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ON COMPLETELY TORSIONFREE MODULES

Dedicated to Professor Hirosi Nagao on his 60th birthday

Hisao KATAYAMA

In this paper we shall consider some module theoretic generalizations of
completely torsionfree rings ([4, p.91]), and study those rings whose mod-
ules are completely torsionfree (CTF). We refer for the definitions and
basic properties concerning preradicals and torsion theories to [8, Chap.
VIJ.

All rings occurring are associative and possess an identity element. All
modules are unitary left modules. Let R be a ring. We write ;M to indicate
that M is an object in the category R-mod of all left R-modules. We denote
by E(A) the injective hull of zA. A module M is said to be strongly prime
(SP) if, for each left exact preradical ¢ for R-mod, either o(M) = 0 or
o(M) =M. Also a module M is said to be 1SP if o(M) = 0 for every
proper left exact preradical o for R-mod. SP-modules was studied in Beachy
and Blair [1] and 1SP-modules was studied in [4, p.114].

Now, we shall define completely torsionfree modules as follows :

Definition. A module M is called completely torsionfree (CTF) if, for
each left exact radical p for R-mod, either po(M) = 0 or p(M) = M. Fur-
ther, M is called 1CTF (resp. OCTF) if o(M) = 0 (resp. o(M) = M) for
every proper (resp. nonzero) left exact radical p for R-mod.

Remark 1. (1) Let p be a preradical for R-mod. Then o(R) = R if
and only if o = 1, where 1 stands for the identity functor for R-mod. Hence
a ring R is left CTF if and only if xR is 1CTF. Such a ring is also called
left HRF in [2, p.160]. On the other hand. xR is OCTF if and only if there
exist only two left exact radicals for R-mod (i.e. R is left HRT ([2, p.
160])), or equivalently R is left ChC in the sense that, for all nonzero
cyclic left R-modules C, and C;, Homg(C;, C,) =+ 0 holds ([4, p.96]). For
characterizations of left CTF-rings, see [2. VI.1.E7] and [4, p.91], and
for those of left ChC-rings, see [2, VI.2.1], [3], (4. p.96] and [7, Theo-
rem 2.4].

(2) In[4,pp.117—119], we can find some connections between 1CTF-
modules and CTF-rings.
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(3) Hongan studied CTF-modules in [5, Theorem 1.3] and [6]. We
notice that this result will also be obtained by using [2, 1.6.4]. But we
shall study in Theorem 5 the Hongan's result from our point of view. To do
this and for further aims, we need next two lemmas.

Let zM be a fixed module. For each x € M, we associate the left exact
preradical oy and the left exact radical p, for R-mod which are defined by

ox = Alo|ois a left exact preradical with x € o(M )1
and
0 = Alplp is a left exact radical with x € p(M)}.

We also associate the set % of all left ideals I of R which contain Anng(Fx)
for some finite subset F of R. Recall that there exists an order preserving
correspondence between the left exact preradicals for R-mod and the left
linear topologies on R, under which the left exact radicals correspond to the
left Gabriel topologies.

Lemma 2(cf.[4, pp.89—90]). Let x be an element of M. Then the
set &, is the smallest linear topology containing Anng(x). Moreover, the left
exact preradical for R-mod corresponding to £ is just ox.

Proof. 1t is obvious that &, is a filter. If ] € ¢, and s € R, then
there exists a finite subset F of R with Anng(Fx) C I, and so Annx(sFx) C
(I:s). Hence (I:s) € .. Now, let & be an arbitrary left linear topology
containing Anng(x). For each I € %,, we have some finite subset F’ of R
with I D Anng(Fx) = ()rer (Anng(x) : r). By the assumption of &, we have
Ie 2.

Let ¢ e o0, and Z: & o' be the corresponding left linear topologies and
left exact preradicals. Since x € g{M), Anngx) € & and so £, C ¥
On the other hand, since Anng(x) € &, we have x€ ¢'(M). Thus we obtain
o: = o' and hence ¥ C #,. Therefore we must have ' = ¢, and ¢’ = 0.

Lemma 3. Let x be an element of xM. Then the smallest radical &,
larger than o, is just p.

Proof. Since a; is a left exact radical such that x € 0 (M) C {M),
we have py < 6x. Conversely, x € p{M) implies o: < p, and so 5x = p,.
Hence we have 6, = 04.
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Corollary 4. Let x be an element of 1M, and let G, denote the left
Gabriel topology corresponding to p.. Then a left ideal I of R belongs to G if
and only if, for each proper left ideal J containing I, there exists s € R\J
such that (J: s) € .

Proof. Apply Lemma 3 with [8, Prop. VI.5.4].

For a module zE, we define the radical kz by kx(X) = (| Ker(a) | ¢ €
Homy(X.E)} for each X € R-mod. It is well known that k& is left exact
whenever E is injective and every left exact radical has the form kr for some
injective module zE. Now, we shall prove the next

Theorem 5. The following properiies of a nonzero module WM are
equivalent :

(1) M is CTF.

(2) If K is a proper submodule of M and x is a nonzero element of M,
then the next condition holds :

(¥*) There exist y € M\K and a finite subset F of R such that
Anny(Fx) C (K: y).

(3) If K is a proper submodule of M and x is a nonzero element of M,
then Homg(Rx, E(IM/K)) + 0.

(4) If K is a proper submodule of M, then kgy, «{M) = 0, or equiva-
lently M is cogenerated by E(M/K).

(5) ([5]) If K is a non-trivial submodule of M, then there exisis v € K
with Homg(Rov, M/K) =+ 0.

Proof. (1) =>(2). Note that the condition (*) is equivalent to the
existence of y € M\K with (K: y) € &, or equivalently o,{M/K) #+ 0 by
Lemma 2. Assume that there exist a proper submodule K of M and a nonzero
x € M such that o{M/K) = 0. Since 6= px by Lemma 3, we have
odM/K) =0, On the other hand, since 0 # x € p{M), we must have
o4 M) = M by (1), and so p{M/K) = M/K. This is a contradiction.

(2) = (3). Let K be a proper submodule of M, and take a nonzero x €
M. By the assumption, we have a finite subset F = |s,,:--,s,} of R with
Anng(Fx) C(K:y). Put u = (sx,---, sn,x) € (Rx)™. Consider a cyclic
submodule U = Ru of (Rx)™. Then we get a nonzero homomorphism f: U
- M/K given by flau) = ay+K(a € R). Extend f to f € Homs{(Rx)™,
E(M/K)). Hence we see Homz(Rx, E(M/K)) # 0.

(3) <> (4). Clear.
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(3) = (5). Let K be a non-trivial submodule of M. Take a nonzero
x € K. By the assumption, Homs(Rx, E(M/K)) s 0 and so there exists
v € Rx with Homg(Rv, M/K) + 0.

(5) = (1). Assume that o(M) is a non-trivial submodule of M for
some left exact radical po. Then there exists v € p(M) with Homg(Ruv,
M/o(M)) #=0. This is a contradiction, because Rv is p-torsion and
M/o(M) is p-torsionfree.

Lemma 6. The following conditions are equivalent for an elemeni x of
M :
(1) ox = 1.
(2) For each proper left ideal J of R, there exist s € R\J and a finite
subset F = {s,,---, 55} of R with Amg{Fx) C (J: s). (We may take n = 1).
(3) If xQ is a nonzero (cyclic) module, then Homy(Rx, E(Q)) =+ 0.

Proof. (1) <>(2). Since p, =1 if and only if 4, D {0}, this is
clear from Corollary 4.

(2) = (3). Consider a nonzero cyclic module @ = R/J, where J is a
proper left ideal of R. By the assumption, there exist s € R\J and a finite
subset F of R with Anng(Fx) C (J: s). Now, the same argument as in the
proof (2) = (3) of Theorem 5 enables us to have Homz(Rx, E(Q)) + 0.

(3) = (2). For each proper left ideal J of R, we have Homg(Rx,
E(R/J)) # 0 by using (3). Hence there exists a cyclic submodule Ru of Rx
with a nonzero f € Homg(Ru, R/J). Put u = s,xand flu) = s+J (s, s €
R). Since fis well defined, we have the condition (2).

Theorem 7. The following properties of a nonzero module M are
equivalent :

(1) M is 1CTF.

(2) pz=1 for every nonzero x € M.

(3) If xE is a nonzero injective module, then Homz(Rx, E) #+ 0 for

every nonzero x € M.

Proof. (1) =>(2). Let x be a .rionzero element of M. Since p; is a
left exact radical with x € p (M), we have p{M) + 0 and so p, =1 by
(1).

(2) = (3). Let x be a nonzero element of M and E a nonzero injective
module. By using Lemma 6, we see Homg(Rx, E) = 0.

(3) =>(1). Let p be a proper left exact radical for R-mod. Then
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there exists an injective module pE such that p = kz. Since p == 1, we see
E + 0. Now, for any x € p(M), we see from kg(Rx) = Rx that Homg(Rx,
E) = 0. Hence, po(M) = 0 by (3) and therefore M is 1CTF.

Theorem 8. .The following properties of a nonzero module M are
equivalent :

(1) M is OCTF. )

(2) If wE is an injeciive module with Homz(M, E) == 0, then E is a
cogeneralor.

(3) IfNis aproper submodule of M, then E(M/N) is a cogenerator.

(4) If N is a proper submodule of M and ;S is a simple module, then
Homy(S, M/N) #+ 0.

Proof. (1) =>(2). Let E be an injective module with Homg(M, E) =
0. Then kM) += M and so, by (1), kx = 0 where 0 stands for the zero
functor for R-mod. Hence, for every X € R-mod, £ X) = 0 induces that
X is cogenerated by E,

(2) = (3). Let N be a proper submodule of M. By (2), Homa(M,
E(M/N)) = 0 implies that E(M/N) is a cogenerator.

(3) =>(1). Let p be a left exact radical such that o(M) # M. Then,
for an injective module gE such that o = k;, we have Homz(M. E) + 0.
Take any f{+ 0) € Homg(M, E). By M/Ker(f) = Im(f) C E, we see
E(M/Ker(f)) C E. Therefore, by (3), E must be a cogenerator and so we
have p = 0.

(3) <> (4). Recall that an injective module zE is a cogenerator if and
only if Homg(S, E) + 0 for all simple module ;S.

Corollary 9. A simple module ;S is OCTF if and only if E(S) is a

cogenerator.

Corollary 10. The following statements are equivalent for a ring R :
(1) Every simple left R-module is OCTF.
(2) All simple left R-modules are isomorphic.

Proposition 11. The class of 0CTF-modules forms a hereditary torsion
class. On the other hand, the class of 1CTF-modules forms a torsionfree
class closed under injective hulls.

Proof. By the definition, a module is OCTF if and only if it belongs to
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the intersection of all nonzero hereditary torsion classes. Clearly this
intersection forms a hereditary torsion class. The remaining part is proved
in the same way.

Clearly every simple left R-module is CTF. We remark that every
projective (more generally, torsionless) left R-module is CTF (or 1CTF) if
and only if R is left CTF. In the next theorem we shall characterize those
rings whose (injective) left modules are CTF. As proved in [4, p.118], a
ring with a simple 1CTF-module is just of this type.

Theorem 12. The following asseriions are equivalent for a ring R :

(1) Every left R-module is 1CTF. '

(2) Every injective left R-module is 1CTF.

(3) Every simple left R-module is 1CTF.

(4) Every left R-module is OCTF.

(5) Every injective left R-module is OCTF.

(6) Every projective left R-module is OCTF.

(7) Every left R-module is CTF.

(8) Ewvery injective left R-module is CTF.

(9) ([7]) Every nonzero injective left R-module is a cogenerator.

(10) There exist only two left exact radicals for R-mod.

(11) ([4]) R is left ChC.

(12) ([3]) R is left semiartinian and all simple left R-modules are
isomorphic.

Proof. (1) <> (2) = (3). Clear.

(3) = (9). Let xE be a nonzero injective module. For each simple
module S, since kg is a proper left exact radical, we have k{S) = 0.
Thus Homx(S, E) # 0 and hence E is a cogenerator.

(4) < (5) = (6). Clear.

(6) = (10). Since xR is OCTF, this follows from Remark 1.

(7) <> (8). Clear.

(7) = (12). Assume there exists a nonzero left R-module M with zero
socle. We put the left exact preradical ¢ = soc and consider the left exact
radical 3. For a simple left R-module S, 5(M @ S) = S holds and so M &
S is not CTF. Next, assume that S and T are non-isomorphic simple left
R-modules. We put o = kgs. Since p(S) =0 and o(T) = T by Homg(T,
E(S)) =0, wehave o(S® T) = T, and hence S & T is not CTF.

(9) <> (10). This was proved in [7, Theorem 2.4].
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(10) <= (11). This was proved in [4, p.96].
(10) <> (12). This was proved in [3, Proposition 2].
(10) = (1).(4) and (7). Clear.

Finally we shall give an example which distinguishes OCTF-modules,
1CTF-modules and CTF-modules.

Example 13. (1) Every OCTF-module is CTF, but the converse is
not true. In fact, let R be a left CTF but not ChC ring (for example, a two-
sided simple ring with zero socle). Then R is 1CTF but not OCTF by
Remark 1.

(2) Every 1CTF-module is CTF, but the converse is not true. To see
this, let R be a local but not right perfect ring (for example, the ring of
formal power series over a field). Then the (unique) simple module S is
OCTF by Corollary 10, but since R is not left ChC ([4, p.96]). S is not
1CTF by Theorem 12.
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