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ON SUBGROUPS OF CONVERGENCE OR
DIVERGENCE TYPE OF U(1, n; @)

SHiceyasu KAMIYA

0. Introduction. Let V= V'"(€) (n=1) denote the vector space
€™, together with the unitary structure defined by the Hermitian form

Dz, w) = —zowo+ 21w+ Zowo+ -+ 2wy

for z = (24, 21,++, 2n) and w = (wy, 10y, -+, Wwy,).
An automorphism g of V, that is a linear bijection of V onto V such that
d(g(z),8(w)) = ®(z,w) for 2z, € V, will be called a unitary transforma-
tion. We denote the group of all unitary transformations by U(1,n; €). A
unitary transformation operates in P(V), leaving H{ @) invariant. Since
H™ ) is identified with the unit ball B ), discrete subgroups of U(1,n;
@) are considered as generalized Fuchsian groups.

In this paper, we shall classify discrete subgroups of U(1,n; €) into
convergence type and divergence type as in Fuchsian groups and generalize
some results in [3] to them.

1. Preliminaries. Let Vi={ze V| &(2,2) =0} and V_ =}z €
V| &z,2) = 0}. V, and V_ are invariant under U(1,n; @). Let P(V)
be the projective space obtained from V. This is defined, as usual, by using
the equivalent relation in V—{0} : u~uv if there exists A€ €—|0} such that
u= vA P(V) is the set of equivalence classes, with the quotient topology.
Let P: V—{0| - P(V) denote the projection map. We define : H( ) =
P(V_). Let H{@) denote the closure of HY @) in the projective space
P(V). An element g in U(l1,n; €) operates in P(V), leaving HY ) in-

n
variant. If z = (zo,21,--+,20) € V_, then the condition — | z,|2+ kZ% | 2|

< 0 implies that zo % 0. Therefore we may define a set of coordinates
E=(&,80 %) in H{@) by &(P(2)) = z;2,"". In this way HY{)
becomes identified with the unit ball B= BY€) =|¢{= (&, &+ &) €

" | é | &l < 1]. Next we shall consider the metric in HY€). Let

V..=1{2z€ V| &(z,z) = —1}. Let TAV_,) be the tangent space. This
contains the @-subspace T:(V_.,) = {v € V| &(z, v) = 0}. Thus the
restriction P’ = P,* | T,(V_,) is a €-linear isomorphism of T.(V_,) onto
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Tez(B), where P.*: TAV_,) » T{B). We define the form ¥ in Tpe(B)
by U(P,(v), P/ (w)) = 2,®(v,w)z,' which is Hermitian. We can compute
this form explicitly, with respect to the standard basis | f1, f2, -+, fal in @™
We have

V(of) = 0d1— 3 |G +680— 5 1697
(c.f. [1], Proposition 2.3.1).

2. The metric . We introduce another metric &(a,b) for two points
a,b in H( @) as follows :

8(a,b) = [1—1 d(a*,a*) &(b*,6%)t| &(a*,b*)| "),

where ¢* € P '(a) and b* € P! (b). We see that 6(a,b) = 6(b,a) =0
and 8(a,c) < &a,b)+8(b,c), where a, b, c € H(€). Also, if f is an
element of U(1, n; @), then 6(f(a),f(b)) = 6(a, b). We define llall =

lkzil:l |ak|2]l/2, where a = (ai,as,-++,an) € HY ). Let p be a real number
satisfying 0 < p < 1. We define
Cla,p) =1z € H(Q) | 6(a,2) < pl,

and then we have the following proposition.

Proposition 2. 1.
(i) C(0,p) ={z|llzll < pl.
(ii) f(C(a,p)) = C(f(a),p) for any unitary transformation f.
(iii) Ifllall < r < 1, then C(a,p) is contained in
lz | llzll <(r+p)(1+71p)7 '}
(iv) Cla,p) Clz | llz—all < [p(1— llali®)(1—=p* "]

Proof. The first is immediate.
(ii) First we note that f{C(0,p)) = C(f(0),0). Using Proposition 2.1.2
in [1], we can find g€ U(1,n; €) such that g(a) =0. From this, we obtain

g '(C(0,p)) = C(g7'(0),0) = C(a,p),
and therefore
f(C(a,p)) = fg7'(C(0,p)) = C(fg7'(0),p) = C(f(a),p).

(iii) Without loss of generality, we may assume a = (£,0,.:-,0) (¢ > 0).
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Simple computation yields :
1z |8(a,2) < pt =1z = (21,2, 2,) | |(1 ;tzﬂz)l/zzl
—(1=pN(1 =80 P+ (1= 2) 3 2 < pH(1—1)?
(1—#*p%)

It follows that

Cla,p) Clz|llzll <(p+t)(1+2p)7"
Clzlllzll < (p+r)1+7rp) '

(iv) By computation, we obtain the result.

Proposition 2.2. Let tant and |b,! be sequences in H™(€). Suppose
that &(an, bn) = p(constant) <1 and limlla,ll = 1. Then limlla,— by Il

-0 N—co
=0.

Proof. By (iv) in Proposition 2.1, we see that lla,—b, 1l < {p*(1—
lan IH)(1 —p%) "2 As lla,ll = 1, the value on the right side goes to 0.
Therefore we have };im lan—bnll = 0.

3. The fundamental polyhedron. Let G be a discrete subgroup of
U(l,n; €). Let a € HY(C). Suppose the isotropy group G, = {f € G |
fla) = at = lidentity!. We define the fundamental polyhedron D, by {z |
0(z,a) < &(z,f(a)) for all f in G\lidentity!l. Obviously we see

D, = {z | d(z,a) < d(z,f(a)) for all fin G\{identity!l,

where d is the metric derived from ¥. Let

(K) (k)
a1 o i
Je=
(k) {X)
An<11 **° Qnein+

We find that
Dy =tz | Ifilz) I > lizll for all fx € G\lidentity}!.
n+1
=1z = (s zs2a) | i+ 5 alfer] > 1

for all fx € G\lidentity!!.
Following the methods of Tsuji [3], we can prove that



182 S. KAMIYA

(1) No two points in D, are equivalent under G. .
(2) Every point in H{ €) has its equivalent point in D,.

4. The counting function n(r,a). Unless otherwise stated, we shall
always take G to be a discrete subgroup of U(1,n; @) with G, = {identity}.
Let a be a point in H{@'). Let n(r,a) be the number of the elements f in G
such that Il f(a) Il < r. First we prove

Proposition 4.1. For 0 = r < 1, the following inequality is satisfied.
n(r,a) < B(1—r)"" where B is a constant independent of a.

For the proof of this proposition, we need two lemmas.

Lemma 4.2. n(r,a) = #{fe G| f(0) € Cla,r)}.

Proof. Let us write G = {fo, f1,--|. Suppose that Il fla) | < r. This
means that &(fx(a),0) < » and so &(a,fx'(0)) < 7. Then f5'(0) lies in
Cla,r). It is similarily seen that fx(0) € C(a,r) implies Il fi'(a) Il < r.

Lemma 4. 3.
(i) The volume element dV at z in H{ @) is
K-(1—=1zI®)~™*"z, A dzy Ao/ dzq A dzp,

where K is a constant.

(ii) f dV £ K,-(1 —n)~", where K, is a constani.

nzi<ry

Proof. (i) Consider det | W(f,, f;)! to obtain the result. (ii) We see that

dV < constant ﬂ l (1=73)"""dr < Ki(1—7,)" ™

nzn<

Proof of Proposition 4.1. We first note that G is discontinuous in
HY ). From this fact, we can choose s > 0 so small that f(C(0,s)) N
f(C(0,s)) =@ for fi #+ fi. Suppose 8(f(0),a) < r. By Proposition 2.1,
we have f(C(0,s)) = C(f(0),s) C C(a,r,), where r, = (r+s)(1+rs)”".
By Lemma 4.2, we see that the number of images f{(C(0,s)) in C(a,r,) is
n(r,a). Therefore it follows that

n(r,a) vol(C(0,s)) £ vol(C(a,r,)),

where vol(-) denotes the volume. By Proposition 2.1.2 in [1], there exists
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g € U(1,n; €) such that g(a) =0, so we see that g(C(a,r,)) = C(g(a),r)
= C(0,7,). Hence we obtain the inequality

n(r,a) < vol(C(0,7,))(val(C(0,s))".
It follows from r; = (r+s)(1+7rs) ™' that(1 —7,) "< 2(1—s) 1 —7r)" "

Using this inequality and Lemma 4.3, we have

n(r,a) = constant-(1—s) ™1 —7r) " vol(C(0,s))".
The quantity (1 —s) ™(20l(C(0,s))”" depends on G. Thus we have the
desired inequality.

In the same manner as in Theorem XI. 10 of [3], we obtain

Proposition 4.4. Suppose vol(D,) < oo, Leta € Dy and llall < p <
1. There exisis v, such that the following inequality is satisfied for ro < r
<1.

A(l—r)""<Z n(r,a) < B(1—7r)"",
where A is a constant, which depends on p and B is a numerical constant.
5. Convergence type or divergence type. In this section we shall

classify discrete subgroups of U(1,7n; @) into convergence type and divergence
type and discuss their properties.

Theorem 5; 1. Let us write G =1/, f1,---}. Then either
(i) fZE:r(l-llfk(a)Il)"<00for each a € HY (), or
(ii) fZE:G(l— l fi{a) )™ = oo for each @ € HY ).

Proof. Let 0* = (A,0,---,0) and a* = (e, @, ", @n+1) in V_ such
that P(0*) = 0 and P(a*) = a, respectively.

Let
afi e adlha
f k=
a‘{fkﬂ alrﬂ-l.n+l
We have

1—ltal® = {0(fila*), fula*)) B(fu(0*), f(0%)) ]| B(fila*), £r(0*)) ] -2
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n+1

= (1= 1da) 11— 140010 1= 35 (3] alasalts)

(:ﬁ a‘x";’aJa'l'“i)_‘ -
< (14 1Ala@) I — 11 fila) N+ 1) N — 1f0) 1)
(188 e (] o))"

Noting that 1+ I fl(a)!l < 2 and 1+ f(0)Il < 2, we obtain the next
inequality :

1—1llal* < 4(1— Il fila) (1 — Il fill@) 1)1 — 1l fill @) 1111 £(O) 1) 2
< [4(1— 1 fa) (1= 1£(0) 1)~
T (1= A0 IN(L = N fla) )

Therefore, we see that

(1/4)™1— lla IX)M1— lIfL0)IN"
S (1= Ifda) )™
S 41— 1 f0) N1 — Nall®)~"

Hence it follows that if fZE:G(l— Il f(0) ™ < oo, then fZG(l— I fla) )™
< oo and that if 2 (1— IIfi(0)I)* =00, then 2 (1— llfi(e)l)" = co.
JkEG FKEG

Thus our proof is completed.

Definition. G is called of convergence type, or divergence type accord-
ing to the case (i) or (ii).

Next we shall show that the power n is the best number for the classifi-
cation of discrete subgroups of U(1,n; @).

Theorem 5.2. Ife > 0, then jZEG(l— Il ful@) )™ < oo,

Proof. Using Proposition 4.1, we have

(1— 1l fia) )™ = fu—:)wdn(z,a)

Wsrtam<r
=(1—7r)"*n(r,a)—n(0,a)+(n+e) fr(l—t)"”"n(t,a)dt

< B(l—r)*+(n+e) Bf )€~ 1di
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Therefore, if the condition is satisfied, then IZE\.G (1— Il fa) ™% is con-

vergent as r — 1.

Theorem 5.3. The following three are equivalent.

(i) G is of divergence type.

(i) 3 (1= 1fa) 11— lal)~" = oo for all a € HYE).
RE

i) [ (1=t n(ta)dt = oo,

Proof. First we shall prove that (i) and (ii) are equivalent. Noting
that Il f(a) Il < 1, we obtain the following inequalities :

(1= 11 fla) )1 = Nal®) "= (1— Il fla) DH1+ |l fila) )™
(1—llal)=™1+ Nlall)™™
< 2"1— Il fila) D1 — llal)=" (1)
2 (1/2)1— lfla) N1 —llall)™"  (2)

Considering (1), we see that (i) implies (ii). The inequality (2) shows that
(ii) yields (i).
Next we shall show that (i) and (iii) are equivalent. We see that

(1=l fila) )" = for(l—t)"dn(t,a)

=(1—r)n(r,a)—n(0,a)+ l;r n(l1—t)""'n(t,a)dt

It follows from Proposition 4.1 that (1 —r)"n(r,a)—n(0,e) is convergent
as r = 1. Therefore we obtain the stated conclusion.

Theorem 5.4. If vol(D,) < oo, then G is of divergence type.

Proof. Let a be a point in Dy and llall < p < 1. Using Proposition
4.4, we see that

f (1—8)""'n(t,a)dt = f A(1—1t) 'dt = o0,

It follows from Theorem 5.3 that G is of divergence type.

Next we consider the case where G is of convergence type.

Theorem 5.5. The following (i) and (ii) are equivalent.
(i) G is of convergence type.
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(ii) kaE:GHog 8(fila),z) '|* < oo for some z in H{T).

Furtheremore if the above are satisfied, the series in (ii) is uniformly

convergent in any compact subset of HY( ().

For the proof, we need two lemmas.

Lemma 5.6. Let 2* = (20,21,...,2,) and a* = (a,,a,,...,a,) be in V_.

Then
(1— I1P(@*) I P(z*) 1)? < |ao] 7% zo| % | ®(a*, 2*)|?
§(1+||P( i P(2*) )2

=4.

Proof. Since | ®(a*,2*)[? = |ao|?|2z0|2] =1+ j_}:i asz;izo tas | we

have

(1— J:il [as 2ol zo] " @0l ™M) < |ao| ~%| 2] 2| ®(a*, 2*) |

n
= (1+ JZ], |(1.i“21‘“20|_‘|ao |_1)2.

Using Schwartz’s inequality, we obtain
n 1 n 1/2)2
(1— Il P(z*) Il P(a*)11)? = [1—(2 |a,-a0“|2) “(5 !z,-zu‘1|2> ]
J=1 J=1
< [ao] 7' zo| ' D(a*, 2*) |
n 172( n 1/2)2
< 145 lea1?) 7 (5 12e1) )
(1+ 1 P*) 1l P(a*) 1),
Since | P(2*) 1l < 1 and Il P(a*) 1l < 1, we obtain the result.

Lemma 5.7. If a* and z* are in V_, then
(1/2) ®la*, a*) d(2*,2*)| &(a* l 2Slog[5 ), P(2*))]™!
=< (1/2)¢(a*,a*)d>(z*, 1| @ ( *)|2— ®(z*, )¢(z c2¥)

Proof. Since log (14+x) < x(xr=0) and log(l —x) ' 220 = x <

1), we have

log | &(P(a*
)

), P(2*))}~% = log [1 +{8(P(a*), P(2*)){72—1]
< |8(P(a*), P(z

-1
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= &(a*, a*) B(z*, 2*)1| 6(a*, z*) |2 — D(a*, a*) P(2*,2*)} ", and

log {6(P(a*), P(2*))172 = log [1 — {1 —(&(P(a*), P(2*))%]™
21—{5(P( *), P(z*)}
|

)| @(a*, 2*)| 2.

(z
= @(a*, a*) B(2*, 2*

Proof of Theorem 5.5. By Lemma 5.6, we have
(1/8)1— llall)(1 — N zl1?) <(1/2)P(a*, a*) d(2*,2*) | B(a*, 2*)| 2
Using Lemma 5.7, we obtain
> 81— lfla) (1= 2l?)" = 35 (log 10(fula L)

JKEG

If (ii) is satisfied, then the series on the left side is convergent. Thus G is
of convergence type. Next we shall show that (i) implies (ii). By Lemmas
5.6 and 5.7, we see that

(1/2) ®(a*.a*) B(2*, 2*)1 | B(a*, 2*)|*— Bla*, a*) (2%, 2*)|7'
<(1/2)a—=1lal®H—zi®lall — zl)~?

Now we assume that llzll < r; < 1. Since G is discontinuous in HY( (),
there exists an integer N such that llfi{a) Il > r for n > N. So we obtain

2,27 = 1211 = 1 fe) 19 fla) I — 112 1)~
< 2 (1= 1fda) )Xri—r)7"

If G is of convergence type, then the series on the right side is convergent.
Thus it is seen that Z', [log {8(fxla),2z)t7"']"* is uniformly convergent. So

the proof of Theorem 5.5 is complete.
If G is of convergence type, we can denote JZEG [log {8(fula). 2}t ]" by
galz). Since 8(a,b) is U(1,n; €)-invariant, we have

galh(2)) = 3 [log18(fula). hlz)t"]"
= 2 [log 18(h™"fla).2)t° I
for any A in G. Set h™'fx = hx. We see that
galh(z)) = 3 [log{8{hs(a), 2)1']" = gal2)

for any h in G. So we have proved
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Theorem 5.8. If G is of convergence type, then go(z) is G-invariant.

Theorem 5.9. Let G be a discrete subgroup of U(l,n; €). Then G
and the conjugate group fGf™' are of the same type for f € U(1l,n; @).

Proof. Note that 6(a,b) is U(1,n; €)-invariant. Set b = f(a) and
= flz). Then we obtain

f.z_;.(; [log | 8(ffula). flz ) 71]* = f:ZE:G [log {8 (ffif 1(b), )t 1™

Thus our proof is complete.

Let o denote the rotation-invariant positive Borel measure on oH"( )
for which o(9H™@)) = 1. We shall'show a sufficient condition for G to be

of convergence type.

Theorem 5.10. Let E be the subset with positive measure in OH™( ().
If g(E) N h(E) =@ for any different elemenis g and h in G, then G is of

convergence type.

Before proving Theorem 5.10, we give the definition of Poisson kernel
and discuss its properties. Let z and ¢ be in H @) and 8H™( ), respec-
tively. We define Poisson kernel as follows :

P(z, &) = 1| &¥ | @(2*,2%) 1 | d(2*, &£*)| %",
where z* = (2¥,zF, -, 2f) € P Y2) and ¢* = (¥ ¢¥F.--. &%) € PY(Y).

It is easy to show that the above definition is well-defined. First we show

Proposition 5.11. Lei z be a point in H(@). Let ¢ and n be in
OH™ ). Let g be an element in U(l,n; €). We have the following

properties.

(1) P(g(z)gi) = |(g(&*))e]*| £&| *"P(2, £).
(2) Plglz),t) = P(2,g7'(£))P(g(0), £).
(3) P(kn,§)= PlkL ) for 0 <k < 1.

(4) [ Plnodoln) = [ Plktnldoln) =1 for 0 S k<1,

G) [ Pl0L o) = [ 182171 (a(£* )] mdol)

= [ do

aHME:
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Proof. Noting that

| &(g(2))*, (g(£))*) |
= [(glzNF| 1 (g(z*))o| [ (N1 (g(£%))o] 1| Dlg(2*),g(E*))],

we easily obtain (1), (2) and (3).
(4) The first equality follows from (2). Set w = k7. By the Cauchy
Formula, we obtain .

f Plw, t)do(t) = f (12317 dlaw* w*) || ®lw*, £%)| 2V da( )

2HM () HM )

= [ 1w EF (Lt W) | Bl w¥) | (—wd B, £*) o (£)
3HM()

=1,

(5) It is easy to show that P(g='(0),¢) = {|&¥|(g(2*))e| 1™
Using (2) and (4), we have

[ Pletkn), £)dote)

aHM @)

— f Plkn,g(£))P(g=(0), £)do(£)

AHM )

= P(e(0).8) [ Plhng(£)do(n)

EX Y 3]

- P(g_l(0)~ §)-
It follows from (4) that

f P(g(0), £)do( )

BHM @)

_ f [f Plg~\(kp), £)do(£) [doln)

aH@)  aH™ @)

[

AHM T

Lemma 5.12. P(2.¢) < {(1+llzi){1—=llzI)""1""<2™1— llzI)~",

Proof. First we note that | ®(2* ¢*)|? = |2¥| | ¢¥1(1— llz1)? for
2* = (2f, 2f, -, 2%) and C* = (&F, ¢f. ... L%). Using the above fact, we
easily see that
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Plz. &) = {1 — 1z — l=zI)~3"
S 14+ Nz = Nzl)~H"
<2%1—llzI)™™

Now we are ready to prove our theorem.

Proof of Theorem 5.10. Put u(z) = ./z-:‘ P(z,¢)da(). We have u(0)

=£P(0,§)do(§) = g(E). Using (1) and (5) in Proposition 5.11 and

Lemma 5.12, we have
u0) = [ P(0,£)do(t)
= [11£211elE"Dl ~1Pg(0), g(£)do(2).
< 21— g0 )" [ 111 1(a(£)el "1 dol8)

=2"1— IIg(O)II)‘"LE)Hfﬂ [(g(g*))e] 42"

Hg(£*)ol [£31da(n)
= 2"g(g(E))(1— lg(0))~™

It follows from the above fact that
o(E) = 2%(g(E)(1— lig(o) )™
Since g(E) N h(E) = ¢, then we have
Z (1= uglo)™ = 2"(o(E)™ 2 o(g(E))
= 2"(0(E))"a(gLéJG g(E))
< 2"(¢(E)'a(0H™C)) < oo.

Thus our theorem is completely proved.
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