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SOME COMMUTATIVITY RESULTS FOR RINGS
WITH CERTAIN POLYNOMIAL IDENTITIES

Amir H. YAMINI

Throughout the present paper, R will represent an associative ring (with
or without 1), N the set of all nilpotent elements in R, and Z the center of
R. Generalized commutators [x, x;,x;, -+, xx], for integers k =1, are defined
as follows : [x,x,] =xx,—xx, if k=1, and [[x, 21,2, , Xx-1), k), if &
>2. Forxy=x,=--=2xx=29, [%55,--+,y] is abbreviated as [x,y].
As is well known, if [x,y], = O then [x,y™] = my™ '[x,y] for any positive
integer m. We denote by Z(k) the set of all x € R such that [x,x,,x,, -+, xx]
= 0 for all x\, x,,---,xx € R. Following [5], a ring R is said to be s-unital
if for each x in R, x € xR N Rx. As stated in [5], if R is an s-unital ring,
then for any finite subset F' of R there exists an element e in R such that ex
= xe = x for all x € F. Such an element e will be called a pseudo-identity
of F.

Now, let n be a fixed positive integer. Awtar [2] showed that if R is
an n! -torsion free ring with 1 satisfying the polynomial identity [x” y"] = 0
then it must be commutative. On the other hand, Bell [3] showed that an
n-torsion free ring with 1 satisfying the same polynomial identity need not be
commutative. More recently, Abu-Khuzam and Yaqub [1] proved that an n-
torsion free ring with 1 satisfying the same polynomial identity must be com-
mutative under some additional condition such as x*y*—y*x* € Z or (xy)* —
(yx)* € Z with(n,k) = 1.

Let n be a fixed positive integer, and consider the following properties :

(I)» Ifx, y€ R and n[x,y] =0, then [x,y] = 0.

(I, [x%y"] =0 forall x, yE€ R.

The major purpose of this paper is to prove the following theorem which
generalizes [1, Theorems 2 and 3] and [5, Theorem 1].

Theorem. Let n, k be fixed positive integers with (n,k) = 1. Let R
be an s-unital ring satisfying (1 )n and (Il )n. Then the following are equiva-
lent :

(i) R is commulative.

(ii) For every x, y € R there exists a positive integer m = m(x,y)
such that [x", y*]n = 0.

(iii) For every x, y € R there exists a positive integer m = m(x,y)
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such that [(xy)*—(yx)*, y*]» = 0.
(iv) Ifx, y€ R and x—y € N then either x*—y* € Z(m) with some
positive integer m = m(x,y) or both x and ¥y commute with all elements in N.
(v) For every x € R and a € N there exists a positive integer m =
m(x,a) such that [Jx(14+a)|"—x"(1+a)" x]n = 0 (formally written).

In preparation for proving our main theorem, we quote the following
lemmas which are stated in [5].

Lemma 1. Let R be an s-unital ring, e a pseudo-identity of {a,b] C R.
If a™b = (a+e)™b for some positive integer m, then b = 0.

Lemma 2. Let R be an s-unital ring satisfying (1), and (11 )n. Then
[a,x"] =0 for all a € N and x € R, N is a commutative ideal containing the
commutator ideal of R, and N* C Z ; in particular, (x+ ax)"—(x+xa)™ =
[a,x™] for all a € N, x€ R, and positive integers m.

Proof of Theorem. We start the proof by showing that either of (iii)
and (iv) implies (ii). Suppose (iii). Let x, y € R, and a = [z*,"] € N
(Lemma 2), Then 0 = [(y+ay)*—(y+ya)*, y"n =[[a, ", 5" n = [z*, 5" n+2
for some positive integer m (Lemma 2), proving (ii). Next, suppose (iv).
Let x, y € R, and a = [x",y*], as above. Since (a+y)—y € N, we see
that [a,y] = 0 or (a+y)*—y* € Z(m) for some m = 1. If (a+y)*—3y* €
Z(m) then

[(a+y)k_yksa+y] = —[yk!a-i-y] = [asyk]’

and therefore [x*,y*]m+1 = [a,y"]n = 0. Needless to say, if [a,y] = 0 then
[x* y*], = [a,y*] = 0, proving (ii).

Now we prove that ( v) implies (ii). Let a€ N and y € R. Then there
exists a positive integer m such that [{ {1 +a)|"—y"1+a)"y]an = 0, that
is, [y(1+a)"yla = [{¥1+a)}",y]n. Since

Oy1+a)i%y] = y[l(1+a)y" =1 +a)|"] = y[a,y"] =0

by Lemma 2, we get y"[(e+a)™ y]n = [y(1+a)"y]n = 0, where e is a
pseudo-identity of |a, y|. Similarly, (y+e')"[(e+a)” y]n = 0 for some
m =1, where e' is a pseudo-identity of | e,a,y}. Without loss of genera-
lity, we may assume that m = m' : y"[(e+a)™ y]n = 0. But N> C Z by
Lemma 2. Hence n[a,y]n = 0, and therefore [a,y]n = 0. Now, let x € R.
Then [x,y] € N (Lemma 2), and we conclude that [x,¥]n., = 0 for some
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m =1, proving (ii).

Finally, we prove that (ii) implies (i ). In view of [4, Proposition 1],
we may assume that R has 1. Suppose that [7*,s*], # 0 for some r, s € R.
Then [r*, 5%]» = 0 and ¥, s¥]n_1 #F 0 for some m > 2. According to Lemma
2,t=[r"8"n_, € Nand [t,x"] =0 for all x € R. Hence [t,s*] =0 =
[2,(s*+1)™. Notice that [t,s*+1], = [#,5*], = 0. Then

ns® U1, 5% = 0 = a(s*+1)" '8, s"+1] = n(s*+1)"'[t,s7].

Thus by Lemma 1 and ( I ), we obtain [7*, s*]n_, = [t,5"] = 0. This con-
tradiction proves that [x",y*], = 0 for all x, y € R. Now, letu, v € {x* |
x € R|. Since [¢",v], =0 = [u"v+1], and [«",v"] = 0 = [«",(v+1)7],
we obtain no" '[u", v] = 0 = n(v+1)"'[«" v], and therefore [¢",v] = 0
by Lemma 1 and (I ), Noting that [(u+1)" 2], = Z-o(D[u" % v], =0 by
what proved just above, we can repeat the above argument for u+1 instead
of u to see that [(u+1)" v] = 0. Combining these with [v,u+1], =0 =
[v,u]s, by repeated use of the above argument, we can see that nu™'[u,»] =
0 = n(u+1)""'[u,v]. Hence again by Lemma 1 and (I )., we get [u,v] =
0. This proves that R satisfies the polynomial identity [x*,y*] = 0. Hence,
by [1, Theorem 2], R is commutative, proving (i ).

Needless to say, every commutative ring R satisfies (ii)—(v). This
completes the proof of the theorem.

Remark. The example of Johnsen, Outcalt and Yaqub cited in [1] shows
that ( I )» cannot be omitted in Theorem. Also, the existence of a finite non-
commutative nil ring shows that the hypothesis that R is s-unital cannot be
deleted. Finally, the following example shows that we cannot drop (I ),:

a, *
Let Ra be the ring consisting of m X m matrices over Z of the form ( .. )
a

Here, Z + Z(m—1) = R, if m> 2.

Now, let R be the ring Ri® R, ® R;®---. Then R is an s-unital ring
(without 1) and Z(m) S Z(m+1) for all positive integers m. As is easily
seen, R satisfies the condition (ii) in Theorem (for £k = 1).
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