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COMMUTATIVITY THEOREMS FOR RINGS WITH
A COMMUTATIVE SUBSET OR A NIL SUBSET

Hisao TOMINAGA and ApiL YAQUB

Throughout, R will represent a ring with center C, and N the set of nil-
potent elements in R. As usual, [x,y] will denote the commutator xy— yx.
Given a subset S of R, we denote by Vi(S) the set of all elements of R
which commute with all elements in S. Following [2], R is called s-unital
if for each x in R, x € Rx N xR. As stated in [2], if R is an s-unital
ring, then for any finite subset F of R there exists an element e in R such
that ex = xe = x for all x in F. Such an element e will be called a pseudo-
identity of F.

Let  be a fixed positive integer, q¢ a fixed integer greater than I, and
E, the set of elements x in R such that x? = x. Let A be a non-empty subset
of R, and A* the additive subsemigroup of R generated by A. We consider
the following properties :

(I-A)  For each x € R, there exists a polynomial f(A) in Z[A] such
that x—x2f(x) € A.
(D-4), Ifx,y € Rand x—y € A, then either x? = y? or x and v both
belong to Vi(A).
(ii-A)¢ Ifx,y € R and x—y € A, then either x?—y? € C or x and y
both belong to Vi(A).
(ii-A)¥ [a,x?) =0 foranya € Aandx € R.
(iii-A), For any x € R, either x € C or x = x'+x" with some x' € A
and x’ € E,.
(A)g I a,be A and glka,b] = 0 for some positive integer k, then
[ka,b] = 0.
(A);, Tfa, b€ Aandqla,b] =0, then [a,b] = 0.
(A fac A, x€ R and I[a” x] = 0 for some positive integer k,
then [a*,x] = 0.
Our present objective is to prove the following theorems.

Theorem 1. The following statements are equivalent :

1) R is commulative.

2)  There exists a commutative subset A for which R satisfies (I-A),
(ii-4)q and (iii-A"),.

2)* There exists a commutative subsei A for which R satisfies (I-A),
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(ii-A )% and (iii-A*),.

3)  There exisis a commutative subset A of N for which R satisfies
(ii-A)q and (iii-A")q.

3)* There exists a commutative subset A of N for which R satisfies
(ii-A)¥ and (iii-A"),.

Theorem 2. Let R be an s-unital ring. Then the following statements
are equivalent :

1) R is commutative.

2)  There'exists'a subset A for which R satisfies‘ (I.4), (I-4),,
(iii-A*)q and (A ).

3)  There exists a subset A of N for which R satisfies (ii-A )q, (iii-A)q
and (A4 ).

3)* There exists a subset’ A of N for which R satisfies (ii-A)Z,
(iii-A)q and (A),.

4) R satisfies the polynomial identity [X° Y] = O and there exisis
a subset A of N for which R satisfies (iii-A)q and (A),.

5) R satisfies the polynomial identity (XY )?—(YX)? = 0 and there
exists a subset A of N for which R satisfies (iii-A ) and (A ).

6) R satisfies the polynomial identity [X°, Y] —[X,Y?] = 0 and there
exists a subset A of N for which R satisfies (iii-A ), and (A ),.

7) R satisfies the polynomial identity [X, (X+Y)"—Y?] = 0 and
there exists a subset A of N for which R satisfies (iii-A ), and (A),.

8) R satisfies the polynomial identity (XY )?*—XY? = 0 and there
exisis a subset A of N for which R satisfies (iii-A )q, (A)q and (A)F_..

9) R satisfies the polynomial identity [X° Y?) = 0 and there exisis
a subset A of N for which R satisfies (iii-A), and (A)%.

Proof of Theorem 1. Obviously, 1) implies both 2) and 3). Next, the
proof of [4, Lemma 1 (3)] shows that (ii-A), implies (ii-A), and therefore
2) and 3) imply 2)* and 3)*, respectively.

2)* => 1). Since A is commutative and A C Vi(E,), (iii-A*), shows
that A C Vi(A) N Vr(E,) € Vi((A*+E;) U C) = C. Hence, by (I-4)
and [1, Theorem 19], R is commutative.

3)* => 1). As was shown just above, A is a subset of C. We claim
next that N C C. Suppose, to the contrary, that there exists © € N\C.
Then u = u'+u" with some ' € A* and " € E,. As is easily seen, v’ =
u—u € E,N N=0, and hence © = v' € A* C C, a contradiction. Thus,
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N is an ideal of R contained in C. Now, let x € R\C, and x = ' +x’
(x € A*,x" € E;). Then x? =x"? =x2" =x (mod N). This proves that
x—x? € C for all x € R. Hence, R is commutative again by [1, Theorem
19].

Proof of Theorem 2. It is clear that 1) implies 2)—9) and 4) does
3)*. Furthermore, [3, Proposition 3] shows that 5) implies 4) and 6) is
equivalent to 7). As was claimed in the proof of Theorem 1, (ii-A), implies
(ii-A)¥, and hence 3) implies 3)*.

2) = 1). Suppose that there exist a, & € A such that ab + ba. Then,
by (II-A)q, a® = 0. Let £ ( > 1) be the least positive integer such that
[a',b] = 0 for all i =k, and let e be a pseudo-identity of {a,b}. Then
qg[a* ', b] = [(e+a*")? b] = 0, since as remarked in the proof of
Theorem 1, (II-A)q = (ii-A)q = (ii-A)%¥. In view of (I-A), there exists
f(A) € Z[A] such that a®* '—a®* "f(a*') € A. Then, by (A),, g¢[a*'—
a®™ Vf(a*'),b] = 0 implies that 0 = [a*'—a®* "f(a* '), b] = [a*, b],
which contradicts the minimality of £. Hence, A has to be commutative, and
therefore R is commutative by Theorem 1.

3*=1). Let ue N\C, and u = u'+u" (' € A, v € E,). Then,
noting that A C Vx(E;), we can easily see that ' = u—v € E, N N =
0;u=4u & A. This proves that NC A U C. Suppose now that there ex-
ist a, b € A such that ab # ba. let & ( > 1) be the least positive integer
such that [a,b] = 0 for all i = k. Since NC A U C, a* ' must belong to
A. Let e be a pseudo-identity of {a,b|. Then g[a*',b] = [(e4+a* )% b] =
0, and so (A)y gives [a* ', b] = 0, which contradicts the minimality of k.
We have thus seen that A is commutative. Hence, R is commutative by The-
orem 1.

Combining those above, we see that 1) —5) are all equivalent,

6) = 1). In view of [3, Proposition 3], R satisfies the polynomial iden-
tity [X?*, Y] = 0 for some positive integer a. It is easy to see that R satis-
fies (iii-A )ge and (A )ge. Hence R is commutative by 4).

8)=>3)*, letaec A and x € R. Let e be a pseudo-identity of {a,x]|.
If a, is the quasi-inverse of a then we can easily see that

0 =(e—a)(e—ay)x%(e—a)|(e—ay) —x(e—a)®’
= (e—a)(e—as)x(e—a)l'(e—a,) —x(e—a)*’
= [(e—a)’ " x%].

Choose the minimal positive integer k such that [a’ x?] = 0 for all i = k.
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Suppose & > 1. Then, by the above, [(e—a* ')? !, x%] = 0. Combining this
with [a’, x%] = 0 for all i = k, we get (g—1)[a*", x¥] = 0, and hence
[e* ', x%] = 0 by (A)¥_,. But this contradicts the minimality of k. Thus,
k =1, and hence [a,x%] = 0.

9)=> 3)*. Let a € A and x € R. Choose the minimal positive inte-
ger k such that [af, x?} = 0 for all { = k. Suppose £ > 1. Then 0 =
[(e+a*")%x?] = q[a**,x7], and hence [a*',x?] = 0 by (A)¥. This con-
tradiction shows that [a,x?] = 0.

Corollary 1. Let R be an s-unital ring. Then the following statemenis
 are equivalent :

1) R is commutative,

2) R satisfies the polynomial identity [X° Y| = 0 and there exists
a subset A of N for which R satisfies (iii-A%), and (A™),.

3) R satisfies the polynomial identity (XY )°—(YX)? =0 and there
exists a subset A of N for which R satisfies (iii-A*)y and (A"),.

4) R satisfies the polynomial identity [X° Y] —[X,Y?] = 0 and there
exists a subset A of N for which R satisfies (iii-A*)q and (A*)s.

5) R satisfies the polynomial identity [X,(X+ Y )?—Y?] = 0 and there
exists a subset A of N for which R satisfies (iii-A")q and (A*)s.

Proof. Notice that N forms an ideal provided R satisfies one of the
polynomial identities cited in 2) —5) (see, e.g., [3, Proposition 2]).

Corollary 2. Let R be an s-unital ring. Then the following statements
are equivalent :

1) R is commutaiive.

2) R satisfies the polynomial identity [X? Y] = 0 and there exists
a subset A for which R satisfies (II-A )q, (iii-A ), and (A ).

3) R satisfies the polynomial identity (XY )?"—(YX)? =0 and there
exists a subset A for which R satisfies (II-A )q, (iii-A)q and (A)q.

4) R satisfies the polynomial identity [X°, Y] —[X,Y?) = 0 and there
exists a subset A for which R satisfies (II-A),, (iii-A)q and (A),.

5) R satisfies the polynomial identity [X,(X+Y )?—Y?] = 0 and there
exists a subset A for which R satisfies (II-A)q, (iii-A)q and (A)q.

6) R satisfies the polynomial identity [X?, Y?] = 0 and there exisis
a subset A for which R satisfies (II-A)q, (iii-A)q and (A)q.

Proof. Obviously 1)5 implies 2)1—6) ‘and 2)? does 6). " Furthermore,
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[3, Proposition 3] shows that 3) implies 2) and 4) is equivalent to 5).

6) = 1). Suppose A is not commutative. Let a € A and b € A\Vz(4).
Then, by (I-A)q, a® = 0, which tells us that A C N. As was remarked
in the proof of Theorem 2, (II-A ), implies (ii-A)%¥. Hence the statement
3)* of Theorem 2 holds, and therefore R is commutative. This contradic-
tion shows that A is commutative. Suppose now that there exist x,y € R
such that xy = yx. Then, by (iii-A)q, x = x'+x" and y = ¥+ 5" with some
X,y €A and 2",y € E,. Since[x".y'] =0 and A C Vix(E, U A), we
see that [x,y] = 0, a contradiction. Hence R is commutative.

5) = 1). By [3, Proposition 3 (ii)]. R satisfies the polynomial identity
[X9, Y] = 0 for some positive integer a. It is easy to see that R satis-
fies (II-A )qa, (iii-A)qe and (A )qa. Hence R is commutative, by 6).

We conclude this paper with the following examples :
0abd
00c
000

4. This example shows that Theorem 2 need not be true if R is not s-unital.

(1) Let R = |a, b, c € GF(3)}, A=N=R, and ¢ =

abc

0a d]|a,b,c,d€GF(3)
00a

This example shows that we cannot drop the hypothesis that A is commuta-
tive in Theorem 1 3) and that (A ); cannot be deleted in Theorem 2 3).

(3) LetR= [( " Nabee GF(z)], A=N, and ¢ = 3. This

example shows that (ii-A ), cannot be deleted in Theorem 1 3) and Theo-
rem 2 3).

(2) LetR = ,A=N, and ¢ = 3.

a b c
(4) Let R = (O aZOJIa,b,ceGF(tl),A=N.andq=6.
0 0@

This example shows that (iii-A); cannot be deleted in Theorem 2 3).

(5) Let R = (S:Z)Ia,beGFM)}. Then C = [0, 1], E, —

[(g :2)|G#O]U {0}, and(g 8):1+(é 11’) for any b ; hence R
satisfies (II-C);, (iii-C); and (C);. This example shows that the hypothesis
that A € N cannot be deleted in Theorem 1 3) and Theorem 2 3).
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