ON SUBGROUPS OF CONVERGENCE OR DIVERGENCE TYPE OF $U(1, n; \mathcal{C})$

SHIGEYASU KAMIYA

0. Introduction. Let $V = V^{1,n}(\mathcal{C})$ $(n \ge 1)$ denote the vector space \mathcal{C}^{n+1} , together with the unitary structure defined by the Hermitian form

$$\Phi(z,w) = -\overline{z_0}w_0 + \overline{z_1}w_1 + \overline{z_2}w_2 + \cdots + \overline{z_n}w_n$$

for $z = (z_0, z_1, \dots, z_n)$ and $w = (w_0, w_1, \dots, w_n)$.

An automorphism g of V, that is a linear bijection of V onto V such that $\Phi(g(z), g(w)) = \Phi(z, w)$ for $z, w \in V$, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1, n; \mathbb{C})$. A unitary transformation operates in P(V), leaving $\overline{H^n(\mathbb{C})}$ invariant. Since $H^n(\mathbb{C})$ is identified with the unit ball $B^n(\mathbb{C})$, discrete subgroups of $U(1, n; \mathbb{C})$ are considered as generalized Fuchsian groups.

In this paper, we shall classify discrete subgroups of $U(1,n; \mathcal{C})$ into convergence type and divergence type as in Fuchsian groups and generalize some results in [3] to them.

1. Preliminaries. Let $V_0 = \{z \in V \mid \Phi(z,z) = 0\}$ and $V_- = \{z \in V \mid \Phi(z,z) = 0\}$ $V \mid \Phi(z,z) = 0 \mid$. V_0 and V_- are invariant under $U(1,n; \mathbb{C})$. Let P(V)be the projective space obtained from V. This is defined, as usual, by using the equivalent relation in $V-\{0\}: u\sim v$ if there exists $\lambda\in \mathcal{C}-\{0\}$ such that $u = v\lambda$. P(V) is the set of equivalence classes, with the quotient topology. Let $P: V - \{0\} \to P(V)$ denote the projection map. We define: $H^n(\mathbf{C}) =$ $P(V_{-})$. Let $H^{n}(\mathbf{C})$ denote the closure of $H^{n}(\mathbf{C})$ in the projective space P(V). An element g in $U(1, n; \mathbf{C})$ operates in P(V), leaving $H^{n}(\mathbf{C})$ invariant. If $z=(z_0,z_1,\cdots,z_n)\in V_-$, then the condition $-|z_0|^2+\sum\limits_{k=1}^n|z_k|^2$ < 0 implies that $z_0 \neq 0$. Therefore we may define a set of coordinates $\zeta = (\zeta_1, \zeta_2, \dots, \zeta_n)$ in $H^n(\mathbf{C})$ by $\zeta_t(P(\mathbf{z})) = \mathbf{z}_t \mathbf{z}_0^{-1}$. In this way $H^n(\mathbf{C})$ becomes identified with the unit ball $B=B^n({\bf C})=|\zeta=(\,\zeta_1,\,\zeta_2,\cdots,\,\zeta_n)\in$ $\mathbf{C}^n \mid \sum_{k=1}^n \mid \zeta_k \mid^2 < 1 \mid.$ Next we shall consider the metric in $H^n(\mathbf{C})$. Let $V_{-1} = \{z \in V \mid \Phi(z,z) = -1\}$. Let $T_z(V_{-1})$ be the tangent space. This contains the **C**-subspace $T_z'(V_{-1}) = \{v \in V \mid \Phi(z, v) = 0\}.$ restriction $P_{z'} = P_{z'} \mid T_{z'}(V_{-1})$ is a **C**-linear isomorphism of $T_{z'}(V_{-1})$ onto 180 S. KAMIYA

 $T_{P(z)}(B)$, where $P_z^*: T_z(V_{-1}) \to T_s(B)$. We define the form Ψ in $T_{P(z)}(B)$ by $\Psi(P_z'(v), P_z'(w)) = z_0 \Phi(v, w) z_0^{-1}$ which is Hermitian. We can compute this form explicitly, with respect to the standard basis $|f_1, f_2, \dots, f_n|$ in \mathbb{C}^n . We have

$$\Psi(f_{i},f_{j}) = \delta_{ij}(1 - \sum_{k=1}^{n} |\zeta_{k}|^{2})^{-1} + \zeta_{i}\overline{\zeta_{j}}(1 - \sum_{k=1}^{n} |\zeta_{k}|^{2})^{-2}$$

(c.f. [1], Proposition 2.3.1).

2. The metric δ . We introduce another metric $\delta(a,b)$ for two points a,b in $H^n(\mathbf{C})$ as follows:

$$\delta(a,b) = [1 - | \Phi(a^*, a^*) \Phi(b^*, b^*) | | \Phi(a^*, b^*) |^{-2}]^{1/2}$$

where $a^* \in P^{-1}(a)$ and $b^* \in P^{-1}(b)$. We see that $\delta(a,b) = \delta(b,a) \ge 0$ and $\delta(a,c) \le \delta(a,b) + \delta(b,c)$, where $a,b,c \in H^n(\mathbf{C})$. Also, if f is an element of $U(1,n;\mathbf{C})$, then $\delta(f(a),f(b)) = \delta(a,b)$. We define $\|a\| = \left\{\sum_{k=1}^n |a_k|^2\right\}^{1/2}$, where $a = (a_1,a_2,\cdots,a_n) \in H^n(\mathbf{C})$. Let ρ be a real number satisfying $0 \le \rho < 1$. We define

$$C(a,\rho) = \{z \in H^n(\mathbf{C}) \mid \delta(a,z) < \rho\},$$

and then we have the following proposition.

Proposition 2.1.

- (i) $C(0,\rho) = \{z \mid ||z|| < \rho\}.$
- (ii) $f(C(a,\rho)) = C(f(a),\rho)$ for any unitary transformation f.
- (iii) If ||a|| < r < 1, then $C(a, \rho)$ is contained in $|z| ||z|| < (r+\rho)(1+r\rho)^{-1}$.
- (iv) $C(a,\rho) \subset |z| \|z-a\| < [\rho^2(1-\|a\|^2)(1-\rho^2)^{-1}]^{1/2}|.$

Proof. The first is immediate.

(ii) First we note that $f(C(0,\rho)) = C(f(0),\rho)$. Using Proposition 2.1.2 in [1], we can find $g \in U(1,n; \mathbb{C})$ such that g(a) = 0. From this, we obtain

$$g^{-1}(C(0,\rho)) = C(g^{-1}(0),\rho) = C(a,\rho),$$

and therefore

$$f(C(a,\rho)) = fg^{-1}(C(0,\rho)) = C(fg^{-1}(0),\rho) = C(f(a),\rho).$$

(iii) Without loss of generality, we may assume $a = (t, 0, \dots, 0)$ (t > 0).

Simple computation yields:

$$\begin{aligned} &\{z \mid \delta(a,z) < \rho\} = \{z = (z_1, \dots, z_n) \mid |(1-t^2\rho^2)^{1/2} z_1 \\ &- (1-\rho^2)t(1-t^2\rho^2)^{-1/2} |^2 + (1-t^2) \sum_{j=2}^n |z_j|^2 < \rho^2 (1-t^2)^2 \\ &(1-t^2\rho^2)^{-1} \end{aligned}$$

It follows that

$$C(a,\rho) \subset \{z \mid ||z|| < (\rho+t)(1+t\rho)^{-1}\}\$$

$$\subset \{z \mid ||z|| < (\rho+r)(1+r\rho)^{-1}\}.$$

(iv) By computation, we obtain the result.

Proposition 2.2. Let $|a_n|$ and $|b_n|$ be sequences in $H^n(\mathbb{C})$. Suppose that $\delta(a_n, b_n) = \rho(constant) < 1$ and $\lim_{n \to \infty} ||a_n|| = 1$. Then $\lim_{n \to \infty} ||a_n - b_n|| = 0$.

Proof. By (iv) in Proposition 2.1, we see that $||a_n-b_n|| < ||\rho||(1-a_n||^2)(1-\rho^2)^{-1}||a_n|| \to 1$, the value on the right side goes to 0. Therefore we have $\lim_{n\to\infty} ||a_n-b_n|| = 0$.

3. The fundamental polyhedron. Let G be a discrete subgroup of $U(1,n; \mathcal{C})$. Let $a \in H^n(\mathcal{C})$. Suppose the isotropy group $G_a = \{f \in G \mid f(a) = a\} = \{identity\}$. We define the fundamental polyhedron D_a by $\{z \mid \delta(z,a) < \delta(z,f(a)) \text{ for all } f \text{ in } G \setminus \{identity\}\}$. Obviously we see

$$D_a = \{z \mid d(z, a) < d(z, f(a)) \text{ for all } f \text{ in } G \setminus \{identity\}\},$$

where d is the metric derived from Ψ . Let

$$f_k = \begin{pmatrix} a_{1,1}^{(k)} & \cdots & a_{1,n+1}^{(k)} \\ & \cdots & \\ a_{n+1,1}^{(k)} & \cdots & a_{n+1,n+1}^{(k)} \end{pmatrix}$$

We find that

$$D_0 = \{z \mid ||f_k(z)|| > ||z|| \text{ for all } f_k \in G \setminus \{identity\}\}.$$

$$= \{z = (z_1, z_2, \dots, z_n) \mid |a_{1,1}^{(k)} + \sum_{j=2}^{n+1} a_{1,j}^{(k)} z_{j-1}| > 1$$

for all $f_k \in G \setminus \{identity\}\}$.

Following the methods of Tsuji [3], we can prove that

182 S. KAMIYA

- (1) No two points in D_a are equivalent under G.
- (2) Every point in $H^n(\mathbf{C})$ has its equivalent point in $\overline{D_a}$.
- 4. The counting function n(r, a). Unless otherwise stated, we shall always take G to be a discrete subgroup of $U(1, n; \mathcal{C})$ with $G_0 = \{identity\}$. Let a be a point in $H^n(\mathcal{C})$. Let n(r, a) be the number of the elements f in G such that ||f(a)|| < r. First we prove

Proposition 4.1. For $0 \le r < 1$, the following inequality is satisfied. $n(r,a) \le B(1-r)^{-n}$, where B is a constant independent of a.

For the proof of this proposition, we need two lemmas.

Lemma 4.2.
$$n(r,a) = \# \{ f \in G \mid f(0) \in C(a,r) \}$$
.

Proof. Let us write $G = \{f_0, f_1, \dots\}$. Suppose that $\|f_k(a)\| < r$. This means that $\delta(f_k(a), 0) < r$ and so $\delta(a, f_k^{-1}(0)) < r$. Then $f_k^{-1}(0)$ lies in C(a, r). It is similarly seen that $f_k(0) \in C(a, r)$ implies $\|f_k^{-1}(a)\| < r$.

Lemma 4.3.

- (i) The volume element dV at z in $H^n(\mathbf{C})$ is $K \cdot (1 ||z||^2)^{-(n+1)} dz_1 \wedge d\overline{z_1} \wedge \cdots \wedge dz_n \wedge d\overline{z_n}$, where K is a constant.
- (ii) $\int_{\|Z\| < r_1} dV \leq K_1 \cdot (1 r_1)^{-n}, \text{ where } K_1 \text{ is a constant.}$

Proof. (i) Consider det $\{\Psi(f_i, f_i)\}$ to obtain the result. (ii) We see that

$$\int_{\|z\|$$

Proof of Proposition 4.1. We first note that G is discontinuous in $H^n(\mathbb{C})$. From this fact, we can choose s>0 so small that $f_i(C(0,s))\cap f_i(C(0,s))=\emptyset$ for $f_i\neq f_i$. Suppose $\delta(f(0),a)< r$. By Proposition 2.1, we have $f(C(0,s))=C(f(0),s)\subset C(a,r_1)$, where $r_1=(r+s)(1+rs)^{-1}$. By Lemma 4.2, we see that the number of images $f_i(C(0,s))$ in $C(a,r_1)$ is n(r,a). Therefore it follows that

$$n(r,a) \ vol(C(0,s)) \leq vol(C(a,r_1)),$$

where $vol(\cdot)$ denotes the volume. By Proposition 2.1.2 in [1], there exists

 $g \in U(1,n; \mathbb{C})$ such that g(a) = 0, so we see that $g(C(a,r_1)) = C(g(a),r_1)$ = $C(0,r_1)$. Hence we obtain the inequality

$$n(r,a) \leq vol(C(0,r_1))(vol(C(0,s))^{-1}.$$

It follows from $r_1 = (r+s)(1+rs)^{-1}$ that $(1-r_1)^{-n} \le 2(1-s)^{-n}(1-r)^{-n}$. Using this inequality and Lemma 4.3, we have

$$n(r,a) \leq constant \cdot (1-s)^{-n} (1-r)^{-n} (vol(C(0,s))^{-1})$$

The quantity $(1-s)^{-n}(vol(C(0,s))^{-1}$ depends on G. Thus we have the desired inequality.

In the same manner as in Theorem XI. 10 of [3], we obtain

Proposition 4.4. Suppose $vol(D_0) < \infty$. Let $a \in D_0$ and $||a|| < \rho < 1$. There exists r_0 such that the following inequality is satisfied for $r_0 \le r < 1$.

$$A(1-r)^{-n} \le n(r,a) \le B(1-r)^{-n}$$

where A is a constant, which depends on ρ and B is a numerical constant.

5. Convergence type or divergence type. In this section we shall classify discrete subgroups of $U(1,n;\mathbf{C})$ into convergence type and divergence type and discuss their properties.

Theorem 5.1. Let us write $G = \{f_0, f_1, \dots\}$. Then either

- (i) $\sum_{f_k \in G} (1 \|f_k(a)\|)^n < \infty$ for each $a \in H^n(\mathcal{C})$, or
- (ii) $\sum_{f_k \in G} (1 \|f_k(a)\|)^n = \infty$ for each $a \in H^n(\mathbf{C})$.

Proof. Let $0^*=(\lambda,0,\cdots,0)$ and $a^*=(\alpha_1,\alpha_2,\cdots,\alpha_{n+1})$ in V_- such that $P(0^*)=0$ and $P(a^*)=a$, respectively. Let

$$f_k = egin{pmatrix} a_{1,1}^{(k)} & \cdots & a_{1,n+1}^{(k)} \ & \cdots & \ a_{1,n+1}^{(k)} & \cdots & \ a_{n+1,n+1}^{(k)} \end{pmatrix}.$$

We have

$$1 - \|a\|^2 = \{ \Phi(f_k(a^*), f_k(a^*)) \Phi(f_k(0^*), f_k(0^*)) \} \|\Phi(f_k(a^*), f_k(0^*))\|^{-2}$$

$$= (1 - \|f_{k}(a)\|^{2})(1 - \|f_{k}(0)\|^{2}) \left| 1 - \sum_{m=2}^{n+1} \left(\sum_{j=1}^{n+1} \overline{a_{m,j}^{(k)}} a_{j} a_{m,1}^{(k)} \right) \right|$$

$$\left(\sum_{j=1}^{n+1} \overline{a_{1,j}^{(k)}} a_{j} a_{1,1}^{(k)} \right)^{-1} \right|^{-2}$$

$$\leq (1 + \|f_{k}(a)\|)(1 - \|f_{k}(a)\|)(1 + \|f_{k}(0)\|)(1 - \|f_{k}(0)\|)$$

$$\left(1 - \left| \sum_{m=2}^{n+1} \sum_{j=1}^{n+1} \overline{a_{m,j}^{(k)}} a_{j} a_{m,1}^{(k)} \left(\sum_{j=1}^{n+1} \overline{a_{k,j}^{(k)}} a_{j} a_{1,1}^{(k)} \right)^{-1} \right| \right)^{-2} .$$

Noting that $1 + \|f_k(a)\| < 2$ and $1 + \|f_k(0)\| < 2$, we obtain the next inequality:

$$\begin{aligned} 1 - \| a \|^2 & \le 4(1 - \| f_k(a) \|)(1 - \| f_k(a) \|)(1 - \| f_k(a) \| \| f_k(0) \|)^{-2} \\ & \le \begin{cases} 4(1 - \| f_k(a) \|)(1 - \| f_k(0) \|)^{-1} \\ 4(1 - \| f_k(0) \|)(1 - \| f_k(a) \|)^{-1}. \end{cases} \end{aligned}$$

Therefore, we see that

$$(1/4)^{n}(1 - \|a\|^{2})^{n}(1 - \|f_{k}(0)\|)^{n} \le (1 - \|f_{k}(a)\|)^{n} \le 4^{n}(1 - \|f_{k}(0)\|)^{n}(1 - \|a\|^{2})^{-n}.$$

Hence it follows that if $\sum_{f_k \in G} (1 - \|f_k(0)\|)^n < \infty$, then $\sum_{f_k \in G} (1 - \|f_k(a)\|)^n < \infty$ and that if $\sum_{f_k \in G} (1 - \|f_k(0)\|)^n = \infty$, then $\sum_{f_k \in G} (1 - \|f_k(a)\|)^n = \infty$. Thus our proof is completed.

Definition. G is called of convergence type, or divergence type according to the case (i) or (ii).

Next we shall show that the power n is the best number for the classification of discrete subgroups of $U(1, n; \mathbf{C})$.

Theorem 5.2. If
$$\varepsilon > 0$$
, then $\sum_{k \in G} (1 - \|f_k(a)\|)^{n+\varepsilon} < \infty$.

Proof. Using Proposition 4.1, we have

$$\sum_{\|f_{k}(a)\| < r} (1 - \|f_{k}(a)\|)^{n+\varepsilon} = \int_{0}^{r} (1 - t)^{n+\varepsilon} dn(t, a)$$

$$= (1 - r)^{n+\varepsilon} n(r, a) - n(0, a) + (n+\varepsilon) \int_{0}^{r} (1 - t)^{n+\varepsilon-1} n(t, a) dt$$

$$\leq B(1 - r)^{\varepsilon} + (n+\varepsilon) B \int_{0}^{r} (1 - t)^{\varepsilon-1} dt$$

Therefore, if the condition is satisfied, then $\sum_{f_k \in G} (1 - \|f_k(a)\|)^{n+\varepsilon}$ is convergent as $r \to 1$.

Theorem 5.3. The following three are equivalent.

- (i) G is of divergence type.
- (ii) $\sum_{f_k \in G} (1 \|f_k(a)\|^2)^n (1 \|a\|^2)^{-n} = \infty \text{ for all } a \in H^n(\mathbf{C}).$

(iii)
$$\int_{0}^{1} (1-t)^{n-1} n(t,a) dt = \infty.$$

Proof. First we shall prove that (i) and (ii) are equivalent. Noting that $||f_k(a)|| < 1$, we obtain the following inequalities:

$$(1 - \|f_{k}(a)\|^{2})^{n}(1 - \|a\|^{2})^{-n} = (1 - \|f_{k}(a)\|)^{n}(1 + \|f_{k}(a)\|)^{n}$$

$$(1 - \|a\|)^{-n}(1 + \|a\|)^{-n}$$

$$\{ \le 2^{n}(1 - \|f_{k}(a)\|)^{n}(1 - \|a\|)^{-n} \qquad (1)$$

$$\ge (1/2)^{n}(1 - \|f_{k}(a)\|)^{n}(1 - \|a\|)^{-n}. \qquad (2)$$

Considering (1), we see that (i) implies (ii). The inequality (2) shows that (ii) yields (i).

Next we shall show that (i) and (iii) are equivalent. We see that

$$\begin{split} &\sum_{\|f_k(a)\| < r} (1 - \|f_k(a)\|)^n = \int_0^r (1 - t)^n dn(t, a) \\ &= (1 - r)^n n(r, a) - n(0, a) + \int_0^r n(1 - t)^{n-1} n(t, a) dt \end{split}$$

It follows from Proposition 4.1 that $(1-r)^n n(r,a) - n(0,a)$ is convergent as $r \to 1$. Therefore we obtain the stated conclusion.

Theorem 5.4. If $vol(D_0) < \infty$, then G is of divergence type.

Proof. Let a be a point in D_0 and $||a|| < \rho < 1$. Using Proposition 4.4, we see that

$$\int_0^1 (1-t)^{n-1} n(t,a) dt \ge \int_0^1 A(1-t)^{-1} dt = \infty.$$

It follows from Theorem 5.3 that G is of divergence type.

Next we consider the case where G is of convergence type.

Theorem 5.5. The following (i) and (ii) are equivalent. (i) G is of convergence type.

(ii)
$$\sum_{k \in G} |\log \delta(f_k(a), z)^{-1}|^n < \infty \text{ for some } z \text{ in } H^n(\mathcal{C}).$$

Furtheremore if the above are satisfied, the series in (ii) is uniformly convergent in any compact subset of $H^n(\mathbf{C})$.

For the proof, we need two lemmas.

Lemma 5.6. Let $z^* = (z_0, z_1, ..., z_n)$ and $a^* = (a_0, a_1, ..., a_n)$ be in V_- . Then

$$(1 - || P(a^*) || || P(z^*) ||)^2 \le ||a_0|^{-2} ||z_0|^{-2} || \Phi(a^*, z^*) ||^2 \le (1 + || P(a^*) || || P(z^*) ||)^2 \le 4.$$

Proof. Since $\|\Phi(a^*, z^*)\|^2 = \|a_0\|^2 \|z_0\|^2 \|-1 + \sum_{j=1}^n a_j z_j z_0^{-1} a_0^{-1}\|^2$, we have

$$(1 - \sum_{j=1}^{n} |a_{j}| |z_{j}| |z_{0}|^{-1} |a_{0}|^{-1})^{2} \leq |a_{0}|^{-2} |z_{0}|^{-2} |\Phi(a^{*}, z^{*})|^{2}$$

$$\leq (1 + \sum_{j=1}^{n} |a_{j}| |z_{j}| |z_{0}|^{-1} |a_{0}|^{-1})^{2}.$$

Using Schwartz's inequality, we obtain

$$(1 - || P(z^*) || || P(a^*) ||)^2 = \left\{ 1 - \left(\sum_{j=1}^n |a_j a_0^{-1}|^2 \right)^{1/2} \left(\sum_{j=1}^n |z_j z_0^{-1}|^2 \right)^{1/2} \right\}^2$$

$$\leq |a_0|^{-1} |z_0|^{-1} |\Phi(a^*, z^*)|^2$$

$$\leq \left\{ 1 + \left(\sum_{j=1}^n |a_j a_0^{-1}|^2 \right)^{1/2} \left(\sum_{j=1}^n |z_j z_0^{-1}| \right)^{1/2} \right\}^2$$

$$= (1 + || P(z^*) || || P(a^*) ||)^2.$$

Since $||P(z^*)|| < 1$ and $||P(a^*)|| < 1$, we obtain the result.

Lemma 5.7. If a^* and z^* are in V_- , then

(1/2)
$$\Phi(a^*, a^*) \Phi(z^*, z^*) | \Phi(a^*, z^*) |^{-2} \le \log [\delta(P(a^*), P(z^*))]^{-1} \le (1/2) \Phi(a^*, a^*) \Phi(z^*, z^*) | \Phi(a^*, z^*) |^{2} - \Phi(z^*, a^*) \Phi(z^*, z^*) |^{-1}.$$

Proof. Since $\log{(1+x)} \le x(x \ge 0)$ and $\log{(1-x)^{-1}} \ge x(0 \le x \le 1)$, we have

$$\begin{split} & \log \|\delta(P(a^*), P(z^*))\}^{-2} = \log \left[1 + \|\delta(P(a^*), P(z^*))\}^{-2} - 1\right] \\ & \leq \|\delta(P(a^*), P(z^*))\}^{-2} - 1 \end{split}$$

$$= \Phi(a^*, a^*) \Phi(z^*, z^*) \{ | \Phi(a^*, z^*)|^2 - \Phi(a^*, a^*) \Phi(z^*, z^*) \}^{-1}, \text{ and } \log \{ \delta(P(a^*), P(z^*)) \}^{-2} = \log [1 - \{1 - (\delta(P(a^*), P(z^*))^2\}]^{-1}$$

$$\ge 1 - \{ \delta(P(a^*), P(z^*)) \}^2$$

$$= \Phi(a^*, a^*) \Phi(z^*, z^*) | \Phi(a^*, z^*) |^{-2}.$$

Proof of Theorem 5.5. By Lemma 5.6, we have

$$(1/8)(1 - \|a\|)(1 - \|z\|^2) \le (1/2)\Phi(a^*, a^*)\Phi(z^*, z^*) |\Phi(a^*, z^*)|^{-2}.$$

Using Lemma 5.7, we obtain

$$\sum_{f_k \in G} 8^{-n} (1 - \|f_k(a)\|)^n (1 - \|z\|^2)^n \le \sum_{f_k \in G} [\log \{\delta(f_k(a), z)\}^{-1}]^n.$$

If (ii) is satisfied, then the series on the left side is convergent. Thus G is of convergence type. Next we shall show that (i) implies (ii). By Lemmas 5.6 and 5.7, we see that

$$(1/2) \Phi(a^*, a^*) \Phi(z^*, z^*) \{ | \Phi(a^*, z^*) |^2 - \Phi(a^*, a^*) \Phi(z^*, z^*) \}^{-1}$$

$$\leq (1/2) (1 - ||a||^2) (1 - ||z||^2) (||a|| - ||z||)^{-2}.$$

Now we assume that $||z|| < r_1 < 1$. Since G is discontinuous in $H^n(\mathbf{C})$, there exists an integer N such that $||f_k(a)|| > r$ for n > N. So we obtain

$$\sum_{f_k \in G} 2^{-n} (1 - ||z||^2)^n (1 - ||f_k(a)||^2)^n (||f_k(a)|| - ||z||)^{-2n}$$

$$\leq \sum_{f_k \in G} (1 - ||f_k(a)||)^n (r_1 - r)^{-2n}.$$

If G is of convergence type, then the series on the right side is convergent. Thus it is seen that $\sum_{f_k \in G} [\log |\delta(f_k(a), z)|^{-1}]^n$ is uniformly convergent. So the proof of Theorem 5.5 is complete.

If G is of convergence type, we can denote $\sum_{f_k \in G} [\log \{\delta(f_k(a), z)\}^{-1}]^n$ by $g_a(z)$. Since $\delta(a, b)$ is $U(1, n; \mathbf{C})$ -invariant, we have

$$g_a(h(z)) = \sum_{f_k \in G} [\log |\delta(f_k(a), h(z))|^{-1}]^n$$

= $\sum_{f_k \in G} [\log |\delta(h^{-1}f_k(a), z)|^{-1}]^n$

for any h in G. Set $h^{-1}f_k = h_k$. We see that

$$g_a(h(z)) = \sum_{h \in G} [\log |\delta(h_k(a), z)|^{-1}]^n = g_a(z)$$

for any h in G. So we have proved

188 S. KAMIYA

Theorem 5.8. If G is of convergence type, then $g_a(z)$ is G-invariant.

Theorem 5.9. Let G be a discrete subgroup of $U(1, n; \mathbb{C})$. Then G and the conjugate group fGf^{-1} are of the same type for $f \in U(1, n; \mathbb{C})$.

Proof. Note that $\delta(a,b)$ is $U(1,n;\mathbb{C})$ -invariant. Set b=f(a) and w=f(z). Then we obtain

$$\sum_{f_k \in G} [\log |\delta(ff_k(a), f(z))|^{-1}]^n = \sum_{f_k \in G} [\log |\delta(ff_k f^{-1}(b), w)|^{-1}]^n.$$

Thus our proof is complete.

Let σ denote the rotation-invariant positive Borel measure on $\partial H^n(\mathbf{C})$ for which $\sigma(\partial H^n(\mathbf{C})) = 1$. We shall show a sufficient condition for G to be of convergence type.

Theorem 5.10. Let E be the subset with positive measure in $\partial H^n(\mathbf{C})$. If $g(E) \cap h(E) = \emptyset$ for any different elements g and h in G, then G is of convergence type.

Before proving Theorem 5.10, we give the definition of Poisson kernel and discuss its properties. Let z and ζ be in $H^n(\mathbf{C})$ and $\partial H^n(\mathbf{C})$, respectively. We define *Poisson kernel* as follows:

$$P(z,\zeta) = \{ |\zeta_0^*|^2 | \Phi(z^*,z^*) | |\Phi(z^*,\zeta^*)|^{-2} \}^n,$$

where $z^* = (z_0^*, z_1^*, \dots, z_n^*) \in P^{-1}(z)$ and $\zeta^* = (\zeta_0^*, \zeta_1^*, \dots, \zeta_n^*) \in P^{-1}(\zeta)$. It is easy to show that the above definition is well-defined. First we show

Proposition 5.11. Let z be a point in $H^n(\mathbb{C})$. Let ζ and η be in $\partial H^n(\mathbb{C})$. Let g be an element in $U(1,n;\mathbb{C})$. We have the following properties.

- (1) $P(g(z),g(\zeta)) = |(g(\zeta^*))_0|^{2n} |\zeta_0^*|^{-2n} P(z,\zeta).$
- (2) $P(g(z), \zeta) = P(z, g^{-1}(\zeta))P(g(0), \zeta).$
- (3) $P(k\eta, \zeta) = P(k\zeta, \eta) \text{ for } 0 \le k < 1.$

$$(4) \quad \int\limits_{\partial H^{n}(\mathbf{G})} P(k\eta,\zeta) d\sigma(\eta) = \int\limits_{\partial H^{n}(\mathbf{G})} P(k\zeta,\eta) d\sigma(\eta) = 1 \ \text{for} \ 0 \leq k < 1.$$

(5)
$$\int_{\partial H^{n}(\mathbf{C})} P(g^{-1}(0), \zeta) d\sigma(\zeta) = \int_{\partial H^{n}(\mathbf{C})} |\zeta_{0}^{*}|^{2n} |(g(\zeta^{*}))_{0}|^{-2n} d\sigma(\zeta)$$
$$= \int_{\partial H^{n}(\mathbf{C})} d\sigma.$$

Proof. Noting that

$$|\Phi(g(z))^*, (g(\zeta))^*| |$$

$$= |(g(z))_0^*| |(g(z^*))_0^*|^{-1} |(g(\zeta))_0^*| |(g(\zeta^*))_0^{-1}| \Phi(g(z^*), g(\zeta^*))|,$$

we easily obtain (1), (2) and (3).

(4) The first equality follows from (2). Set $w = k\eta$. By the Cauchy Formula, we obtain

$$\begin{split} &\int\limits_{\partial H^{n}(\mathbf{G})} P(w,\zeta) d\sigma(\zeta) = \int\limits_{\partial H^{n}(\mathbf{G})} (|\zeta_{0}^{*}|^{2} |\Phi(w^{*},w^{*})| |\Phi(w^{*},\zeta^{*})|^{-2})^{n} d\sigma(\zeta) \\ &= \int\limits_{\partial H^{n}(\mathbf{G})} \{-w_{0}^{*} \overline{\zeta_{0}^{*}} \Phi(\zeta^{*},w^{*})^{-1} \}^{n} |\zeta_{0}^{*}| \Phi(w^{*},w^{*}) |(-w_{0}^{*} \Phi(w^{*},\zeta^{*}))^{-1} \}^{n} d\sigma(\zeta) \\ &= 1. \end{split}$$

(5) It is easy to show that $P(g^{-1}(0), \zeta) = \{|\zeta_0^*| | (g(\zeta^*))_0|^{-1}\}^{2n}$. Using (2) and (4), we have

$$\int_{\partial H^{n}(\mathbf{g})} P(g^{-1}(k\eta), \zeta) d\sigma(\zeta)$$

$$= \int_{\partial H^{n}(\mathbf{g})} P(k\eta, g(\zeta)) P(g^{-1}(0), \zeta) d\sigma(\zeta)$$

$$= P(g^{-1}(0), \zeta) \int_{\partial H^{n}(\mathbf{g})} P(k\eta, g(\zeta)) d\sigma(\eta)$$

$$= P(g^{-1}(0), \zeta).$$

It follows from (4) that

$$\int_{\partial H^{n}(\mathbf{q})} P(\mathbf{g}^{-1}(0), \zeta) d\sigma(\zeta)$$

$$= \int_{\partial H^{n}(\mathbf{q})} \left\{ \int_{\partial H^{n}(\mathbf{q})} P(\mathbf{g}^{-1}(k\eta), \zeta) d\sigma(\zeta) \right\} d\sigma(\eta)$$

$$= \int_{\partial H^{n}(\mathbf{q})} d\sigma.$$

Lemma 5.12. $P(z,\zeta) \le \{(1+\|z\|)(1-\|z\|)^{-1}\}^n \le 2^n(1-\|z\|)^{-n}$.

Proof. First we note that $|\Phi(z^*,\zeta^*)|^2 \ge |z_0^*| |\zeta_0^*| (1-||z||)^2$ for $z^*=(z_0^*,z_1^*,\cdots,z_n^*)$ and $\zeta^*=(\zeta_0^*,\zeta_1^*,\cdots,\zeta_n^*)$. Using the above fact, we easily see that

$$P(z,\zeta) \leq \{(1-\|z\|^2)(1-\|z\|)^{-2}\}^n$$

$$\leq \{(1+\|z\|)(1-\|z\|)^{-1}\}^n$$

$$\leq 2^n(1-\|z\|)^{-n}.$$

Now we are ready to prove our theorem.

Proof of Theorem 5.10. Put $u(z) = \int_E P(z,\zeta) d\sigma(\zeta)$. We have $u(0) = \int_E P(0,\zeta) d\sigma(\zeta) = \sigma(E)$. Using (1) and (5) in Proposition 5.11 and Lemma 5.12, we have

$$\begin{split} u(0) &= \int_{E} P(0,\zeta) d\sigma(\zeta) \\ &= \int_{E} \{ |\zeta_{0}^{*}| |(g(\zeta^{*}))_{0}|^{-1} \}^{2n} P(g(0),g(\zeta)) d\sigma(\zeta). \\ &\leq 2^{n} (1 - ||g(0)||)^{-n} \int_{E} \{ |\zeta_{0}^{*}| |(g(\zeta^{*}))_{0}|^{-1} \}^{2n} d\sigma(\zeta) \\ &= 2^{n} (1 - ||g(0)||)^{-n} \int_{g(E)} \{ |\zeta_{0}^{*}| |(g(\zeta^{*}))_{0}|^{-1} \}^{2n} \\ &\quad \{ |(g(\zeta^{*}))_{0}| |\zeta_{0}^{*}|^{-1} \}^{2n} d\sigma(\eta) \\ &= 2^{n} \sigma(g(E)) (1 - ||g(0)||)^{-n}. \end{split}$$

It follows from the above fact that

$$\sigma(E) \leq 2^n \sigma(g(E))(1 - ||g(0)||)^{-n}$$
.

Since $g(E) \cap h(E) = \emptyset$, then we have

$$\sum_{g \in G} (1 - \|g(0)\|)^n \leq 2^n (\sigma(E))^{-1} \sum_{g \in G} \sigma(g(E))$$

$$= 2^n (\sigma(E))^{-1} \sigma(\bigcup_{g \in G} g(E))$$

$$\leq 2^n (\sigma(E))^{-1} \sigma(\partial H^n(\mathbf{C})) < \infty.$$

Thus our theorem is completely proved.

References

- [1] S.S. CHEN and L. GREENBERG: Hyperbolic spaces, Contributions to Analysis, Academic Press, (1974), 49-87.
- [2] A. NAGEL and W. RUDIN: Moebius-invariant function spaces on balls and spheres, Duke. Math. J. 43 (1976), 841-865.

[3] M. TSUJI: Potential theory in modern function theory, Maruzen Co. Ltd, Tokyo, 1959.

DEPARTMENT OF MECHANICAL SCIENCE
OKAYAMA UNIVERSITY OF SCIENCE

(Received June 26, 1984)