A COMMUTATIVITY THEOREM FOR ONE-SIDED S-UNITAL RINGS

HISAO TOMINAGA and ADIL YAQUB

Throughout the present paper, R will represent a ring with center C, and N the set of all nilpotent elements of R. As for notations and terminologies used in the paper without mention, we follow [4].

In the proof of [4, Lemma 2 (3)], we need that if R is a left or right s-unital ring satisfying the condition (VII) in [4] then R is s-unital. But we did not handle the case that R is right s-unital. Because of this lack, the proof of [4, Theorem 2] is incomplete. The following theorem generalizes [2, Theorem] and [3, Theorem], and makes the proof of [4, Theorem 2] perfect, as well.

Theorem. Let R be a right or left s-unital ring. Then the following are equivalent:

- 1) R is commutative.
- 2) For each pair of elements x, y of R there exist integers m = m(x, y) > 1 and n = n(x, y) > 0 such that $[x, x^n y y^m x] = 0$, and there exists a non-empty subset A of N such that for each $x \in R$ either $x \in C$ or there exists a polynomial $f(\lambda)$ in $\mathbf{Z}[\lambda]$ such that $x x^2 f(x) \in A$.
- 3) For each $y \in R$ there exists an integer m = m(y) > 1 such that $[x, x^n y y^m x] = 0 = [x, x^n y^m y^{m^2} x]$ for all $x \in R$, where n is a fixed positive integer.
- 4) For each pair of elements x, y of R there exist relatively prime, positive integers m = m(x, y) and n = n(x, y) such that $(xy)^m = (yx)^m$ and $(xy)^n = (yx)^n$.
- 5) Given elements x_1, x_2, x_3, x_4, x_5 of R, there exists a positive integer $n = n(x_1, x_2, x_3, x_4, x_5)$ such that $[x_i^n, x_j^n] = 0 = [x_i^{n-1}, x_j^{n+1}]$ for all $i, j \in \{1, 2, 3, 4, 5\}$.

In preparation for proving our theorem, we state first the following

Lemma. Let R be a right (resp. left) s-unital ring. If for each pair of elements x, y of R there exists a positive integer k = k(x, y) and an element e' = e'(x, y) of R such that $e'x^k = x^k$ and $e'y^k = y^k$ (resp. $x^ke' = x^k$ and $y^ke' = y^k$), then R is an s-unital ring.

Proof. Let x be an arbitrary element of R, and choose an element e of R such that xe = x. Then, by hypothesis, there exists a positive integer h and an element e' of R such that $e'(x+e)^h = (x+e)^h$ and $e'e^h = e^h$. Now, it is easy to see that

$$x = xe^{h-1} = e'(x+e)^h - (x+e)^h + xe^{h-1} \in Rx$$

which proves that R is s-unital.

Corollary. Let R be a right (resp. left) s-unital ring. If R satisfies any one of the following conditions, then R is an s-unital ring.

- 1) For each pair of elements x, y of R there exist positive integers m = m(x, y) and n = n(x, y) such that $[x, x^n y y^m x] = 0$.
- 2) For each pair of elements x, y of R there exists a positive integer n = n(x, y) such that $[x^n, y^n] = 0$.
- 3) For each pair of elements x, y of R there exists a positive integer n = n(x, y) such that $(xy)^n = (yx)^n$.

Proof. Let x, y be arbitrary elements of R. As is well known, we can find an element e of R such that xe = x and ye = y (resp. ex = x and ey = y).

First, suppose that R satisfies 1). Then, there exist positive integers m, n; m', n' such that $e^m x^2 = [x, x^n e - e^m x] + x^2 = x^2$ and $e^{m'} y^2 = y^2$ (resp. $x^{n+1}e = [x, x^n e - e^m x] + x^{n+1} = x^{n+1}$ and $y^{n'+1}e = y^{n'+1}$), and therefore $e^{mm'} x^2 = x^2$ and $e^{mm'} y^2 = y^2$ (resp. $x^{n+n'}e = x^{n+n'}$ and $y^{n+n'}e = y^{n+n'}$). Hence, R is s-unital by Lemma.

Next, suppose that R satisfies 2). Let n=n(x,e), and n'=n(y,e). Then $e^nx^n=[x^n,e^n]+e^nx^n=x^n$ and $e^{n'}y^{n'}=y^{n'}$ (resp. $x^ne^n=[x^n,e^n]+x^n=x^n$ and $y^{n'}e^{n'}=y^{n'}$), and therefore $e^{nn'}x^{n+n'}=x^{n+n'}$ and $e^{nn'}y^{n+n'}=y^{n+n'}$ (resp. $x^{n+n'}e^{nn'}=x^{n+n'}$ and $y^{n+n'}e^{nn'}=y^{n+n'}$). Hence, R is s-unital by Lemma.

Finally, suppose that R satisfies 3). Let n = n(x, e), and n' = n(y, e). Then $ex^n = (ex)^n = (xe)^n = x^n$ and $ey^{n'} = y^{n'}$ (resp. $x^n e = x^n$ and $y^{n'} e = y^{n'}$), and therefore $ex^{n+n'} = x^{n+n'}$ and $ey^{n+n'} = y^{n+n'}$ (resp. $x^{n+n'} e = x^{n+n'}$ and $y^{n+n'} e = y^{n+n'}$). Hence, again by Lemma, R is s-unital.

We are now ready to complete the proof of our theorem.

Proof of Theorem. Every commutative ring satisfies 2)-5) trivially. $2) \Rightarrow 1)$ and $3) \Rightarrow 1)$. First, in case R has 1, the proof of both

implications given in the proof of [4, Theorem 2] is still valid. Since R is s-unital by Corollary, R is commutative by the proof of [1, Proposition 1].

 $4) \Rightarrow 1)$ and $5) \Rightarrow 1)$. In case R has 1, [2, Theorem] and [3, Theorem] show that R is commutative. Again by Corollary, R is s-unital. Hence R is commutative by [1, Proposition 1].

Remark 1. Let n be a positive integer, and consider the following ring-properties (see [1]):

- $P_1(n)$ $(xy)^n = x^n y^n$ and $(xy)^{n+1} = x^{n+1} y^{n+1}$ for all $x, y \in R$.
- $P_{3}(n)$ $(xy)^{n} = (yx)^{n}$ for all $x, y \in R$.
- $P_4(n)$ $[x,(xy)^n] = 0$ for all $x, y \in R$.
- $P_{5}(n)$ $[x,(yx)^{n}]=0$ for all $x, y \in R$.
- $P_{n}(n)$ $[x, y^{n}] = [x^{n}, y]$ for all $x, y \in R$.
- $P_{\mathfrak{s}}(n)$ There is a polynomial $f(\lambda) \in \mathbf{Z}[\lambda]$ such that $[x, y^n] = [f(x), y]$ for all $x, y \in R$.
- $P_{9}(n) [x,(x+y)^{n}-y^{n}] = 0 \text{ for all } x, y \in R.$
- $P_{10}(n)$ $[x^n, y^n] = 0$ for all $x, y \in R$.

In view of [1, Proposition 3 (ii)], we see that if n > 1 then $P_i(n) \Leftrightarrow P_s(n) \Leftrightarrow P_s(n) \Rightarrow P_{10}(n^a)$ for some positive integer α . Furthermore, as was shown in [1, Remark 4], if an s-unital ring R has the property $P_i(m) \land P_j(n)$ for some positive integers $i, j \in I = \{1, 3, 4, 5, 7, 8, 9, 10\}, m > 1$ and n > 1 with (m, n) = 1, then R is commutative. Now, these results together with Corollary enable us to see the following: If a right or left s-unital ring R has the property $P_i(m) \land P_j(n)$ for some positive integers $i \in I$, $j \in \{3, 7, 8, 9, 10\}, m > 1$ and n > 1 with (m, n) = 1, then R is commutative.

Remark 2. If R is a left (resp. right) s-unital ring having the property $P_4(n)$ (resp. $P_5(n)$) then Lemma shows that R is s-unital. However, if $R = \begin{pmatrix} K & 0 \\ K & 0 \end{pmatrix}$ (K a field), then R has a right identity element and has the property $P_1(n) \wedge P_4(n)$ for any positive integer n, but R is not left s-unital. If, furthermore, K = GF(2), then $x \cdot x^2 = x^2$ for all $x \in R$ (cf. Lemma).

REFERENCES

[1] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity

- of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
- [2] M. HONGAN: A commutativity theorem for s-unital rings. II, Math. J. Okayama Univ. 25 (1983), 19-22.
- [3] M. Hongan and H. Tominaga: A commutativity theorem for s-unital rings, Math. J. Okayama Univ. 21 (1979), 11-14.
- [4] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings. II, Math. J. Okayama Univ. 25 (1983), 173-179.

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN UNIVERSITY OF CALIFORNIA, ŞANTA BARBARA, U.S.A.

(Received February 4, 1984)