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1. Introduction. Let S and T be (additive) subgroups of Hom(M,N)
and of Hom{N,M) respectively for some additive groups M and N. For
elements s in S and ¢t in T, st indicates an element in Hom(N, N) such that
st(n) = s(#{n)) for n in N. The set of all 2 s;t;(s;,€ Sand t, € T) is
denoted by ST. Similarly TS, STS and TST are defined. When STSC S
and TST C T, we say that (S,T) is a I'-ring of homomorphisms (of M
and N). Throughout this note, we assume that (S, T) is a I"-ring of homo-
morphisms and denote it simply by G. For a I'ring G as above, TS is
a subring of Hom(M,M ), which we call the right operator ring of G. Sim-
ilarly, ST is a subring of Hom(N,N), called the left operator ring of G.
We denote them by R and L respectively. In [4]. it was shown that when
R and L contain the unities, they are Morita equivalent. Conversely, we
can show that if two rings are Morita equivalent, they are the right and left
operator rings of some I'-ring. Thus, the correspondence of the right and
left operator rings of a I'-ring in a general case seems to be a generalization
of Morita equivalence of rings. Let R and L be the right and left operator
rings of a I"-ring, which do not necessarily contain the unities. In § 2, the
correspondence of R- and L-modules will be discussed. Let Q be a (non
unital) ring and X a Q-module. If it satisfies (1) QX = X and (2) {x €
X| Qc=0}=10], then we say in this note that X is properly generated
over Q. The main theorem obtained in § 2 is that if R*> = Rand L’ = L
then there is a one to one correspondence between properly generated R- and
L-modules. This is a generalization of one of Morita duality theorems. In
§ 3, the correspondence between ideals of R and L will be discussed. Kyuno
showed that there is a one to one correspondence between ideals of R and of
L if R and L contain the unities ([2]) and that generally there is a one to
one correspondence between prime ideals of R and of L ([3]). The first is
naturally a consequence of one of Morita duality theorems (see [1]). We are
going to generalize these results. Let I be an ideal of a ring Q. We define
the upper and lower closures of Iby I° = |g € Q| QqQ C I} and I. = QIQ
respectively. Note that I° could be expressed as Q7 'IQ~'. When I = I°

151



152 N. NOBUSAWA

(or = I.), we say that I is closed above (or below). It will be shown that
there is a one to one correspondence between ideals of R and of L, which
are closed above (or below). If @ contains the unity, then every ideal of @
is closed above and below, which implies the first result of Kyuno. A prime
ideal of a ring @ is easily seen to be closed above. We can show that an
ideal which corresponds to a prime ideal in the above sense is also prime.
This implies the second result of Kyuno. When a ring @ satisfies @ = Q,
we can derive some interesting facts. In this case, I° is closed above and I
is closed below. We will show that two ideals have the same upper closure
if and only-if they have the same lower closure. Thus, we can classify all
ideals by their upper or lower closures. By the correspondence of upper
closures (or lower closures), we have a one to one correspondence between
classes of ideals of R and of L if R”* = R and L = L. We can show that
this correspondence does not depend on upper or lower closures.

2. Correspondence of modules. ILet G = (S,T) be a I'-ring, and
R=TS and L = ST the right and left operator rings of G. Let A be an
R-module and U an L-module (both being considered as left modules.) A pair
(A,U) is called a G-module if there exist a homomorphism ¢ of S to Hom-
(A,U) (we denote s° by s') and a homomorphism 7 of T to Hom(U,A) (i¥
is denoted by #) such that it satisfies #'s'(a) = (is)a, s't'(u) = (st)u,
s'[(#ys1)a] = (stysy)a and ¢[(s:4)u] = (ts,t)u, where s, s, € S, t, 1, €
T, a€ A and v € U. In the following, s'(¢) is denoted by sa, etc.

Proposition 1. Suppose that A is an R-module such that RA = A,
Then, there exists an L-module U such that (A,U) is a G-module.

Proof. See [4, Proposition 1].

Next, we define a G-homomorphism of G-modules. Let (A, U) and
(B,V) be G-modules. If f and g are an R-homomorphism of A to B and an
L-homomorphism of U to V respectively such that sf(a) = g(sa) and ig(u)
= f(tu), we say that a pair (f,g) is a G-homomorphism of (A,U) to (B, V).

Proposition 2. Let (A,U) and (B,V) be G-modules. Suppose that
U= SA (=12 s,a;l) and that {v € V| Lv = 0} = |0|. Then, for every
R-homomorphism f of A to B, there exists a unique (up to isomorphism) L-
homomorphism g of U to V such that (f.g) is a G-homomorphism of (A, U)
to (B,V),
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Proof. Since U = SA, every element of U is expressed as 2 s;a;.
We define g by g(2] s:a;) = 2. sif(a;). To show that g is well defined, we
must show that > s;a; = 0 implies > s;f(a;) = 0. Let 2 s;a; = 0. For
an element st in L, we have st 2 s;fla;) = s 2 (is:)fla;) = sf(3] (tsi)a;)
= 0. As L is generated by st, L(2 sf{a;)) = 0. Therefore, by the as-
sumption of Proposition 2, 2] sif(a;) = 0. It is easy to see that g is an
L-homomorphism of U to V. We can also verify that sf(a) = g(sa) and
tg(u) = f(tu). The uniqueness of g is also almost clear.

Proposition 3. Let (A,U) be a G-module, and suppose that U = SA
and lu e U| Lu= 0| = {0}|. Then, U is uniquely determined (up to iso-
morphism) by A.

Proof. Let (A,V') be another G-module satisfying the same conditions
as (A,U). Let ¢’ be a homomorphism of S to Hom(A4, V') in the definition of
a G-module (A, V), but denote s”(a) by sca (in stead of sa which is used
for (A,U)). Now we apply Proposition 2 for (A,U) and (A,V), where f is
the identity mapping of A. The homomorphism g of U to V obtained in Prop-
osition 2 is onto, because g(2] s;a;) = 2 s;o f(a)) = D s;°a;. Replacing
(A,U) and (A,V) by (A,V) and (A,U), we can conclude that g is an iso-

morphism,

Let X be a Q-module for a ring Q. Denote N(X) = jx € X | Qr=0}.
If @ = Q, then N(X/N(X)) = 0. For, let x € N(X/N(X)) where x is
a representative of the coset X, an element of X/N(X). Then, Qx = 0, so
Qx C N(X). Hence, QQxr=0. Q = Q implies Qr = 0, and hence x €
N(X). Thus = 0.

Theorem 1. Suppose that R* = R and L* = L. Then there is a one
to one correspondence between properly generated R-modules and properly
generated L-modules, This correspondence A < U is given via a unique G-
module (A, U) satisfying the conditions in Proposition 3. Moreover, if
A o Uand B e V, then there exists an isomorphism of Homg(A, B) onto

Hom, (U,V).

Proof, Let PGM(Q) denote the set of properly generated Q-modules.
If A e PGM(R), there exists an L-module W such that (A,W) is a G-
module by Proposition 1. We may assume SA = W. Let U= W/N(W).
We show that (A,U) is a G-module. Here the homomorphism S — Hom-
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(A,U) is defined naturally from the homomorphism S — Hom(A,W). We
define a homomorphism 7 of T to Hom(U,A) by i (u) = #(w), where w is
a representative of u and ¢ is an element of Hom(W,A) defined for the G-
module (A,W ). We need to show that :"(z) dose not depend on the choice
of representatives. It is enough to show that if ¥y € N(W) then #'(y) = 0.
So, let y & N(W). For an element t,s (£, € T and s € S) of R, t sty
= 0, since sty € Ly = 0. Since t,s generate R and ty € A € PGM(R),
we have ty = 0, or #(y) = 0 as requied. Now, it is not hard to verify that
(A,U) is a G-module. SA = U is clear. Also, by the remark before
Theorem 1, N(U) = 0. We have also LU= LSA = SRA = U. There-
fore, U € PGM(L). The remaining parts of Theorem 1 follow from Propo-
sitions 2 and 3.

3. Correspondence of ideals of R and of L. For an ideal I of a ring
Q, wedefine I°={q€ Q| QR C Il and I. = QIQ. I° and I. are ideals
of @and I. € I C I°. When I° = I, we say that I is closed above. When
I. = I, we say that I is closed below. Note that if @ contains the unity,
every ideal is closed above as well as below. Let A be an ideal of the right
operator ring R of a I'-ring. Define A* ={l/ e L | TIS C A} and Ax =
SAT. A* and Ax are ideals of L. Similarly, for an ideal U of L, we can
define U* and Usx. It follows from the definitions that (A*)* = A° and (Ax)x
= A..

Proposition 4. If A is closed above, then A* is closed above., If A is
closed below, then Ax is closed below.

Proof. First, we show that (A*)° = (A°)* and (Ax)c = (Ac)x. Let
u € (A*)°. Then Lul. C A*, or TLulLS C A. So, RTuSR C A, since
TL = RT and LS = SR. Therefore, TuS C A®, and hence (A*)° C (A%)*,
In a similar way, we can show (A°)* C (A*)°. Thus, (A*)° = (A°)*. On
the other hand, (Ax). = LSATL = SRART = (A.)x. Now, suppose that
A is closed above. Then, (A4%*)¢ = (A°)* = A* and A* is closed above.
Suppose that A is closed below. Then, (Ax); = (Ac)x = A%, and Ax is
closed below.

Theorem 2. There is a one to one correspondence between ideals of R

and of L which are closed above (or below).

Proof. For ideals A closed above, we consider the correspondence
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A - A*¥ > (A¥)* = A° = A, For ideals A closed below, consider

Corollary (Kyuno). There is a one to one correspondence between prime

ideals of R and of L.

Proof. A prime ideal is easily seen to be closed above. So, for
a prime ideal A of R, we consider the correspondence A - A*, We must
show that A* is also prime. For it, let UV C A* with ideals U and V of L.
Then, TUSTVS C TUVS C TA*S C A. Therefore, TUS C A or TVS
C A, since A is prime. Then, UC A* or V C A*, which proves that A*
is prime.

In the following, assume that Q satisfies @ = Q. Then, for an ideal
Tof Q (I°° = I° and (Ic)c = I, i.e., I° (or I.) is closed above (or below).
Moreover, we have the following two identities : (I)¢ = I¢ and (I°). = I.
For the former, Let y &€ I°. Then, Q@yQ C I, and so QQyQQ C QIQ = I..
Since QR = Q, this implies that y € (I.)°, or I° C (I.)°. The reverse
inclusion is clear. So, (I;)¢ = I°. For the latter, note (I°). = QI‘Q C I,
and hence (I), C I. as (I°). is closed below. Hence, (I°); = I.. We use
these two identities to prove

Theorem 3. Suppose @ = Q. Let I and J be ideals of Q. Then the
Jollowing conditions are equivalent. (i) I = J¢, (ii) I. = J, and (iii) I
cJC I

Proof. First, assume (i). Then, I. = (I¢), = (J). = J., and (ii)
holds. Similarly, we can show that (ii) implies (i ). Next, suppose (i)
and hence (ii) hold. Then, I. = J. C J C J° = I°, and (iii) holds. Lastly,
assume (iii). Then, (I.)¢ € J¢ C (I°)¢, or I° C J° C I°. Hence I° = J°,
and (i) holds.

When one of the conditions in Theorem 3 holds for I and J, we say that
I and J are c-equivalent. Then ideals of Q are classified by the c-equiva-
lence. Denote the class of I by {I}]. |I| consists of all ideals that contain
I. and are contained in I°.

Proposition 5. Suppose that L’ = L. Then, |A*| = | A} for every
ideal A of R,
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Proof. It is enough to show that (A*)° = (Ax)¢. Let u € (A*)°.
Then, TLuLS C A, and so STLuLST C SAT = A«, which implies LulL
= LIulL C Ax. Hence, u € (A%)°. Thus, (A*)° C (A«)°. Clearly,
(A*)° D (A«), and we have (A*)° = (Ax)".

Proposition 6. Suppose that L> = L. If{A| = | B| for ideals A and
B of R, then | A*| = | B¥|.

Proposition 4. Therefore, {{A)*} = |A*}| = | Ax}| = [(Ac)x] = [(A)*].
Now, {A] = | B} implies A € B C A°, or (A)* C B* C (A°)*, from
which we can conclude that { A*} = | B¥|.

Proof. We have (A*)° = (A°)* and (Ax)c = (Ac)x in the proof of
-

Theorem 4. Suppose that R* = R and L* = L. Then, there is a one
to one correspondence between c-equivalent classes of ideals of R and of L.
The correspondence is given by either {A} > |{A*|or by |A | = | Ax| of repre-
sentatives A of classes, and it does not depend on the choice of representatives.
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