COMMUTATIVITY THEOREMS FOR RINGS WITH A COMMUTATIVE SUBSET OR A NIL SUBSET

HISAO TOMINAGA and ADIL YAQUB

Throughout, R will represent a ring with center C, and N the set of nilpotent elements in R. As usual, [x,y] will denote the commutator xy-yx. Given a subset S of R, we denote by $V_R(S)$ the set of all elements of R which commute with all elements in S. Following [2], R is called s-unital if for each x in R, $x \in Rx \cap xR$. As stated in [2], if R is an s-unital ring, then for any finite subset F of R there exists an element e in R such that ex = xe = x for all x in F. Such an element e will be called a pseudo-identity of F.

Let l be a fixed positive integer, q a fixed integer greater than l, and E_q the set of elements x in R such that $x^q = x$. Let A be a non-empty subset of R, and A^+ the additive subsemigroup of R generated by A. We consider the following properties:

- (I-A) For each $x \in R$, there exists a polynomial $f(\lambda)$ in $\mathbb{Z}[\lambda]$ such that $x-x^2f(x) \in A$.
- $(\text{II-}A)_q$ If $x, y \in R$ and $x-y \in A$, then either $x^q = y^q$ or x and y both belong to $V_R(A)$.
- (ii-A)_q If $x, y \in R$ and $x-y \in A$, then either $x^q-y^q \in C$ or x and y both belong to $V_R(A)$.
- $(ii-A)_q^*$ $[a,x^q]=0$ for any $a\in A$ and $x\in R$.
- (iii-A)_q For any $x \in R$, either $x \in C$ or x = x' + x'' with some $x' \in A$ and $x'' \in E_q$.
 - $(A)_q$ If $a,b\in A$ and q[ka,b]=0 for some positive integer k, then $\lceil ka,b\rceil=0$.
 - $(A)'_q$ If $a, b \in A$ and q[a, b] = 0, then [a, b] = 0.
 - $(A)_i^*$ If $a \in A$, $x \in R$ and $l[a^k, x] = 0$ for some positive integer k, then $[a^k, x] = 0$.

Our present objective is to prove the following theorems.

Theorem 1. The following statements are equivalent:

- 1) R is commutative.
- 2) There exists a commutative subset A for which R satisfies (I-A), $(ii-A)_q$ and $(iii-A^+)_q$.
- 2)* There exists a commutative subset A for which R satisfies (I-A),

- $(ii-A)_q^*$ and $(iii-A^+)_q$.
- 3) There exists a commutative subset A of N for which R satisfies $(ii-A)_q$ and $(iii-A^+)_q$.
- 3)* There exists a commutative subset A of N for which R satisfies $(ii-A)_q^*$ and $(iii-A^+)_q$.

Theorem 2. Let R be an s-unital ring. Then the following statements are equivalent:

- 1) R is commutative.
- 2) There † exists $^{\dagger}a$ subset A for which R satisfies (I-A), (II-A)_q, (iii-,A⁺)_q and (A)'_q.
- 3) There exists a subset A of N for which R satisfies (ii-A)_q, (iii-A)_q and $(A)'_q$.
- 3)* There exists a subset A of N for which R satisfies (ii-A)_q*, (iii-A)_q and (A)_q.
- 4) R satisfies the polynomial identity $[X^q, Y] = 0$ and there exists a subset A of N for which R satisfies (iii-A)_q and (A)_q.
- 5) R satisfies the polynomial identity $(XY)^q (YX)^q = 0$ and there exists a subset A of N for which R satisfies (iii-A)_q and (A)'_q.
- 6) R satisfies the polynomial identity $[X^q, Y] [X, Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A)_q and (A)_q.
- 7) R satisfies the polynomial identity $[X, (X+Y)^q Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A)_q and (A)_q.
- 8) R satisfies the polynomial identity $(XY)^q X^qY^q = 0$ and there exists a subset A of N for which R satisfies (iii-A)_q, $(A)_q^*$ and $(A)_{q-1}^*$.
- 9) R satisfies the polynomial identity $[X^q, Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A)_q and (A)_q*.

Proof of Theorem 1. Obviously, 1) implies both 2) and 3). Next, the proof of [4, Lemma 1 (3)] shows that $(ii-A)_q$ implies $(ii-A)_q^*$, and therefore 2) and 3) imply 2)* and 3)*, respectively.

- 2)* \Rightarrow 1). Since A is commutative and $A \subseteq V_R(E_q)$, (iii- A^+) $_q$ shows that $A \subseteq V_R(A) \cap V_R(E_q) \subseteq V_R((A^+ + E_q) \cup C) = C$. Hence, by (I-A) and [1, Theorem 19], R is commutative.
- 3)* \Rightarrow 1). As was shown just above, A is a subset of C. We claim next that $N \subseteq C$. Suppose, to the contrary, that there exists $u \in N \setminus C$. Then u = u' + u'' with some $u' \in A^+$ and $u'' \in E_q$. As is easily seen, $u'' = u u' \in E_q \cap N = 0$, and hence $u = u' \in A^+ \subseteq C$, a contradiction. Thus,

N is an ideal of R contained in C. Now, let $x \in R \setminus C$, and x = x' + x'' $(x' \in A^+, x'' \in E_q)$. Then $x^q \equiv x''^q = x'' \equiv x \pmod{N}$. This proves that $x - x^q \in C$ for all $x \in R$. Hence, R is commutative again by [1, Theorem 19].

Proof of Theorem 2. It is clear that 1) implies 2)-9) and 4) does 3)*. Furthermore, [3, Proposition 3] shows that 5) implies 4) and 6) is equivalent to 7). As was claimed in the proof of Theorem 1, $(ii-A)_q$ implies $(ii-A)_q^*$, and hence 3) implies 3)*.

 $2) \Rightarrow 1$). Suppose that there exist $a, b \in A$ such that $ab \neq ba$. Then, by $(\text{II-}A)_q$, $a^q = 0$. Let $k \ (>1)$ be the least positive integer such that $[a^i,b] = 0$ for all $i \geq k$, and let e be a pseudo-identity of $\{a,b\}$. Then $q[a^{k-1},b] = [(e+a^{k-1})^q,b] = 0$, since as remarked in the proof of Theorem 1, $(\text{II-}A)_q \Rightarrow (\text{ii-}A)_q \Rightarrow (\text{ii-}A)_q^*$. In view of (I-A), there exists $f(\lambda) \in \mathbf{Z}[\lambda]$ such that $a^{k-1} - a^{2(k-1)}f(a^{k-1}) \in A$. Then, by $(A)_q$, $q[a^{k-1} - a^{2(k-1)}f(a^{k-1}),b] = 0$ implies that $0 = [a^{k-1} - a^{2(k-1)}f(a^{k-1}),b] = [a^{k-1},b]$, which contradicts the minimality of k. Hence, A has to be commutative, and therefore R is commutative by Theorem 1.

 $3)^* \Rightarrow 1$). Let $u \in N \setminus C$, and u = u' + u'' ($u' \in A$, $u'' \in E_q$). Then, noting that $A \subseteq V_R(E_q)$, we can easily see that $u'' = u - u' \in E_q \cap N = 0$; $u = u' \in A$. This proves that $N \subseteq A \cup C$. Suppose now that there exist $a, b \in A$ such that $ab \neq ba$. Let $k \in A$ be the least positive integer such that $ab \neq ba$. Let $ab \neq ba$ since $ab \in A \cup C$, ab = ba must belong to ab = ba. Then ab = ba is a pseudo-identity of ab = ba. Then ab = ba is commutative of ab = ba. We have thus seen that ab = ba is commutative. Hence, ab = ba is commutative by Theorem 1.

Combining those above, we see that 1)-5) are all equivalent.

- $6) \Rightarrow 1$). In view of [3, Proposition 3], R satisfies the polynomial identity $[X^{q^{\alpha}}, Y] = 0$ for some positive integer α . It is easy to see that R satisfies (iii-A)_{q^{α}} and $(A)'_{q^{\alpha}}$. Hence R is commutative by 4).
- 8) \Rightarrow 3)*. Let $a \in A$ and $x \in R$. Let e be a pseudo-identity of $\{a, x\}$. If a_0 is the quasi-inverse of a then we can easily see that

$$0 = (e-a)^{q} \{ (e-a_{0})^{q} x^{q} (e-a)^{q} \} (e-a_{0}) - x^{q} (e-a)^{q-1}$$

$$= (e-a)^{q} \{ (e-a_{0}) x (e-a) \}^{q} (e-a_{0}) - x^{q} (e-a)^{q-1}$$

$$= [(e-a)^{q-1}, x^{q}].$$

Choose the minimal positive integer k such that $[a^i, x^q] = 0$ for all $i \ge k$.

Suppose k > 1. Then, by the above, $[(e-a^{k-1})^{q-1}, x^q] = 0$. Combining this with $[a^i, x^q] = 0$ for all $i \ge k$, we get $(q-1)[a^{k-1}, x^q] = 0$, and hence $[a^{k-1}, x^q] = 0$ by $(A)_{q-1}^*$. But this contradicts the minimality of k. Thus, k = 1, and hence $[a, x^q] = 0$.

 $9) \Rightarrow 3$)*. Let $a \in A$ and $x \in R$. Choose the minimal positive integer k such that $[a^i, x^q] = 0$ for all $i \ge k$. Suppose k > 1. Then $0 = [(e+a^{k-1})^q, x^q] = q[a^{k-1}, x^q]$, and hence $[a^{k-1}, x^q] = 0$ by $(A)_q^*$. This contradiction shows that $[a, x^q] = 0$.

Corollary 1. Let R be an s-unital ring. Then the following statements are equivalent:

- 1) R is commutative.
- 2) R satisfies the polynomial identity $[X^q, Y] = 0$ and there exists a subset A of N for which R satisfies (iii-A⁺)_q and (A⁺)_q.
- 3) R satisfies the polynomial identity $(XY)^q (YX)^q = 0$ and there exists a subset A of N for which R satisfies (iii-A⁺)_q and $(A^+)'_q$.
- 4) R satisfies the polynomial identity $[X^q, Y] [X, Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A⁺)_q and $(A^+)'_q$.
- 5) R satisfies the polynomial identity $[X,(X+Y)^q-Y^q]=0$ and there exists a subset A of N for which R satisfies (iii-A⁺)_q and (A⁺)'_q.

Proof. Notice that N forms an ideal provided R satisfies one of the polynomial identities cited in 2)-5) (see, e.g., [3, Proposition 2]).

Corollary 2. Let R be an s-unital ring. Then the following statements are equivalent:

- 1) R is commutative.
- 2) R satisfies the polynomial identity $[X^q, Y] = 0$ and there exists a subset A for which R satisfies $(\Pi A)_q$, $(\Pi A)_q$, and $(A)_q$.
- 3) R satisfies the polynomial identity $(XY)^q (YX)^q = 0$ and there exists a subset A for which R satisfies ($[I-A)_q$, ($[ii-A)_q$ and $(A)_q$.
- 4) R satisfies the polynomial identity $[X^q, Y] [X, Y^q] = 0$ and there exists a subset A for which R satisfies $(I-A)_q$, $(iii-A)_q$ and $(A)_q$.
- 5) R satisfies the polynomial identity $[X,(X+Y)^q-Y^q]=0$ and there exists a subset A for which R satisfies (II-A)_q, (iii-A)_q and (A)_q.
- 6) R satisfies the polynomial identity $[X^q, Y^q] = 0$ and there exists a subset A for which R satisfies (II-A)_q, (iii-A)_q and (A)'_q.

Proof. Obviously 1); implies 2)1-6); and 2)4 does 6). h Furthermore,

- [3, Proposition 3] shows that 3) implies 2) and 4) is equivalent to 5).
- 6) ⇒ 1). Suppose A is not commutative. Let $a \in A$ and $b \in A \setminus V_R(A)$. Then, by $(\text{II-}A)_q$, $a^q = 0$, which tells us that $A \subseteq N$. As was remarked in the proof of Theorem 2, $(\text{II-}A)_q$ implies $(\text{ii-}A)_q^*$. Hence the statement 3)* of Theorem 2 holds, and therefore R is commutative. This contradiction shows that A is commutative. Suppose now that there exist $x, y \in R$ such that $xy \neq yx$. Then, by $(\text{iii-}A)_q$, x = x' + x'' and y = y' + y'' with some $x', y' \in A$ and $x'', y'' \in E_q$. Since [x'', y''] = 0 and $A \subseteq V_R(E_q \cup A)$, we see that [x, y] = 0, a contradiction. Hence R is commutative.
- $5) \Rightarrow 1$). By [3, Proposition 3 (ii)], R satisfies the polynomial identity $[X^{q^a}, Y^{q^a}] = 0$ for some positive integer α . It is easy to see that R satisfies (II-A) $_{q^a}$, (iii-A) $_{q^a}$ and (A) $'_{q^a}$. Hence R is commutative, by 6).

We conclude this paper with the following examples:

(1) Let
$$R = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} | a, b, c \in GF(3) \right\}, A = N = R, and q =$$

4. This example shows that Theorem 2 need not be true if R is not s-unital.

(2) Let
$$R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} | a, b, c, d \in GF(3) \right\}, A = N, \text{ and } q = 3.$$

This example shows that we cannot drop the hypothesis that A is commutative in Theorem 1 3) and that $(A)'_q$ cannot be deleted in Theorem 2 3).

(3) Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in GF(2) \right\}$, A = N, and q = 3. This example shows that (ii-A)_q cannot be deleted in Theorem 1 3) and Theorem 2 3).

(4) Let
$$R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{pmatrix} | a, b, c \in GF(4) \right\}, A = N, \text{ and } q = 6.$$

This example shows that $(iii-A)_q$ cannot be deleted in Theorem 2 3).

(5) Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a^2 \end{pmatrix} \mid a, b \in \mathrm{GF}(4) \right\}$$
. Then $C = \{0, 1\}$, $E_7 = \left\{ \begin{pmatrix} a & b \\ 0 & a^2 \end{pmatrix} \mid a \neq 0 \right\} \cup \{0\}$, and $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = 1 + \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ for any b ; hence R satisfies (II- C)₇, (iii- C)₇ and (C)₇. This example shows that the hypothesis that $A \subseteq N$ cannot be deleted in Theorem 1 3) and Theorem 2 3).

REFERENCES

- I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864 –
 871.
- [2] Y. HIRANO, M. HONGAN and H. TOMINAGA: Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65-72.
- [3] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
- [4] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings, Math. J. Okayama Univ. 25 (1983), 81-86.

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN UNIVERSITY OF CALIFORNIA, SANTA BARBARA, U.S.A.

(Received October 12, 1983)