ON COMPLETELY TORSIONFREE MODULES

Dedicated to Professor Hirosi Nagao on his 60th birthday

HISAO KATAYAMA

In this paper we shall consider some module theoretic generalizations of completely torsionfree rings ([4, p.91]), and study those rings whose modules are completely torsionfree (CTF). We refer for the definitions and basic properties concerning preradicals and torsion theories to [8, Chap. VI].

All rings occurring are associative and possess an identity element. All modules are unitary left modules. Let R be a ring. We write $_RM$ to indicate that M is an object in the category R-mod of all left R-modules. We denote by E(A) the injective hull of $_RA$. A module M is said to be strongly prime (SP) if, for each left exact preradical σ for R-mod, either $\sigma(M)=0$ or $\sigma(M)=M$. Also a module M is said to be 1SP if $\sigma(M)=0$ for every proper left exact preradical σ for R-mod. SP-modules was studied in Beachy and Blair [1] and 1SP-modules was studied in [4, p.114].

Now, we shall define completely torsionfree modules as follows:

Definition. A module M is called *completely torsionfree* (CTF) if, for each left exact radical ρ for R-mod, either $\rho(M)=0$ or $\rho(M)=M$. Further, M is called 1CTF (resp. 0CTF) if $\rho(M)=0$ (resp. $\rho(M)=M$) for every proper (resp. nonzero) left exact radical ρ for R-mod.

- Remark 1. (1) Let ρ be a preradical for R-mod. Then $\rho(R) = R$ if and only if $\rho = 1$, where 1 stands for the identity functor for R-mod. Hence a ring R is left CTF if and only if $_RR$ is 1CTF. Such a ring is also called left HRF in [2, p.160]. On the other hand, $_RR$ is 0CTF if and only if there exist only two left exact radicals for R-mod (i.e. R is left HRT ([2, p.160])), or equivalently R is left ChC in the sense that, for all nonzero cyclic left R-modules C_1 and C_2 , $\operatorname{Hom}_R(C_1, C_2) \neq 0$ holds ([4, p.96]). For characterizations of left CTF-rings, see [2, VI.1.E7] and [4, p.91], and for those of left ChC-rings, see [2, VI.2.1], [3], [4, p.96] and [7, Theorem 2.4].
- (2) In [4, pp. 117-119], we can find some connections between 1CTF-modules and CTF-rings.

(3) Hongan studied CTF-modules in [5, Theorem 1.3] and [6]. We notice that this result will also be obtained by using [2, I.6.4]. But we shall study in Theorem 5 the Hongan's result from our point of view. To do this and for further aims, we need next two lemmas.

Let $_RM$ be a fixed module. For each $x \in M$, we associate the left exact preradical σ_x and the left exact radical ρ_x for R-mod which are defined by

$$\sigma_x = \bigwedge \{ \sigma \mid \sigma \text{ is a left exact preradical with } x \in \sigma(M) \}$$

and

$$\rho_x = \bigwedge \{\rho \mid \rho \text{ is a left exact radical with } x \in \rho(M) \}.$$

We also associate the set \mathscr{L}_x of all left ideals I of R which contain $\mathrm{Ann}_R(Fx)$ for some finite subset F of R. Recall that there exists an order preserving correspondence between the left exact preradicals for R-mod and the left linear topologies on R, under which the left exact radicals correspond to the left Gabriel topologies.

Lemma 2(cf. [4, pp.89-90]). Let x be an element of $_RM$. Then the set \mathscr{L}_x is the smallest linear topology containing $\operatorname{Ann}_R(x)$. Moreover, the left exact preradical for R-mod corresponding to \mathscr{L}_x is just σ_x .

Proof. It is obvious that \mathscr{L}_x is a filter. If $I \in \mathscr{L}_x$ and $s \in R$, then there exists a finite subset F of R with $\mathrm{Ann}_R(Fx) \subseteq I$, and so $\mathrm{Ann}_R(sFx) \subseteq (I\colon s)$. Hence $(I\colon s) \in \mathscr{L}_x$. Now, let \mathscr{L} be an arbitrary left linear topology containing $\mathrm{Ann}_R(x)$. For each $I \in \mathscr{L}_x$, we have some finite subset F of R with $I \supseteq \mathrm{Ann}_R(Fx) = \bigcap_{r \in F} (\mathrm{Ann}_R(x) : r)$. By the assumption of \mathscr{L} , we have $I \in \mathscr{L}$.

Let $\mathscr{L}' \leftrightarrow \sigma_x$ and $\mathscr{L}_x \leftrightarrow \sigma'$ be the corresponding left linear topologies and left exact preradicals. Since $x \in \sigma_x(M)$, $\operatorname{Ann}_R(x) \in \mathscr{L}'$ and so $\mathscr{L}_x \subseteq \mathscr{L}'$. On the other hand, since $\operatorname{Ann}_R(x) \in \mathscr{L}_x$, we have $x \in \sigma'(M)$. Thus we obtain $\sigma_x \leq \sigma'$ and hence $\mathscr{L}' \subseteq \mathscr{L}_x$. Therefore we must have $\mathscr{L}' = \mathscr{L}_x$ and $\sigma' = \sigma_x$.

Lemma 3. Let x be an element of $_RM$. Then the smallest radical $\bar{\sigma}_x$ larger than σ_x is just ρ_x .

Proof. Since $\bar{\sigma}_x$ is a left exact radical such that $x \in \sigma_x(M) \subseteq \bar{\sigma}_x(M)$, we have $\rho_x \leq \bar{\sigma}_x$. Conversely, $x \in \rho_x(M)$ implies $\sigma_x \leq \rho_x$ and so $\bar{\sigma}_x \leq \rho_x$. Hence we have $\bar{\sigma}_x = \rho_x$.

Corollary 4. Let x be an element of $_RM$, and let \mathscr{C}_x denote the left Gabriel topology corresponding to ρ_x . Then a left ideal I of R belongs to \mathscr{C}_x if and only if, for each proper left ideal J containing I, there exists $s \in R \setminus J$ such that $(J:s) \in \mathscr{L}_x$.

Proof. Apply Lemma 3 with [8, Prop. VI.5.4].

For a module $_RE$, we define the radical k_E by $k_E(X) = \bigcap \{ \operatorname{Ker}(\alpha) \mid \alpha \in \operatorname{Hom}_R(X, E) \}$ for each $X \in R$ -mod. It is well known that k_E is left exact whenever E is injective and every left exact radical has the form k_E for some injective module $_RE$. Now, we shall prove the next

Theorem 5. The following properties of a nonzero module $_RM$ are equivalent:

- (1) M is CTF.
- (2) If K is a proper submodule of M and x is a nonzero element of M, then the next condition holds:
- (*) There exist $y \in M \setminus K$ and a finite subset F of R such that $Ann_R(Fx) \subseteq (K:y)$.
- (3) If K is a proper submodule of M and x is a nonzero element of M, then $\operatorname{Hom}_R(Rx, E(M/K)) \neq 0$.
- (4) If K is a proper submodule of M, then $k_{E(M/K)}(M) = 0$, or equivalently M is cogenerated by E(M/K).
- (5) ([5]) If K is a non-trivial submodule of M, then there exists $v \in K$ with $\operatorname{Hom}_R(Rv, M/K) \neq 0$.
- *Proof.* (1) \Rightarrow (2). Note that the condition (*) is equivalent to the existence of $y \in M \setminus K$ with $(K : y) \in \mathcal{L}_x$, or equivalently $\sigma_x(M/K) \neq 0$ by Lemma 2. Assume that there exist a proper submodule K of M and a nonzero $x \in M$ such that $\sigma_x(M/K) = 0$. Since $\bar{\sigma}_x = \rho_x$ by Lemma 3, we have $\rho_x(M/K) = 0$. On the other hand, since $0 \neq x \in \rho_x(M)$, we must have $\rho_x(M) = M$ by (1), and so $\rho_x(M/K) = M/K$. This is a contradiction.
- $(2) \Rightarrow (3)$. Let K be a proper submodule of M, and take a nonzero $x \in M$. By the assumption, we have a finite subset $F = \{s_1, \dots, s_n | \text{ of } R \text{ with } Ann_R(Fx) \subseteq (K:y)$. Put $u = (s_1x, \dots, s_nx) \in (Rx)^{(n)}$. Consider a cyclic submodule U = Ru of $(Rx)^{(n)}$. Then we get a nonzero homomorphism $f \colon U \to M/K$ given by $f(au) = ay + K(a \in R)$. Extend f to $\tilde{f} \in \text{Hom}_R((Rx)^{(n)}, E(M/K))$. Hence we see $\text{Hom}_R(Rx, E(M/K)) \neq 0$.
 - $(3) \Leftrightarrow (4)$. Clear.

- (3) \Rightarrow (5). Let K be a non-trivial submodule of M. Take a nonzero $x \in K$. By the assumption, $\operatorname{Hom}_{\mathbb{R}}(Rx, E(M/K)) \neq 0$ and so there exists $v \in Rx$ with $\operatorname{Hom}_{\mathbb{R}}(Rv, M/K) \neq 0$.
- $(5) \Rightarrow (1)$. Assume that $\rho(M)$ is a non-trivial submodule of M for some left exact radical ρ . Then there exists $v \in \rho(M)$ with $\operatorname{Hom}_R(Rv, M/\rho(M)) \neq 0$. This is a contradiction, because Rv is ρ -torsion and $M/\rho(M)$ is ρ -torsionfree.

Lemma 6. The following conditions are equivalent for an element x of $_{\mathbb{R}}M$:

- (1) $\rho_x = 1$.
- (2) For each proper left ideal J of R, there exist $s \in R \setminus J$ and a finite subset $F = \{s_1, \dots, s_n\}$ of R with $Ann_R(Fx) \subseteq (J:s)$. (We may take n = 1).
 - (3) If $_RQ$ is a nonzero (cyclic) module, then $\operatorname{Hom}_R(Rx, E(Q)) \neq 0$.

Proof. (1) \Leftrightarrow (2). Since $\rho_x = 1$ if and only if $\mathscr{G}_x \ni \{0\}$, this is clear from Corollary 4.

- $(2) \Rightarrow (3)$. Consider a nonzero cyclic module Q = R/J, where J is a proper left ideal of R. By the assumption, there exist $s \in R \setminus J$ and a finite subset F of R with $\operatorname{Ann}_R(Fx) \subseteq (J:s)$. Now, the same argument as in the proof $(2) \Rightarrow (3)$ of Theorem 5 enables us to have $\operatorname{Hom}_R(Rx, E(Q)) \neq 0$.
- $(3) \Rightarrow (2)$. For each proper left ideal J of R, we have $\operatorname{Hom}_R(Rx, E(R/J)) \neq 0$ by using (3). Hence there exists a cyclic submodule Ru of Rx with a nonzero $f \in \operatorname{Hom}_R(Ru, R/J)$. Put $u = s_1x$ and $f(u) = s + J(s_1, s \in R)$. Since f is well defined, we have the condition (2).

Theorem 7. The following properties of a nonzero module $_RM$ are equivalent:

- (1) M is 1CTF.
- (2) $\rho_x = 1$ for every nonzero $x \in M$.
- (3) If $_RE$ is a nonzero injective module, then $\operatorname{Hom}_R(Rx, E) \neq 0$ for every nonzero $x \in M$.

Proof. (1) \Rightarrow (2). Let x be a nonzero element of M. Since ρ_x is a left exact radical with $x \in \rho_x(M)$, we have $\rho_x(M) \neq 0$ and so $\rho_x = 1$ by (1).

- (2) \Rightarrow (3). Let x be a nonzero element of M and E a nonzero injective module. By using Lemma 6, we see $\operatorname{Hom}_{\mathbb{R}}(Rx, E) \neq 0$.
 - (3) \Rightarrow (1). Let ρ be a proper left exact radical for R-mod. Then

there exists an injective module $_RE$ such that $\rho = k_E$. Since $\rho \neq 1$, we see $E \neq 0$. Now, for any $x \in \rho(M)$, we see from $k_E(Rx) = Rx$ that $\operatorname{Hom}_R(Rx, E) = 0$. Hence, $\rho(M) = 0$ by (3) and therefore M is 1CTF.

Theorem 8. The following properties of a nonzero module $_RM$ are equivalent:

- (1) M is 0CTF.
- (2) If $_RE$ is an injective module with $\operatorname{Hom}_R(M, E) \neq 0$, then E is a cogenerator.
 - (3) If N is a proper submodule of M, then E(M/N) is a cogenerator.
- (4) If N is a proper submodule of M and $_RS$ is a simple module, then $\operatorname{Hom}_R(S, M/N) \neq 0$.
- *Proof.* (1) \Rightarrow (2). Let E be an injective module with $\operatorname{Hom}_R(M, E) \neq 0$. Then $k_E(M) \neq M$ and so, by (1), $k_E = 0$ where 0 stands for the zero functor for R-mod. Hence, for every $X \in R$ -mod, $k_E(X) = 0$ induces that X is cogenerated by E.
- $(2) \Rightarrow (3)$. Let N be a proper submodule of M. By (2), $\operatorname{Hom}_{R}(M, E(M/N)) \neq 0$ implies that E(M/N) is a cogenerator.
- (3) \Rightarrow (1). Let ρ be a left exact radical such that $\rho(M) \neq M$. Then, for an injective module $_RE$ such that $\rho = k_E$, we have $\operatorname{Hom}_R(M, E) \neq 0$. Take any $f(\neq 0) \in \operatorname{Hom}_R(M, E)$. By $M/\operatorname{Ker}(f) \cong \operatorname{Im}(f) \subseteq E$, we see $E(M/\operatorname{Ker}(f)) \subseteq E$. Therefore, by (3), E must be a cogenerator and so we have $\rho = 0$.
- (3) \Leftrightarrow (4). Recall that an injective module $_RE$ is a cogenerator if and only if $\operatorname{Hom}_R(S, E) \neq 0$ for all simple module $_RS$.

Corollary 9. A simple module $_RS$ is 0CTF if and only if E(S) is a cogenerator.

Corollary 10. The following statements are equivalent for a ring R:

- (1) Every simple left R-module is OCTF.
- (2) All simple left R-modules are isomorphic.

Proposition 11. The class of 0CTF-modules forms a hereditary torsion class. On the other hand, the class of 1CTF-modules forms a torsionfree class closed under injective hulls.

Proof. By the definition, a module is OCTF if and only if it belongs to

the intersection of all nonzero hereditary torsion classes. Clearly this intersection forms a hereditary torsion class. The remaining part is proved in the same way.

Clearly every simple left R-module is CTF. We remark that every projective (more generally, torsionless) left R-module is CTF (or 1CTF) if and only if R is left CTF. In the next theorem we shall characterize those rings whose (injective) left modules are CTF. As proved in [4, p.118], a ring with a simple 1CTF-module is just of this type.

Theorem 12. The following assertions are equivalent for a ring R:

- (1) Every left R-module is 1CTF.
- (2) Every injective left R-module is 1CTF.
- (3) Every simple left R-module is 1CTF.
- (4) Every left R-module is 0CTF.
- (5) Every injective left R-module is 0CTF.
- (6) Every projective left R-module is 0CTF.
- (7) Every left R-module is CTF.
- (8) Every injective left R-module is CTF.
- (9) ([7]) Every nonzero injective left R-module is a cogenerator.
- (10) There exist only two left exact radicals for R-mod.
- (11) ([4]) R is left ChC.
- (12) ([3]) R is left semiartinian and all simple left R-modules are isomorphic.
 - *Proof.* (1) \Leftrightarrow (2) \Rightarrow (3). Clear.
- $(3) \Rightarrow (9)$. Let $_RE$ be a nonzero injective module. For each simple module $_RS$, since k_E is a proper left exact radical, we have $k_E(S) = 0$. Thus $\operatorname{Hom}_R(S, E) \neq 0$ and hence E is a cogenerator.
 - $(4) \Leftrightarrow (5) \Rightarrow (6)$. Clear.
 - (6) \Rightarrow (10). Since _RR is 0CTF, this follows from Remark 1.
 - $(7) \Leftrightarrow (8)$. Clear.
- $(7) \Rightarrow (12)$. Assume there exists a nonzero left R-module M with zero socle. We put the left exact preradical $\sigma = \sec$ and consider the left exact radical $\bar{\sigma}$. For a simple left R-module S, $\bar{\sigma}(M \oplus S) = S$ holds and so $M \oplus S$ is not CTF. Next, assume that S and T are non-isomorphic simple left R-modules. We put $\rho = k_{E(S)}$. Since $\rho(S) = 0$ and $\rho(T) = T$ by $\operatorname{Hom}_R(T, E(S)) = 0$, we have $\rho(S \oplus T) = T$, and hence $S \oplus T$ is not CTF.
 - $(9) \Leftrightarrow (10)$. This was proved in [7, Theorem 2.4].

- $(10) \Leftrightarrow (11)$. This was proved in [4, p.96].
- $(10) \Leftrightarrow (12)$. This was proved in [3, Proposition 2].
- $(10) \Rightarrow (1), (4) \text{ and } (7)$. Clear.

Finally we shall give an example which distinguishes OCTF-modules, 1CTF-modules and CTF-modules.

- **Example 13.** (1) Every OCTF-module is CTF, but the converse is not true. In fact, let R be a left CTF but not ChC ring (for example, a two-sided simple ring with zero socle). Then $_RR$ is 1CTF but not OCTF by Remark 1.
- (2) Every 1CTF-module is CTF, but the converse is not true. To see this, let R be a local but not right perfect ring (for example, the ring of formal power series over a field). Then the (unique) simple module S is 0CTF by Corollary 10, but since R is not left ChC ([4, p.96]), S is not 1CTF by Theorem 12.

References

- [1] J.A. BEACHY and W.D. BLAIR: Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), 1-13.
- [2] L. BICAN, T. KEPKA and P. NĚMEC: Rings, Modules and Preradicals, Lecture Notes in Pure and Applied Math. 75, Marcel Dekker, Inc., New York and Basel, 1982.
- [3] B.J. GARDNER: Rings whose modules form few torsion classes, Bull. Austral. Math. Soc. 4 (1971), 355-359.
- [4] D. HANDELMAN, K.R. GOODEARL and J. LAWRENCE: Strongly prime and completely torsion-free rings, Carleton Math. Series 109, Carleton University, 1974.
- [5] M. HONGAN: On strongly prime modules and related topics, Math. J. Okayama Univ. 24 (1982), 117-132.
- [6] M. HONGAN: Corrigendum to "On strongly prime modules and related topics" (This Journal, vol. 24, pp. 117-132), Math. J. Okayama Univ. 25 (1983), 195.
- [7] H. KATAYAMA: On rings for which various types of nonzero preradicals are cofaithful, Hokkaido Math. J. 12 (1983), 49-63.
- [8] Bo STENSTRÖM: Rings of Quotients, Grundl. Math. Wiss. 217, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY

(Received October 15, 1983)