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SOME COMMUTATIVITY THEOREMS
FOR PRIME RINGS WITH DERIVATIONS
AND DIFFERENTIALLY SEMIPRIME RINGS

To the memory of Takeshi Onodera

Yasuyuki HIRANO and Hisao TOMINAGA

Throughout the present paper, R will represent a ring with center C,
and U a non-zero ideal of R. Let o, t be ring-automorphisms of R, and set
Cor=1c € R| co(x) = r(x)c for all x € R}; in particular, C,, = C.
Given x,y € R, we write [x,y]or = xo(y)— r(y)x; in particular, [x, y]:,
= [x,7], in the usual sense. Let d: x > x' be a (o, z)-derivation of R.
that is an additive map of R satisfying (xy)' = x'o(y)+ z(x)y for all x,y
€ R. We consider the following conditions :

a) R is commutative.

b) [v,u] =0 forall ue U.

¢) [¢,u]er=0 for all ue U.
d) [«,u]or € Cor for all ue U.
e) U is commutative.

f) UcCcC.

As a generalization of Posner’'s theorem [6, Theorem 2], the present
authors and A. Kaya [3, Theorem 1 (2)], and independently J. H. Mayne
[5, Theorem 1], have proved that if d is a non-zero ((1,1)-)derivation of
a prime ring R then the conditions a) and d) are equivalent. On the other
hand, L.O. Chung and J. Luh [1] have proved that if d is a non-zero deri-
vation of a prime ring R of characteristic not 2 then the conditions a), e) for
U= R, and f) for U = R are equivalent, and more recently A. Trzepizur
[7] has proved a similar result for semiprime rings.

In § 1, we generalize partially Posner’s theorem in two directions
(Propositions 1,2), and give a partial generalization of [3, Theorem 1 (2)]
(Theorem 1). In § 2, we prove one more generalization of Posner’s theorem
(Theorem 2). Finally, in § 3, we generalize Trzepizur’s theorem for differ-

entially semiprime rings and the result of Chung and Luh for prime rings
(Theorem 3).

1. Throughout this section, R will be a prime ring. We begin with
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the following partial generalization of [6, Theorem 2].

Proposition 1. Let d be a non-zero (o,1)-derivation of a prime ring R.
Then a) and b) are equivalent.

Proof. Linearlizing the identity b) on U, we obtain
(1) [w,v] = [u,v'] forallu,v € U.
Replacing v by uv in (1), we get

[w,uv] = [u,(uv)’] = [u,u'0(v)+uv’] forall u,v € U.
Combining this with b) and (1), we have
[u,uv'] = ulu,v'] = u[u,v] = [« ,uv] = «'[u,0(v)]+ [u,uv'],

and therefore u'[u,o(v)] = 0 for all u,» € U, namely u'[u,a(U)] = 0 for
all v € U. Noting that o(U) is an ideal of R, we have u'o(U)[u,v] =
v{u,c(U)v] = 0 for all u,v € U. Then we can easily see that either
U =0 or U is commutative. But, as is easily seen, U’ # 0, and hence
U is commutative. Now, it is a routine to prove that R is commutative (see
[3, Lemma 1 (1)]).

Proposition 2. Let d be a non-zero (o, 7)-derivation of a prime ring R.
Then c) implies a) and o0 = 7.

Proof. It is easy to see that U’ #+ 0. Linearlizing the identity ¢) on
U, we have

(2) wolv)—c(u)v = r(v)u'—v'eo(u) forallu,ve U.
Replacing v by uv in (2), we get

[v,u]ozo(v)+ v(u) (v, u]or—r(u)r(v)u'+ ' o(v)o(u) = 0.
Combining this with ¢) and (2), we have

0= —r(u)[u,v]or—(u)r(v)u+uo(v)o(u)
= —t(wuov)+uow)o(u) = —volu)o(v)+uo(v)o(u),

and therefore v'o([v,2]) = 0, namely «'o([U,u]) = 0 for all v € U.
Hence, u'c(U)o([x,u]) =0 for all u€ U and x € R. Since o(U) is
a non-zero ideal of R, we see that either UC C or U' = 0. Since U + 0,
we have U € C, and hence R is commutative. Thus, for any « € U we have
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0 = [v,u]or = w(o(u)—r(u)), and so we conclude that o(u) = z(u) for
all u € U. By [3, Lemma 1 (2)], this proves that ¢ = r.

We conclude this section with the following partial generalization of
[3, Theorem 1 (2)].

Theorem 1. Let d be a non-zero (o, v)-derivation of a prime ring R of
characteristic not 2. Then ¢) and d) (and therefore a)) are equivalent.

Proof. Suppose R satisfies d). Let u be an arbitrary element of U.
Then, by repeated use of d), we have

[(uz)'»uz]a.t = [v u]oro(u’)— z'(uz)[u', u] ar
+27(u)vo(u?)—27(u?) r(u)u
= 2r(ulu'ol(u)o(u)—v(u)r(u)u|
= 27(u){ v, uloro(u)+ v(u)[u',u]orl
= 47z(u?) [, u],pr.

Hence, 7(u®)[w,u]sr € Cor, and therefore for any x € R we have
0= T(uz)[u’su]a.‘ro'(x)_T(I)T(uz)[u‘su]a.r = T([uz»x])[u',u]mr-

This proves that either u* € C or [¢',u]sr = 0. Suppose u* € C. Then,
again by d), [«,u]s(o(v®)—7(¥®)) = 0. If o(u?) + z(u*) then it is easy
to see that [u',u]sr = 0. On the other hand, if ¢(4*) = z(u?) (€ C) then
for any x € R

0 = ([« x]) = (®) ' o(x)+ r(¥¥)x'— x' o (u?) — () ()’
= (u*) o(x) — z(x)(2*),

which says that (¢*)' =u'o(u)+ r(u)u' is in Csr. Combining this with d),
we get 27(u)uw € C,z, and hence r{u)[w',u]s = 0, which implies [v, 4]
= 0. We have thus shown that [«'.,u],r = 0 in either case.

2. In this section too, we restrict ourselves to a prime ring R with
non-zero derivation d: x » 2. Let [R] ={x € R| [x,x] € C|, and
(R)=|xe R| (x,x) = Xx+xx’ € C|. We say that d is semicentralizing
if R=[R] U (R). Inparticular, if R = [R] then d is centralizing.

The purpose of this section is to generalize [6, Theorem 2] as follows :

Theorem 2. If a prime ring R has a non-zero semicentralizing deri-
vation d, then R is commutative.
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For the proof of Theorem 2, we need the following four lemmas.

Lemma 1 ([3, Lemma 2]). Let d be semicentralizing.

(1) Let x,y € [R] (resp. (R)). Then x+vy € [R] (resp. (R)) if
and only if x—y € [R] (resp. (R)).

(2) Ify € (R), then [y,¥"] = [5,(¥)] = 0.

Lemma 2. Let d be semicentralizing, and let R be of characteristic
not 2.

(1) Ify & [R], then (y*) = 0 and (') = 0.

(2) If C is not zero then d is centralizing.

Proof. (1) Since (¥*) = (y,y) € Cand [y,5*] = 0 (Lemma 1 (2)),

we have
[*+3).y+y] = [(—y),¥"—y] = [v,y] € C,

which means that y’+y & [R] and y¥*—y & [R]. Then, by Lemma 1 (1),
(*+y)—('—y) = 2y & [R] shows that 2y" = (y*+y)+(y'—y) € (R),
and so y* € (R). Hence, 2(¥*)y* = ((y®)'.%}) € C, i.e., (¥*)y* € C.
Furthermore, by Lemma 1 (2), 0 = (¥°)'[(¥’+5).(*+)*] = 2(5*)[%,»"]
= 2(¥*)'y*[¥.,y], i.e., (3*)'¥*[¥,y] = 0. Since (¥*)'y* € C and R is prime,
[¥,¥] + 0 implies (¥*)’y* = 0. Noting here that (y*)' € C, we get

(3) (¥,3) = (") =0 and (y".y)+(y.y) = (¥,5) = 0.

Since y*+y & [R], we can apply (3) to see that 2y'y* = (¥,y*+7y) =
((»*+y),¥"+y) =0, and so

(4) ¥y =3y =0 and y’y = (5°y) = 0.
If ¥ € [R]., then (¥)*y" = 0 by (4). Since [y,(¥)?] = 0 (Lemma 1 (2)),
by (3) we have 2(y)* = (»)((»".y)+(¥.,¥)) = 0, i.e., (¥)*=0. Thus,

we assume henceforth that y’ € [R]. Then, by Lemma 1 (1), either y+y'
& [R] or y—y & [R]. We assume first that y+3y & [R]. Then, by (3)
we have

(5) (4,5) = (9+y.(y+y)) = 0.

Since [y,¥"] € C, (5) proves that 'y’ € C and y'y' € C. Hence, by (3)
and (4), we get

Y'Y+ =)y () = PO+ N+ )
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= (y+y)(y+y) = 0.

Obviously, if ¥'y = 0 then (¥')* = 0. On the other hand, if ¥'y # 0 then
¥y (y'y'+(y)?) = 0 gives y¥y"+(y)* = 0, and so y'¥(y"+5) = 0, whence
it follows that y"+y = 0. This together with (5) implies (y)? = 0. Also,
in case y—3 & [R]. we can see that (y)* = 0.

(2) This is [3, Lemma 4 (3)].

Lemma 3 ([2. Lemma 1]). Let f be a non-trivial idempotent of R. If
(f+fx—fxf) = 0 for all x € R, thend = 0.

Lemma 4. Let Q be the Martindale quotient ring of R. Let p, q, r be
elements of Q. If puqur = 0 for all w € U, then one, at least, of p, q, 7 is
zero.

Proof. If x, y are elements of Q such that xUy = 0, then x or ¥ is
zero. By making use of this fact, we can prove the lemma in the same way
as in the proof of [6, Lemma 2].

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2. By [6, Theorem 2], it suffices to show that d is
centralizing, and so we may assume that R is of characteristic not 2. In
view of Lemma 2 (2), we may further assume that C = 0. Then R satisfies
the non-trivial differential identity [x*,x'] = 0. By [4, Corollary 5], the
central closure S of R is a primitive ring with non-zero socle. According
to [2, Lemma 4], we can extend d in a unique way to a derivation of S,
which is also denoted by d : x = x’. Now, let e be an arbitrary idempotent
in S. Then there exists a non-zero ideal A of R such that eA € R and
Ae € R. For any a € A, we have either ea(ea) = (ea)ea or ealea) =
—(ea)'ea. In either case, we have e(ea)’ ea = (ea)'ea. Hence, we see that
(ee’—e')aea = 0 for all a € A, and so ee' = ¢' by Lemma 4. Similarly,
we can show that e'e = e'. We see therefore that e’ = (e®)' = ee'+e'e =
2¢', that is, ¢ = 0. Noting here that f+ fx— fxf is an idempotent for every
idempotent f € S and every x € S and that d is non-zero, we see that S
has no non-trivial idempotents (L.emma 3). Hence S has to be a division
ring, and so R is a domain. Now, by Lemma 2 (1). we conclude that d is
centralizing.

3. Throughout this section, d will represent a derivation of R, and
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U a differential ideal of R with {(U) = 0. If R is a prime ring of charac-
teristic not 2 and d is non-zero, then we can prove that the conditions a), e)
and f) are equivalent (see Corollary 1 below).

We say that R is differentially prime (abbr. d-prime) if one of the fol-
lowing equivalent conditions is satisfied :

1) If I is a non-zero differential ideal of R and xIy* = 0 (x,y € R)
for all k=0 thenx =0 or y = 0.

2) If I is a non-zero differential ideal of R and x*Iy = 0 (x,y € R)
for all k=0 then x=0 or y = 0.

3) If I, J are differential ideals of R and IJ = 0 then I = 0 or J = 0.

As is easily seen, if R is d-prime then R is either of prime character-
istic or torsion free. A differential ideal P of R is said to be d-prime if the
factor ring R/ P is d-prime. The intersection of all d-prime ideals of R is
called the d-prime radical of R. We say that R is differentially semiprime
(abbr. d-semiprime) if the d-prime radical of R is zero. It is a routine to
verify the equivalence of the following conditions :

i) R is d-semiprime.

ii) R contains no non-zero nilpotent differential ideals.

iii) R is differentially isomorphic to a subdirect sum of d-prime rings.

A little care is needed here. If R is d-semiprime then {(U) = 0 shows
that the intersection of all d-prime ideals not including U is zero. Needless
to say, every semiprime (resp. prime) differential ring is d-semiprime (resp.

d-prime). If R is d-prime, “/(U) = 0" becomes “U =+ 0.

Lemma 5. Suppose d is non-zero.
(1) If R is d-prime then U + 0.
(2) If R is d-semiprime and 2R = R then U" =+ 0.

Proof. (1) Suppose, to the contrary, that U' = 0. Then, for any
non-zero # € U and x € R, we have 0 = (ux) = ux’. Hence 0 = u(yx)’
= uyx', whence it follows that uRx* = 0 for all £ = 1. Hence ' = 0 for
all x € R. But this is a contradiction.

(2) It suffices to prove the case that R is d-prime. Suppose, to the
contrary, that U" = 0. Then 2u'v' = (uv)"—«"v—w" = 0, and hence v’
=0 for all u,v € U. The relation v'vu' = (uv)'w = 0 gives v’ Uu'™ = 0
for all £ =1, whence U = 0 follows. This contradicts (1).

Lemma 6. If R is d-semiprime then e) implies f). If, furthermore,
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2R = R, then e) and f) are equivalent.

Proof. 1t suffices to prove the case that R is d-prime. In case U' = 0,
there is nothing to prove. We may therefore assume that U’ =+ 0.

Since u«'[v,w'] = [u'v,w'] = [(v'v),v'] = 0 (u,v,w € U), we have
o[z, w'] = u'[vx,w']—u'[v,w']x = 0, and therefore «'Ulx, w']® = 0
forall k=0 (u€ U, x€ R). Hence U'=0 or U € C, and so U’ C
U C C. Suppose now that 2R = R. We shall show that f) implies e).
Obviously, [¢',«'] = 0 and

u[v,w] = [ue,v'] = (o), u]—2[uv" v ]—[u,u]v" = 0.

Hence " R[v',4']*® = 0 for all k = 0 (u,v € U). Then, either U" = 0 or
U' is commutative. If U” = 0 then

v, ] = [(w), u]—-2[u,u]e"—[uw",v] =0,

and hence uw'R[v',u']"® = 0 for all £ = 0. Noting here that U" # 0 by
Lemma 5 (2), we get e), again.

Careful scrutiny of the proof of Proposition 1 shows the following

Lemma 7. Let R be a d-prime ring, and d # 0. Then b) implies a).

We are now ready to prove the following principal theorem of this
section,

Theorem 3. Let R be a d-semiprime ring with 2R=R. If K=
lx € R| x = 0} is commutative then the conditions a), e) and f) are
equivalent.

Proof. In view of Lemma 6, it remains only to prove that e) implies a).

We claim first that U' € C. To see this, we may assume that R is
d-prime. As was shown in the proof of Lemma 6, either U" = 0 or U' € C.
If U" = 0 then U' = 0 by Lemma 5 (2), and therefore U' © C in either
case,.

Now, let (Nacs P» = 0 with d-prime ideals P, R U. Put A, = {A €
Al PA2Utand A, ={A€ A| P, 2 U}. Let D be the commutator ideal
of R. Then, Lemma 7 shows that D C P, for all A € A,. Hence DU C
(DU)Y+ DU’ © P, for all A € A, and therefore D° © (acs Py = 0, namely
D C K. By hypothesis, D is then a commutative ideal. Now, let 1 € A;.
Then R = R/P, is a prime ring. (Note that RU € (RU)+RU C P,
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implies R* € P,.) If D& P, then D is a non-zero commutative ideal of the
prime ring R. Hence, by [3, Lemma 1 (1)], R is commutative, which con-
tradicts D == 0. We have thus seen that D C P, for all A € A, namely
D = 0, which proves the commutativity of R.

Careful scrutiny of the proof of Theorem 3 shows the following

Corollary 1. Let R be a prime ring of characteristic not 2. Ifd + 0
or K is commutative then the conditions a), e) and f) are equivalent.
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