T,(M) along the curve n,. Then,
there exist an orthonormal basis {w,v\,..., uk, vk, wy,...,w,} of To(M) and
non-zero real numbers |p.,...,px| such that As is represented, with respect
to this basis of To(M), as

_I\(s) 1
Iz(s)

where

I(s) [cos pis — sin pis]
S =
! sin p;s cos p;s J.

Furthermore, if X, = 2, riui+ 2, sivi+ 2 Liw;, then

Xusy = 22 [cos pis(70)e(riui+ sivi)
+ sin pis(70)$(— siui+ 1i01) ]+ 23 t(50) % wi.

Remark. In Lemma 3.2, put
(3) Xusy = 23 [cos pis(no)sui+ sin pis(ne)sv] + (70)%e,

then lwll = oyl (i = 1,---,k) and | Zp, w1, v1,-++,u, vk, e} is an orthogonal
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Proof of Lemma 3.2 and Remark. Since ¢s is isometric, we have As €
O(T,(M)) for each s of R and [(¢s.)x]o(70)8* = (o) 81 **[( s,) %) zisn. Thus,

we have

As,'A = 770)0 [(‘ﬁs;)*]p(UO)g [ s, *]p
= (70)3(70) 81 [(s.) %) msn( &5.) ] 0

- AS|+Szo

Thus, {Aslser is a 1-parameter group of SO(T,(M)). Therefore, we can
take an orthonormal basis of T,(M) stated in Lemma. Furthermore, by
(gs)x X=X, (V3Z )= 0 and g(X, Z)(p) = 0, we have Lemma and Remark.

qg.e.d.

At the equation (3), put

(Xl);us) = 2 [COS pis(ﬂo)g‘ui'l‘ sin Pis(no)osvi]
for s of R.

Proposition 3. If (X)), = 0, then (X)us) = (790)$X, and K(X N\ Z)
=0 on n.

This Proposition 3 directly follows from Proposition 2.

Proposition 4. We tlake the poini p at which the norm || Yl attains
a local minimum. At the equation (3), assume (X,)p, + 0 and e = 0. Then,
K(Z N (no)se) is non-positive constant along n,.

Proof of Proposition 4. We take a curve y(t), t € (—e,e) (¢ > 0),
such that y(0) = p and y(0) = e. Fix some s (> 0). For eacht € (—e,¢),
let 7 be an integral curve of Z through the point y(2), i.e., 7:: v = ¢-[y(#)],
0 < r=<s. From Lemma 3.2 and Remark, [(¢)*]oe = (70)%e holds.
Therefore, the variation { z¢|rei_e.e) Of the curve 7/ 0,s; has the infinitesimal
variation vector field (7.)5e (0 =< r =< s) along 7o/ (0.5}, where we denote by
7ol [0.5) the curve 7, restricted, as the parameter space, to the closed interval
[0,s]. Put ¢-[y(t)] = y(¢,7). Since the norm Il Z |l attains the local mini-
mum at x(r) for each r (by Lemma 3.1), we have
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L(nol10s1) = '/os N ZW[x(r)]dr =11 ZlI(p)s

< I ZI[y(t)]s = f I ZN[y(t,r)]dr = L(z).

Furthermore, we have

[AL()/dt]es = [ g(Tau(mo)e. 70) [a(r)]dr = 0.

Thus, we have
(4) [dzL( Tt)/dtz] t=0 = 0.

We shall calculate the second variation, precisely. Then, by g(e, Z)(p)
= 0, we have

(&L () d)sm
(5) = [ Pante ' = gTR((mu)2e. 70) 70, (70)%e ] Ha(r) dr
+ 8B (i, 5),70) [2(8)] — g Py (£,0), 70) [x(0)].
In (5), by (¢o)*[Wiey(i,0)] = Prssy(i,s), we have
§(Tssy(E,5).70)[2()] = &( By (£.0),70) [2(0)].
Thus we have, by (4) and (5),
0 = [0 L(z)/dt"]omy
= — [ gIR((m)te. 20, (mo)2e 1Ll )ar
= —sg(R(e.m)m.e)(p),

because that g[R((70)%e,70)70.(70)7e]{x(r)] is independent of r.
q.e.d.

Proposition 5. We take the point p at which the norm || Y| atiains
a local minimum. At the equation (3), assume e = 0. Then, we have that
K(Z N\ W) is negative constant along 7,, where

Wie = 2 Pi—l[Siﬂ pi-"'(?]o)gui—COS PiS(T]n)?sUi]-
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Proof of Proposition 5. We take a sufficiently small neighborhood N
of p. N* denotes the set of integral curves of X in N. Let n: N> N*
denote a mapping which transfers a point q of N to an integral curve of X
through q. Then, N* has a Riemannian metric g* naturally, and then x
becomes a Riemannian submersion with respect to g and g*. We denote by
P* and R* the covariant differentiation and curvature of N* respectively.

For some s of R, we have 7o|(.s C N. Then, by g(7,X) =0 and
Vaoto = 0, the curve 7(7o|0.s)) is a geodesic in N*. Put 7* = n(n0l 10.61)-

We take a curve y(t), —e < ¢t < e. such that (0) = p, ¥(0) = W,
and g(y(£),X)[y(t)] = 0. In fact, we can take such a curve y(¢), because
of g(W,X)(p) =0. For eacht € (—e,e), Let 7: be an integral curve of
Z through the point ¥(t), i.e., zr: 7 = ¢[y(2)], 0 = r =< 5. Put ¢-[y(2)]
= y(¢,7). Then, by Lemma 3.2, the variation { 7;|:e(—¢,e; of the curve 7o 0.5
has the infinitesimal variation vector field W along 7o/ (0.s).

Put 7(z:) = t*. Then, z* is an integral curve of m(Z) = m(Y).
Furthermore, Y is the horizontal lift of 7.(Y) with respect to 7: N = N*.
By Lemma 3.1, the norm || Y Il attains the local minimum at x(r) for each .
Therefore, we have

L(nd) = ﬁ 17 (e ))dr = 1 Tli(p)s < s 1 Tii(y(e))
= ’/:S I Y I(y(t, r))dr = L(z¥).

And, by g(W,X)[x(r)] = 0, g(Z,X)[x(r)] = 0 and g(7zW, Z)[x(r)] = 0,

we have

[dL( ‘['z*)/dt]t=o
= f gX(VEW* ) [n(x(r))]dr

= [ a(mW i) la(r)]ldr = 0,

where mo(W) = W* and n(70) = 5&. Thus, we have

(6) [dzL( Tt*)/dtz]z:o =2 0.

We shall calculate the second variation, precisely. Then, by

g*(W* 98 [n(x(r))] = g(W,Z)[x(r)] = 0, we have
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(7) [d*L(z*)/dt*] -0
- f [Il ZAW* 12— g*(R*(W* ) k. W*)] [n(x(r))] dr
+g*( 7k iy (£, S) 7 ) [2(x(s))]
—g*( V}‘:é.my (t 0), )[71'(-1'(0))]

where mi(y(£,7)) = *({,7). In (7), by (¢s)*[ Pusmy(£,0)] = Vussy(i,s),
g(y(f,5),X)[¥(¢,s)] = 0 and g(Z X )[x(r)] = 0, we have

(8) g (rooy*(i,s). 0d) [n(x(s))]— g*(Trooy* (i, s),98) [(x(0))]
= g( Vy(o,s:.)’(tvs)sﬂu [1'(3)] g( on.my(t'O).no)[x(O ] =0

and

Il VAW *12[n(x(r))] = Il horizontal part of Fp,W I1*[x(r)]

(9) = |l horizontal part of X [I*[x(r)] = 0.

Furthermore, by O’Neill [7], we have

g*(R*(W*,ﬂo )770 ,W*)[”(x(?’))]
(10) = g(R(W,no), 70, W)[x(7)]+3 Il vertical part of Fp,W [I*[xx(r)]
= g(R(W,70) 70, W) [x(7)]+3 I X I*[x(7)].

By (6), (7), (8), (9) and (10), we have

— [ TaROV. 3050, W) 43 1 X 19 x(r)dr
= —s[g(R(W.7)70.W)+3 11 X I”}(p) = 0.

Thus we have

g(R(W,;?o);)o,"V Xp) = g(R(‘V,;?o);?o,W)[x(T)] < 0.
g.e.d.
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