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ON SOME SERIES ASSOCIATED WITH
DISCRETE SUBGROUPS OF U(1, n; @)

Suiceyasu KAMIYA

0. Let F be a fuchsian group acting on the unit disk. An element gx of
F is of the form

axz+cC
gk(z =— _k» |ak‘z—|0k|2=1-
Cx2+ Ty

It is well-known about the convergence or divergence of the series Y, |cx|™
BKEF

(see [4]). In this paper we show some generalized results on the series
associated with discrete subgroups of U(1,n; ).

1. Let us recall some definitions and notation. Let V = V'X Q)

(n = 1) denote the vector space of €™*', together with the unitary structure
defined by the Hermitian form

Oz, w) = —Zewot+zZyw+ -+ Zpw,

for z = (24, 21,...,2n) and w = (w,, wy,...,wy). An automorphism g of V,
that is a linear bijection of V onto V such that ®#(g(z),g(w)) = &(z,w) for
z, w € V, will be called a unitary transformation. We denote the group of
all unitary transformations by U(1,n; €). Let V_ =]z € V| &z,2z) <
0}. Obviously V_ is invariant under U(1,n; €). Let P(V) be the projec-
tive space obtained by V.

We define : H{ @) = P(V_). Let HY{ @) denote the closure of H{ )
in projective space P(V) . An element g in U(1,n: @) operates in P(V'),

leaving H( @) invariant. Since H(€) is identified with the unit ball B )
=f{elnen = kZil'.l | £el? < 11, we can regard discrete subgroups of U(1,
n: @) as generalized fuchsian groups (see [2]).

2. Let gx = (a®™)1s:5sn+1 be an element in U(1,n; €). We denote

a point of P7'(0) by 0*. Let d be the derived metric from ¥ (see [2,
Proposition 2.4.4]). We easily obtain

Proposition 2.1. |af| = | ®(gx(0*),0%) || ¢(0*,0*) |
= cosh d(0.gx0)).
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For the sake of simplicity and brevity, we denote 2| a{?| by v(gs).

Proposition 2.2. If g and h are elements of U(1,n; @), then
(1) vig™) = vig),

(2) wvigh) = vig)v(h),
(3) v(hgh™) < [v(h)]?v(g) < [v(h)] v(hgh™*).

Proof. The first is immediate.
(2) Using Proposition 2.1, we have
vig)v(h) = 2icosh d(0,g(0))121cosh d(0.A(0))}
= 21cosh d(0.g(0)){21cosh d(g(0),gh(0))
= exptd(0,gh(0))+expt—d(0,gh(0))}
= 2cosh d(0,gh(0))
vigh).

(3) 1t follows from (1) and (2) that

v(hgh™') < v(h)v(g)v(h™)

= [v(h)]v(g)

= [v(h))Pv(h~"hgh™'h)
< [v(h)])*v(hgh™').

I

3. Unless otherwise stated, we shall always take G to be a discrete

subgroup of U(1,n; €). First we give

Definition 3.1(cf. [3, Theorem 5.1]). For any point e € H{ ), G is
called of convergence type or divergence type according as % (1— Ngla)m)®
£

converges or diverges.

Theorem 3.2. G is of convergence type or divergence type according as

25 | al| " converges or diverges.
BkEG

41
Proof. Noting that 1 — llgx(0) 1> =1— ’:22 [a®|?|a |2 = |af |7,

we see
(1/2)(1— ligel0) ™' < a2 < (1— Igel0) )7,
Therefore we have

2 (1= llglo) N < ngE}G a9 ] < 2"&26',6 (1— ligx(0) ™

BkEG
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Thus our proof is complete.

By using (3) in Proposition 2.2, we obtain

Corollary 3.3(3, Theorem 5.9). For any element h in U(l,n: @),
the conjugate group hGh™' is of the same type as G.

Next we shall make the estimate of 2, [v(g)] *as r » . From
gEG,V[g!(r

now on we assume that G, = | identity |.
We now state our results,

Theorem 3.4. Let r > 2 and t any real number. Then

O(1) asr -0 ift > 2n;
[v(g)]™* = {O(logr) as r » o ift =2n:
O(r*"™ Y asr »o ift <2n.

BECURLT

Theorem 3.5. Let D, be a fundamental polyhedron with respect to (

for G. If vol (D,) is finite, then there exist positive numbers m, and m, such
that

mlogr= 3 [v(g)]™< mlogr,

BEGVRIKT

and, ift < 2n, then

mrt < 3 [w(g)]t £ muer?t
BEGVBLT

Remark 3.6. When n =1, G is a fuchsian group acting on the unit
disk. Noting that the radii of isometric circles are bounded, we see that
Theorems 3.4 and 3.5 yield some familiar classical results (see [4]).

For proving the above theorems, we need two lemmas.

Lemma 3.7 (3, Proposition 4.1). For 0 = r < 1, the following in-
equalityis satisfied.

n(r,a) < B(1—r)™",
where B is a constant independent of a € HY ().

Lemma 3.8(3, Proposition 4.4). Let D, be a fundamental polyhedron
with respect to 0 for G. Suppose*vol (D;) < co, Let a € D, and llall < p
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< 1. Then there exists r, such that the following inequality is satisfied for
To g r < 1.

Al—r)" < n(r,a) < B(1—7)"",
where A is a constant which depends on p and B is a numerical constant.

We shall prove Theorems 3.4 and 3.5 in the same manner as in the
proof of [1, Theorems 2 and 3].

Proof of Theorems 3.4 and 3.5. Let x(r) = #lg € G| v(g) < rl.
By Lemma 3.7, we have

x(r) = ige G| Ilglo)l <11 —(4/r)1 7%
= a({1—(4/7)1'7%,0)
< B(1—{1—(4/r)) "< 27 "Br*". (1)

For each real number ¢, we define

-t

xir)= > [vig)]

REGVBKT
If »r > 2, then
) = [ dls) _ alr) |, [7 2ls) 4 (o)
2 s r 2 s

Using this equation, together with the inequality (1), we obtain Theorem 3.4.
LLemma 3.8 establishes

Xlr) 2 A1 —11—(4/)* )"z 27Ar (3)

By (2) and (3), we complete our proof of Theorem 3.5.
Theorems 3.2 and 3.5 lead to

Corollary 3.9(3, Theorem5.4). Ifwol(D,) < oo, then G is of diver-
gence lype.
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