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NONEXISTENCE OF CERTAIN FINITE RINGS

Taxao SUMIYAMA

Throughout the present paper, R will represent an associative ring
with 1, and R* the unit group of R. If R* is of odd order then [3. Theorem]
shows that R* is an abelian group. The purpose of this paper is to prove
the following related results.

Theorem 1. There exists no finite ring whose unit group is a non-
abelian Z-group of order not divisible by 3.

Theorem 2. Let p and q be distinct primes not smaller than 5. Then
there exists no finite ring whose radical is commutative and whose unit group
is non-abelian and of order 2p'¢’ (i > 1,1 = j > 0).

In advance of proving our theorems, we state the following remark.

Remark 1. Let G be a Z-group (every Sylow subgroup of G be
cyclic). Then G is a meta-cyclic group generated by elements x and y with
the following relations :

x"=1=9" and x7'yx =y~

where (r—1,m) =(n,m) =1, r*=1 (mod m) (see [5, Proposition 2.
12.11, p.106]). Conversely, if n, m and r are positive integers such that
(r=1,m)=(mm) =1, r"=1 (mod m) and nm = 0 (mod 3), then the
group defined by the above relations is a non-abelian Z-group whose order is
not divisible by 3, provided » > 1.

Proof of Theorem 1. Assume that the assertion is false, and choose an
example R with the minimal order. First, we claim that R is indecompos-
able. In fact, if R = R, ® R, then R* = R¥XR¥, so the minimality of R
implies that R is indecomposable. Hence the additive group of R is primary
and |R| is a power of a prime p. Let J be the radical of R. As R* is
solvable (see Remark 1), [2, Theorem 1] shows that R/J is a direct sum of
finite fields and/or 2 X2 matrix rings over GF(2) or GF(3). As |R*| is
not divisible by 3, neither |GL(2,2)| = 6 nor |GL(2,3)| = 48 can be a
divisor of |R*|, and therefore R/J = GF(p®) &---® GF(p®"). Since R*
is a Z-group, Schur-Zassenhaus theorem [5, Theorem 2.10.4, p.83] shows
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that R* is a semi-direct product of a normal cyclic p-Sylow subgroup
1+J = {u) by a cyclic p-group {a) = (R/J)*. If p = 2, then the order
of the automorphism @ of (u) induced by the inner automorphism effected by
a is odd. On the other hand, the order of the automorphism group of (u) is
a power of 2. Hence @ =1 and R* is the direct product of 1 +J and {a},
which contradicts that R* is non-abelian. Thus p has to be odd. If » > 1,

then a~"¥ =1 and the order of {a) is (p—1)"s, where s = _:[iI1 ((p#—-1)/

(p—1)). This contradiction tells us that r = 1. Assume that J* == 0. Then
(R/JH* is abelian and generates R/J’. Thus R/J? is commutative, and
[4, Lemma 1] proves that R* is nilpotent, and hence cyclic. This contra-
diction shows that J2 = 0, and therefore J is a vector space over R/J =
GF(p®) (and pJ = 0). Setting u = 1+ with some v € J, we get |J| = p,
and so e, = 1. Noting that R = Z1 +Zv, we see that R is commutative.
But this is a contradiction.

Corollary 1. There exists no finite ring whose unit group is a non-
abelian group of square free order not divisible by 3.

Proof of Theorem 2. Assume that the assertion is false, and choose an
example R with the minimal order. In view of [3, Theorem], we can easily
see that R is indecomposable and | R | is a power of a prime. According to
[7, Theorem 4.6], R* contains a normal subgroup A of order p'g’, and
hence is solvable. Now, let J be the radical of R. Since |R*| is not
divisible by 3, [2, Theorem 1] shows that R/J is ‘a direct sum of finite
fields. Since R* is non-abelian, J has to be non-zero. Evidently, |J |
divides both |R| and 2p’q’, and so we may consider the following cases :
(DIl =2 (@) [J]=pF(i=k=1), (3) |J]| =q.

Case (1). Since R*/(1+J) = (R/J)* is an abelian group of order
p'g’ and |1+J| =2, R* is the direct product of 1+J and the abelian
group A. But this is a contradiction.

Case (2). Since |R| is a power of p, we have R/J = GF(p®) ®--- ®
GF(p®») and 2p**¢’ = (p**—1)---(p®"—1). Since each p®*—1 is even and
not divisible by p, we have r =1 and k = i. If e, > 1 then 2¢’ = p*—1
=(p—1)p® '+---+p+1) and p—1 = 2¢ with some ¢ = 2. But this is
impossible, for j < 1. Hence e, =1, namely R/J = GF(p). Now, by
[6, Corollary], R* is the direct product of a cyclic group of order p—1
and the abelian group 1+J, which is a contradiction.
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Case (3). In the same way as in Case (2), we can easily see that
R/J = GF(q®). Since J* =0, J is a vector space over GF(q®). and hence
e; = 1. Thus, R is commutative, which is a contradiction.

From the proof of Theorem 2, we can easily see the following

Corollary 2. Let p and q be distinct primes not smaller than 5.

(1) There exists no finite ring whose unit group is non-abelian and of
order 2p' (i = 1).

(2) There exists no finite ring whose unit group is non-abelian and of
order 2p'q (2 =1 > 1).

Corollary 3. Let p be a prime not smaller than 7. Then there exists
no finite ring whose unit group is non-abelian and of order 4p* (i = 1).

Proof. Assume that the assertion is false, and choose an example R
with the minimal order. In view of [3, Theorem] and Corollary 2, we can
easily see that R is indecomposable and |R | is a power of a prime. Let J
be the radical of R. Since R* is solvable by Burnside theorem and |R*|
is not divisible by 3, [2, Theorem 1] shows that R/J is a direct sum of
finite fields. Noting that R* is non-abelian, we see that J # 0. Since |J |
divides both |R | and 4p’, we may consider the following cases: (1) |[J| =
4, (2) |J] =2, 3) |J] =p* i =k =>1).

Case (1). Let A be a p-Sylow subgroup of R*. Then 4 = (R/J)* is
abelian and R* is a semi-direct product of 1 +J by A. Since 14J is either
a cyclic group of order 4 or the direct product of two cyclic groups of order
2, the order of the automorphism group of 1+J is either 2 or 6. Recalling
here that |A | = p* (p = 7), we can easily see that R* is the direct product
of A and 1+J, which is a contradiction.

Case (2). Since (R/J)* is abelian and every automorphism of 1+J
is trivial, R* is commutative, a contradiction.

Case (3). Since R/J is commutative, we have 4p"* = (p=—1)--.
(p® —1) for some positive integers e,,...,er. But each p®* —1 is not divisi-
ble by p, so 4 = (p®—1)---(p**—1). This is impossible, too, for p > 7.

Remark 2. If R is a finite local ring with maximal ideal M and
R/M = GF(p®), then R* has a normal chain R* D 1+M D 1+M? D...2
1+M* =1, R*/(14+M) is a cyclic group of order p*—1, and (1+M"/
(1+M*") is an elementary p-group, k—1 =i >1 (see [1., Theorem 1]).
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However, we can show that a group with the above structure need not be the
unit group of a finite ring. Let ¢ = 5 be a Sophie Germain prime (both ¢
and p = 2¢+1 be prime numbers). In Remark 1, consider the case m = q,
n =2pand r = qg—1. Then we obtain a non-abelian Z-group G of order
2pq with a normal subgroup H such that |H| = p and G/H is a cyclic group
of order 2¢ = p—1. In view of Corollary 2 (2), G cannot be the unit group
of a finite ring.

Remark 3. Let p =5 be a Sophie Germain prime, and ¢ = 2p+1.
We consider the ring

R:i(z g)la, b, ¢ € GF(g)].

Then R* is non-abelian and |R*| = (¢—1)%q = 4p’q. Thus, in Corollary
2 (2), we cannot replace 2p‘q by 4pq.

Remark 4. For the present, it is unknown whether there are infinitely
many Sophie Germain primes. The following is the table of all Sophie
Germain primes less than 10000,

2 3 5 11 23 29 41 53 83 89
113 131 173 179 191 233 239 251 281 293
359 419 431 443 491 509 593 641 653 659
683 719 743 761 809 911 953 1013 1019 1031

1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
1511 1559 1583 1601 1733 1811 1889 1901 1931 1973
2003 2039 2063 2069 2129 2141 2273 2339 2351 2393
2399 2459 2543 2549 2693 2699 2741 2753 2819 2903
2939 2963 2969 3023 3299 3329 3359 3389 3413 3449
3491 3539 3593 3623 3761 3779 3803 3821 3851 3863
3911 4019 4073 4211 4271 4349 4373 4391 4409 4481
4733 4793 4871 4919 4943 5003 5039 5051 5081 5171
5231 5279 5303 5333 5399 5441 5501 5639 5711 5741
5849 5903 6053 6101 6113 6131 6173 6263 6269 6323
6329 6449 6491 6521 6551 6563 6581 6761 6899 6983
7043 7079 7103 7121 7151 7193 7211 7349 7433 7541
7643 7649 7691 7823 7841 7883 7901 8069 8093 8111
8243 8273 8513 8663 8693 8741 8951 8969 9029 9059
9221 9293 9371 9419 9473 9479 9539 9629 9689 9791

In conclusion, the author would like to express his indebtedness and
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