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ON NON-COMMUTATIVE GENERALIZED
P.P. RINGS

M asayuki OHORI

As a natural generalization of commutative p.p. rings, A. G. Naoum [6]
and later Y. Hirano [4]. independently. introduced the concept of commutative
generalized p.p. rings (or z-Baer rings in Naoum's terminology) and obtained
characterizations of such rings. In the present paper we study (non-
commutative ) generalized p.p. rings and give, among others, extensions of
their results to non-commutative rings. First, reduced generalized right
p.p. rings are shown to be p.p. rings (Proposition 1) and basic properties
of generalized right p.p. rings corresponding to those of right p.p. rings are
proved (Propositions 2, 3, 4). Second, characterizations of generalized
p.p. rings with additional conditions are given (Theorems 2, 4). Rings,
which are finite direct sum of rings whose classical right quotient rings are
local rings with nil Jacobson radicals, are also considered (Theorem 3).

Throughout this paper the word “ring” will mean “non-zero associative
ring with identity element” and subrings of a ring R are required to have the
same identity element as R. For any ring R, we denote the prime radical and
the Jacobson radical of R by P(R) and J(R) respectively. E(R) denotes the
set of all idempotents of R. A ring R is called normal if every idempotent of
R is central. For any non-empty subset X of a ring R, we denote the right
annihilator of X in R by rx(X) or 7(X). Similarly the left annihilator of X
in R is denoted by [ X) or /(X). When riX) = [{X), we write it annx(X).
A right ideal of the form 7x(X) for some non-empty subset X of R, is called
a right annihilator. A left annihilator is defined similarly. A Baer ring is a
ring in which every right annihilator (or equivalently, every left annihilator )
is generated by an idempotent. A right (resp. left) p.p. ring is a ring in
which every principal right (resp. left) ideal is projective. Note that for
any element x of a ring R, xR is projective if and only if 7(x) = eR for some
idempotent e of R. A ring R is called a generalized right (resp. left) p.p.
ring if for any element x of R, x"R (resp. Rx") is projective for some
positive integer n (depending on x). A ring which is both generalized right
and left p.p. is said to be a generalized p.p. ring. Let n be a positive
integer. A ring R is called an n-generalized right p.p. ring if x"R is
projective for every element x of R. Let R be a ring and let x be an element
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of R. We call x n-regular if there exists an integer n and an element y of R
such that x"yx™ = x™. Thus R is a #-regular ring provided every element of
R is m-regular.

We begin with some elementary properties of generalized right p.p.

rings.

Proposition 1. Let R be a reduced, generalized right p.p. ring. Then
R is ap.p. ring, that is, R is left p.p. as well as right p.p.

Proof. For any element x € R, there exists a positive integer n and
e € E(R) such that r(x™) = eR. Since R is reduced and hence normal. we
have (xe)™ = x™ = 0,so that xe = 0. Hence r(x) = eR. By hypothesis
we also have /{x) = r(x). Therefore R is a p.p. ring.

As is well known, every right p.p. ring is right non-singular (see, e.g.
[1, Lemma 8.3, p. 111]). As to generalized right p.p. rings we have

Proposition 2. If R is a generalized right p.p. ring, then the right
singular ideal Z,(R) of R is nil.

Proof. l.et x be an arbitrary element of Z,(R). By hypothesis there
exists a positive integer n and e € E(R) such that r(x") = eR. If x" + 0,
then e == 1, which contradicts x™ € Z,(R).

We need the following lemma.

Lemma 1([2. Lemma 1.1, p. 1]). Let A be a non-zero right ideal of
a ring R. If there exists a positive integer n such that a® = 0 for every
element a of A, then R has a non-zero nilpotent ideal.

A ring R is said to have enough idempotents if the identity element of R
can be written as the sum of a finite number of orthogonal primitive idempo-
tents of R.

Proposition 3(cf. [1, Lemma 8.6, p. 113)]). If R is a semiprime n-
generalized right p.p. ring with enough idempotents, then R has no non-zero
nil right (and left) ideals. In particular, R is right non-singular.

Proof. If n=1. then by [1, Lemma 8.6] the assertion is obvious. So
suppose that n > 1. Let K be a nil right ideal of R. By hypothesis there
exist orthogonal primitive idempotents e,,-.-.,e; such that e, +..-+e; = 1.
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Let k be an arbitrary element of K. Then ke; is nilpotent for each i. We
contend that (ke;)” = 0 for every i. Suppose that (ke;)™ =0 for some i
and let m be the smallest positive integer such that (ke;)™ = 0. We consider
the R-homomorphism f: e;R — (ke;)™R defined by f(eir) = (ke,) ™ for all
r € R. Obviously fis surjective and (ke;) "R is projective by hypothesis, so
that Ker f is a direct summand of e;R. On the other hand e.R is indecom-
posable, because e; is primitive. Therefore Ker f = 0 and so e,(ke;)™ "
= 0. Hence we have (ke;)™ "™ " =0, which contradicts the choice of m.
From what we have just proved, it follows that x™' =0 for all x € e, K (i
=1,.--,t). Then by Lemma 1 we have e, K =0 (i=1.-.-,1), so that K =
(ey+--+e,)K =0. Now let L be a nil left ideal of R and let x be an
element of L. Noting that xR is a nil right ideal of R, we have xR = 0, that
is, x = 0. Thus L = 0 and the proof is complete.

A slight modification of the proof of [8, Theorem 1] yields the next
proposition,

Proposition 4. Let R be a generalized right p.p. ring in which there is
no infinite sel of orthogonal idempotents. Then for any left annihilator L,
there is an idempotent e such that L = Re & (L N R(1 —e)) and L N R

(1—e) is nil.

Proof. I L is nil, there is nothing to prove. Suppose that L is not
nil. Choose a non-nilpotent element x of L. By hypothesis there exists a
positive integer n and f € E(R) such that 7(x") = fR. Clearly f+ 1 and
r(L) € r(x™ = /R, so that L = {r(L)) 2 {fR) = R(1—/f). Thus L con-
tains a non-zero idempotent. Take a non-zero idempotent e in L such that
{(e) is minimal among the left annihilators of idempotents in L (cf. [8,
Sublemma]). In a similar way as in the proof of [8, Theorem 1]. we can
prove that L N R(1 —e) is nil. Since R = Re @ R(1—e) and L D Re, it
is easy to see that L = Re @ (L N R(1 —e)).

Corollary 1. Let R be a generalized right p.p. ring in which there is
no infinite set of orthogonal idempotenis. If R has no non-zero nil right (or
left) ideals, then R is a finite direct sum of prime Baer rings. In particular,
R is a Bear ring.

Proof. As we saw in the proof of Proposition 3, R has no non-zero nil
right ideals if and only if it has no non-zero nil left ideals. By the above
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proposition R is a Baer ring. Hence by a result of Levy [1, Proposition
8.23, p. 123], R is a finite direct sum of prime rings.

The following lemma seems to be well known, but for convenience we give
the proof. The proof is taken from that of [5, Theorem 2.3].

Lemma 2. Let R be a prime ring of bounded index (of nilpotency).
Then R has no infinite sets of orthogonal idempotents.

Proof. Let R be of index 7 and suppose that R has non-zero orthogonal
idempotents e,, €;,---,€ny,. Since R is a prime ring, we have e,Re:R.--
enRen., +0. Hence there exist elements a,, a,,:--, an of R such that
€10:€2 Q2+ enlnensy = 0. Then, as is easily seen, the element e,a,e;+ e.aze;
+ .-+ enanen,, is nilpotent of index n+1, a contradiction.

Corollary 2. Let R be a prime ring of bounded index. If R is a
generalized right p.p. ring, then R is a Baer ring.

Proof. This follows from Lemma 1, Lemma 2 and Corollary 1.

Since a prime Pl-ring is of bounded index, we have

Corollary 3. Let R be a prime, generalized right p.p. ring with a
polynomial identity, Then R is a Baer ring.

Now we turn to characterizations of rings which have normal, classi-
cal right quotient rings. As in the commutative case, the following theorem
is fundamental.

Theorem 1(cf. [4. Theorem 1]). Let R be a ring with normal, classi-
cal right quotient ring Q. Then the following are equivalent :

1) Every element of R is n-regular in Q.

2) For every zero-divisor x of R, there exists a positive inieger n such
that anng(x™ coincides with anngz(x™")

3) For every element x of R, there exists a positive integer n and a non-
zero-divisor d of R such that dx™ = x"d = x*".

and has a non-zero-divisor.

Proof. 1) = 2). Assume 1) and let x be an arbitrary zero-divisor of
R. By hypothesis there exists a positive integer n and an element y € @ such
that x"yx"” = x™ Since @ is normal and yx™ is an idempotent, we have
yx’" = x" whence it follows that Qx" = Qx*" = Qx™"'. Then we have
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TR(In) = Tk(xn“)-

Similarly we see that /g(x™) = lx(x™"). Since yx™ and
x"y are central idempotents of Q. both Qx™ = Qyx™ and x"Q = x™yQ are
two-sided ideals of Q containing x". Consequently Qx" = x"Q, so that yx”

=x"y. Putting e = 1 —yx", we have 74{x") = eQ = [((x"). Hence
re(x”™) = ro(x") N R = lo{x") N R = lx(x™).

This together with the above shows that anng(x") = annx(x™'). Writing
e=cd ' (c, d € R), we see that ¢ € annx(x"). Let a be an element of
anng(x™). Uf ac = 0, then a = ae = 0. Now suppose that ca = 0. Noting
that ed = ¢, we then have da = eda = ca = 0, whence a = 0. Thus we have
proved that ¢ is a non-zero-divisor of the ring annx(x").

2) =>3). Assume 2) and let x be an arbitrary element of R. Since 3)
is trivial in case x is a non-zero-divisor, we assume that x is a zero-divisor.
Let z be a non-zero-divisor of anng(x™). We contend that x"+2 is a non-
zero-divisor of R. Let a € rx(x"+2z). Then x*"a = x™(x"+2)a=0. Since
anng(x™) = anngx(x®") by hypothesis. we have a € anng(x"). Accordingly za
= (x"+2z)a= 0. Since z is a non-zero-divisor of ann(x"), we get a = 0.
Thus 7x(x™+2) = 0. Similarly we have lx(x"+2) = 0. Hence x"+2z is a
non-zero-divisor of R and we have x™(x"+2z) = x™ = («"+z)x".

3) =1). Assume 3) and let x be an arbitrary element of R. By
hypothesis there exists a positive integer n and a non-zero-divisor d € R
such that dx" = x"d = x*". Then we have x" = x"d 'x™ This completes
the proof.

Lemma 3. Let x be an element of a ring R and let n be a positive
integer. If rx(x™) = eR for some central idempotent e of R, then we have
rale™) = raa™).

Proof. Since the inclusion ri(x™ C rp{x™") is obvious, we show that

ra(x™ D ra(x™'). Let a € ra(x™"'). Then xa € 7x(x™) = eR and hence
xa = xae. Therefore we have x"a = x" 'xa = 2" 'xae = x"ea = 0, that is,
a € ra(x™). Thus ra(x™") C re(x"™). as desired.

Corollary 4. Lei R be a normal, generalized p.p. ring. Then for every
element x of R, there exists a positive integer n and an idempotent e of R
such that anngz(x") = eR.

Proof. By hypothesis there exist positive integers /, mand e, f€ E(R)
such that ry(x*) = eR, Ix(x™) = fR. Put n = max|/, m|. By Lemma 3 we
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have rx(x") = eR and [x{x™) = fR. Since R is normal we readily obtain
e = fand rx(x™) =1, (") = eR.

Let R be a subring of a ring Q. If every element of Q has the form ab™'
with a, b € R, we say that R is a right order in Q.

Lemma 4. Let R be a right order in a normal ring Q. If R is a
generalized right p.p. ring, then we have E(Q) = E(R).

Proof. Let e € E(Q) and write e = ab™' (a, 6 € R). By hypothesis
there exists a positive integer n and f € E(R) such that rx(a”) = fR. Since
eb = aand e is central, we have eb™ = a” whence e = a"b™" In view of
[3, Lemma 1] we have

(1—e)Q = roe) = b"ra(a™)Q = b"Q = fQ.
Hence 1 —e = fand so e = 1 —f € E(R), as desired.

We are now ready to prove our first main theorem which contains [4,
Theorem 2].

Theorem 2. Leit R be a ring with normal, classical right quotient ring
Q. Then the following are equivalent :

1) R is a generalized p.p. ring.

2) Every element of R is n-regular in Q and E(Q) = E(R).

Proof. 1) = 2). This follows from Lemma 3, Corollary 4, Theorem
1 and Lemma 4.

2) =1). Assume 2) and let x be an arbitrary element of R. By
hypothesis there exists a positive integer n and an element y € Q such that
x"yx™ = x™, As was shown in the proof of Theorem 1, we have Qx" = z"Q
=eQ, where e = yx" = x"y € E(Q) = E(R). Since anng(x") =(1 —e)Q,

we have
Ta(x") = re(x™) N R=(1—-e)QN R=(1—e)R.
Similarly we get [x(x™) =(1 —e)R. Therefore R is a generalized p.p. ring.
Corollary 5(cf. [4, Proposition 4]). Let R be a ring with normal,

classical right quotient ring Q. Suppose that R is a generalized p.p. ring.
Then for any ideal U of Q, R/R N U is a generalized p.p. ring.. In particular,
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if R is a commutative generalized p.p. ring, then R/P(R) is a p.p. ring.

Proof. For any element a € Q we write @ = a+9. The ring Q = Q/%
contains a subring R ='(R+%)/Y which is isomorphic to R/R N Y. Let x be
an arbitrary element of R. By Theorem 2 there exists a positive integer n
and e € E(Q) = E(R) such that Qx" = x"Q = ¢Q. Then we have Qx" =
%x"Q = eQ and € € E(R). An easy verification shows that (") =(1—¢)R
=/x(x™, whence R is a generalized p.p. ring. Since P(R) = P(Q) N R

in case R is commutative, the last assertion is immediate from Proposition 1.

A ring R is called local if R/J(R) is a division ring.

Let R be a commutative ring and let q be a proper ideal of R. Recall
that q is a primary idedl of R provided every zero-divisor of R/q is nilpotent.

Although the following proposition is elementary, it enables us to extend
several results in [4] and [6] to non-commutative rings.

Proposition 5. Let R be a commutative ring and let Q be a classical
quotient ring of R. Then the zero ideal (0) is a primary ideal of R if and
only if Q is a local ring with nil Jacobson radical.

Proof. Assume that (0) is a primary ideal of R and let ¢ = ab™' (q,
b € R) be a non-unit of Q. Then a is a zero-divisor and ac = 0 for some
non-zero ¢ € R. By hypothesis a is nilpotent and hence so is q. Conse-
quently 1 —q is a unit, It therefore follows that Q is a local ring with nil
Jacobson radical.

Conversely assume that @ is a local ring with nil Jacobson radical. Let
a. bbe elements of R such that ab = 0 and suppose that b is not nilpotent.
Then b is not in J(Q) and so b is a unit in Q. Hence a =0, thereby proving
that (0) is a primary ideal of R.

Taking note of Theorem 2 and Proposition 5, we see that the next
contains [4, Corollary 3].

Theorem 3. Let R be a ring with normal, classical right quotient ring
Q. Then the following are equivalent :

1) Q is a m-regular ring, E(Q) = E(R) and R has no infinite sets of
orthogonal idempotents.

2) R is a finite direct sum of rings whose classical right quotient rings
are local rings with nil Jacobson radicals.
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Proof. 1) = 2). Assume 1). By hypothesis each non-nil right ideal
of Q contains a non-zero idempotent and @ has no infinite sets of
orthogonal idempotents. Then by [5, Theorem 2.1] the ring Q@ = Q/J(Q) is
Artinian. On the other hand, each idempotent of Q can be lifted to an idempotent
of @ because J(Q) is nil. Hence @ is normal. We can therefore write

Q= Qé ®-- & Qen,
where e,,..-. e, are orthogonal idempotents and each Qe; is a division ring.

Let ey, -+, ey be orthogonal idempotents of Q such that e,+J(Q)=¢e, (i =1,
, n). Since e,+:--+en=1 and E(Q) = E(R), we have

Q= Qe ®-- O Qen
and
R = Re, ®.--® Re,.

For each i, Qe; = Qe; +J(Q)/J(Q) is isomorphic to Qe;/(Qe; N J(Q))=
Qe:/J(Qe:), so that Qe; is a local ring with nil Jacobson radical. It is easy
to see that Qe; is a classical right quotient ring of Re; for every i.

2) =1). Assume 2). We write

R = R| @'“@ Rn,

where each R, has a classical right quotient ring' S; which is a local ring
with nil Jacobson radical. Since S = S, @...-® S, is also a classical right
quotient ring of R, Q is isomorphic to S over R. By hypothesis each element
of S, is either nilpotent or invertible. Accordingly S is a n-regular ring and
hence so is Q. Since every E(S;) consists of 0 and the identity element, we
see that E(S) = E(R) and hence that R has no infinite sets of orthogonal
idempotents. We then have E(Q) = E(R) and the proof is complete.

Remark (cf. [3, Theorem 6]). Let R be a right Ore ring (i.e. a ring
which has a classical right quotient ring). Then the following are equivalent :

1) R is a normal p.p. ring which has no infinite sets of orthogonal
idempotents.

2) R is a finite direct sum of right Ore domains.

Concerning characterizations of commutative generalized p.p. rings by
means of localization, results of A.G. Naoum and Y. Hirano are summarized

as follows (cf. [6, Theorem 1.9] and [4, Theorem 5]) :
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Let R be a commutative ring and let Q be a classical quotient ring of R.
Then the following are equivalent :

1) R is a generalized p.p. ring.

2) Qis a n-regular ring and for every prime ideal p of R, (0) is a
primary ideal of Ry,

3) Qs a m-regular ring and for every maximal ideal m of R, (0) is a
primary ideal of R..

To extend the above result to non-commutative rings, the notion of central
localization is available. For the definition and properties of central local-
ization, consult [7, §1.7]. Let R be an arbitrary ring with center C and let
S be a multiplicative subset of C, that is, S is a subset of C which contains
1 and is closed under multiplication in R. We let Rs ={rs™'|r € R,
s € S| be the localization of R by S. There is a canonical map of R into R
given by r —» 717",

Proposition 6. Let R be a ring with center C. Suppose that R has a
normal, classical right quotient ring Q and that every element of R is nr-
regular in Q. Then for any muliiplicative subset S of C, Qs is a classical
right quotient ring of Rs.

Proof. First note that S is contained in the center of Q. Let v:
Q = Qs be the canonical map. Let gs,"' (¢ € Q, s, € S) be an arbitrary
element of Qs. Writing ¢ = ab™' with @, b € R, we have gs,"' = as¢ 'v(b) ™’
with as,”!, Y(b) € Rs. Nextlet xs'(x € R, s € §) be an element of Rs.
By hypothesis there exists a positive integer n and an element y € @ such
that x"™yx" = x™ Then we have {xs™')"u(ys™)(xs )" = (xs™')" As we
saw in the proof of Theorem 1, x™ = yx” and hence e = (xs™")"u(ys") =
Ax) = Ayx™) = v(ys™)(xs ™')™ which is a central idempotent of Qs. It
follows that (xs ") "Qs = Qxs ™) "= eQs. If ra(xs™") = 0, then re(xs™")
=0 and hence e =1. Thus xs™' is invertible in Qs. This completes the
proof.

Theorem 4. Lei R be a ring with center C and suppose that R has a
normal, classical right quotient ring Q. Then the following are equivalent :

1) R is a generalized p.p. ring and for any maximal ideal m of C, the
set of nilpotent elements of Qs is invariant under right multiplication by
elements of Qs, where S is the complement of m in C.

2) Every element of R is n-regular in Q and for any maximal ideal m
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of C, Qs is a local ring with nil Jacobson radical, where S is the complement
of m in C,

Proof. 1) =>2). Assume 1). By Theorem 2 every element of R is 7-
regular in @ and E(Q) = E(R) (= E(C)). Let m be a maximal ideal of C
and let S be the complement of m in C. Let v: Q = Qs be the canonical
map. Set K=Kerv NR={a€ R|sa=0 for some s € S|. Let
e € E(Q) (= E(C)). Then either 1—e € Sor e € S. Hence it follows
that either e € Kor 1 —e € K, Now let gs ' (g € Q, s € S§) be an arbi-
trary element of Qs and write ¢ = ab~'(a, b€ R). By the proof of Theorem 1,
there exists a positive integer n and f€ E(Q) such that a"Q = Qa" = fQ.
If f € K, then v(a)™ = 0, whence v(q) = v(a)u(b) ' is nilpotent by hypoth-
esis. Therefore ¢s™' is nilpotent, so that 1 —gs™' is a unit. If 1—f€ K,
then 1(f) = 1 and so ¥(a) is a unit. Accordingly »(q) = v(a)u(b)™' is a
unit and hence so is gs~'. Thus Qs is a local ring with nil Jacobson radical.

2) = 1). By virtue of Theorem 2 it suffices to show that E(Q) =
E(R). Assume 2) and let w be any maximal ideal of C. Let S be the
complement of wm in C and let v: @ = Qs be the canonical map. Let e €
E(Q). Since v(e) is an idempotent in the local ring Qs, v(e) =0 or 1. If
e) =0, then se=0 for some s S. If vie) =1, then there exists
s € Ssuchthat s"(1—e) =0, i.e.s’e=s". Set T={ae C| ae € R}.
Obviously T is an ideal of C. By what we have shown above there are no
maximal ideals of C containing T. Hence T = C and so e € R, as was to
be shown.

Remark. The above proof shows that Theorem 4 remains true if we
replace maximal ideals by prime ideals in 1) and 2).

Acknowledgement. The author is grateful to Prof. Y. Hirano for his
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