SOME COMMUTATIVITY THEOREMS FOR PRIME RINGS WITH DERIVATIONS AND DIFFERENTIALLY SEMIPRIME RINGS

To the memory of Takeshi Onodera

YASUYUKI HIRANO and HISAO TOMINAGA

Throughout the present paper, R will represent a ring with center C, and U a non-zero ideal of R. Let σ , τ be ring-automorphisms of R, and set $C_{\sigma,\tau} = \{c \in R \mid c\,\sigma(x) = \tau(x)c \text{ for all } x \in R\}$; in particular, $C_{1,1} = C$. Given $x,y \in R$, we write $[x,y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$; in particular, $[x,y]_{1,1} = [x,y]$, in the usual sense. Let $d: x \to x'$ be a (σ,τ) -derivation of R, that is an additive map of R satisfying $(xy)' = x'\sigma(y) + \tau(x)y'$ for all $x,y \in R$. We consider the following conditions:

- a) R is commutative.
- b) [u', u] = 0 for all $u \in U$.
- c) $[u', u]_{\sigma,\tau} = 0$ for all $u \in U$.
- d) $[u',u]_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $u \in U$.
- e) U' is commutative.
- f) $U'' \subseteq C$.

As a generalization of Posner's theorem [6, Theorem 2], the present authors and A. Kaya [3, Theorem 1 (2)], and independently J. H. Mayne [5, Theorem 1], have proved that if d is a non-zero $((1,1)\cdot)$ derivation of a prime ring R then the conditions a) and d) are equivalent. On the other hand, L. O. Chung and J. Luh [1] have proved that if d is a non-zero derivation of a prime ring R of characteristic not 2 then the conditions a), e) for U = R, and f) for U = R are equivalent, and more recently A. Trzepizur [7] has proved a similar result for semiprime rings.

In § 1, we generalize partially Posner's theorem in two directions (Propositions 1,2), and give a partial generalization of [3, Theorem 1 (2)] (Theorem 1). In § 2, we prove one more generalization of Posner's theorem (Theorem 2). Finally, in § 3, we generalize Trzepizur's theorem for differentially semiprime rings and the result of Chung and Luh for prime rings (Theorem 3).

1. Throughout this section, R will be a prime ring. We begin with

the following partial generalization of [6, Theorem 2].

Proposition 1. Let d be a non-zero $(\sigma,1)$ -derivation of a prime ring R. Then a) and b) are equivalent.

Proof. Linearlizing the identity b) on U, we obtain

(1)
$$[u',v] = [u,v'] \text{ for all } u,v \in U.$$

Replacing v by uv in (1), we get

$$[u',uv] = [u,(uv)'] = [u,u'\sigma(v)+uv']$$
 for all $u,v \in U$.

Combining this with b) and (1), we have

$$[u, uv'] = u[u, v'] = u[u', v] = [u', uv] = u'[u, \sigma(v)] + [u, uv'],$$

and therefore $u'[u,\sigma(v)]=0$ for all $u,v\in U$, namely $u'[u,\sigma(U)]=0$ for all $u\in U$. Noting that $\sigma(U)$ is an ideal of R, we have $u'\sigma(U)[u,v]=u'[u,\sigma(U)v]=0$ for all $u,v\in U$. Then we can easily see that either U'=0 or U is commutative. But, as is easily seen, $U'\neq 0$, and hence U is commutative. Now, it is a routine to prove that R is commutative (see $[3, Lemma\ 1\ (1)]$).

Proposition 2. Let d be a non-zero (σ, τ) -derivation of a prime ring R. Then c) implies a) and $\sigma = \tau$.

Proof. It is easy to see that $U' \neq 0$. Linearlizing the identity c) on U, we have

(2)
$$u'\sigma(v) - \tau(u)v' = \tau(v)u' - v'\sigma(u) \quad \text{for all } u, v \in U.$$

Replacing v by uv in (2), we get

$$[u',u]_{\sigma,\tau}\sigma(v)+\tau(u)[v',u]_{\sigma,\tau}-\tau(u)\tau(v)u'+u'\sigma(v)\sigma(u)=0.$$

Combining this with c) and (2), we have

$$0 = -\tau(u)[u',v]_{\sigma,\tau} - \tau(u)\tau(v)u' + u'\sigma(v)\sigma(u)$$

= $-\tau(u)u'\sigma(v) + u'\sigma(v)\sigma(u) = -u'\sigma(u)\sigma(v) + u'\sigma(v)\sigma(u),$

and therefore $u'\sigma([v,u])=0$, namely $u'\sigma([U,u])=0$ for all $u\in U$. Hence, $u'\sigma(U)\sigma([x,u])=0$ for all $u\in U$ and $x\in R$. Since $\sigma(U)$ is a non-zero ideal of R, we see that either $U\subseteq C$ or U'=0. Since $U'\neq 0$, we have $U\subseteq C$, and hence R is commutative. Thus, for any $u\in U$ we have

 $0 = [u', u]_{\sigma, \tau} = u'(\sigma(u) - \tau(u))$, and so we conclude that $\sigma(u) = \tau(u)$ for all $u \in U$. By [3, Lemma 1 (2)], this proves that $\sigma = \tau$.

We conclude this section with the following partial generalization of [3, Theorem 1 (2)].

Theorem 1. Let d be a non-zero (σ, τ) -derivation of a prime ring R of characteristic not 2. Then c) and d) (and therefore a)) are equivalent.

Proof. Suppose R satisfies d). Let u be an arbitrary element of U. Then, by repeated use of d), we have

$$\begin{split} [(u^{2})', u^{2}]_{\sigma,\tau} &= [u', u]_{\sigma,\tau} \sigma(u^{2}) - \tau(u^{2}) [u', u]_{\sigma,\tau} \\ &+ 2\tau(u)u'\sigma(u^{2}) - 2\tau(u^{2})\tau(u)u' \\ &= 2\tau(u) |u'\sigma(u)\sigma(u) - \tau(u)\tau(u)u'| \\ &= 2\tau(u) |[u', u]_{\sigma,\tau} \sigma(u) + \tau(u) [u', u]_{\sigma,\tau} |u' - \tau(u)[u', u]_{\sigma,\tau} |u' - \tau(u)[u',$$

Hence, $\tau(u^2)[u',u]_{\sigma,\tau} \in C_{\sigma,\tau}$, and therefore for any $x \in R$ we have

$$0 = \tau(u^2)[u', u]_{\sigma, \tau}\sigma(x) - \tau(x)\tau(u^2)[u', u]_{\sigma, \tau} = \tau([u^2, x])[u', u]_{\sigma, \tau}.$$

This proves that either $u^2 \in C$ or $[u',u]_{\sigma,\tau} = 0$. Suppose $u^2 \in C$. Then, again by d), $[u',u]_{\sigma,\tau}(\sigma(u^2)-\tau(u^2))=0$. If $\sigma(u^2)\neq \tau(u^2)$ then it is easy to see that $[u',u]_{\sigma,\tau}=0$. On the other hand, if $\sigma(u^2)=\tau(u^2)$ ($\in C$) then for any $x\in R$

$$0 = ([u^2, x])' = (u^2)'\sigma(x) + \tau(u^2)x' - x'\sigma(u^2) - \tau(x)(u^2)'$$

= $(u^2)'\sigma(x) - \tau(x)(u^2)'$,

which says that $(u^2)' = u'\sigma(u) + \tau(u)u'$ is in $C_{\sigma,\tau}$. Combining this with d), we get $2\tau(u)u' \in C_{\sigma,\tau}$, and hence $\tau(u)[u',u]_{\sigma,\tau} = 0$, which implies $[u',u]_{\sigma,\tau} = 0$. We have thus shown that $[u',u]_{\sigma,\tau} = 0$ in either case.

2. In this section too, we restrict ourselves to a prime ring R with non-zero derivation $d: x \to x'$. Let $[R] = \{x \in R \mid [x', x] \in C\}$, and $(R) = \{x \in R \mid (x', x) = x'x + xx' \in C\}$. We say that d is semicentralizing if $R = [R] \cup (R)$. In particular, if R = [R] then d is centralizing.

The purpose of this section is to generalize [6, Theorem 2] as follows:

Theorem 2. If a prime ring R has a non-zero semicentralizing derivation d, then R is commutative.

For the proof of Theorem 2, we need the following four lemmas.

Lemma 1 ([3, Lemma 2]). Let d be semicentralizing.

- (1) Let $x, y \in [R]$ (resp. (R)). Then $x+y \in [R]$ (resp. (R)) if and only if $x-y \in [R]$ (resp. (R)).
 - (2) If $y \in (R)$, then $[y', y^2] = [y, (y')^2] = 0$.

Lemma 2. Let d be semicentralizing, and let R be of characteristic not 2.

- (1) If $y \in [R]$, then $(y^2)' = 0$ and $(y')^4 = 0$.
- (2) If C is not zero then d is centralizing.

Proof. (1) Since $(y^2)' = (y', y) \in C$ and $[y', y^2] = 0$ (Lemma 1 (2)), we have

$$[(y^2+y)', y^2+y] = [(y^2-y)', y^2-y] = [y', y] \notin C,$$

which means that $y^2 + y \in [R]$ and $y^2 - y \in [R]$. Then, by Lemma 1 (1), $(y^2 + y) - (y^2 - y) = 2y \in [R]$ shows that $2y^2 = (y^2 + y) + (y^2 - y) \in (R)$, and so $y^2 \in (R)$. Hence, $2(y^2)'y^2 = ((y^2)', y^2) \in C$, i.e., $(y^2)'y^2 \in C$. Furthermore, by Lemma 1 (2), $0 = (y^2)'[(y^2 + y)', (y^2 + y)^2] = 2(y^2)'[y', y^3] = 2(y^2)'y^2[y', y]$, i.e., $(y^2)'y^2[y', y] = 0$. Since $(y^2)'y^2 \in C$ and R is prime, $[y', y] \neq 0$ implies $(y^2)'y^2 = 0$. Noting here that $(y^2)' \in C$, we get

(3)
$$(y',y)=(y^2)'=0$$
 and $(y'',y)+(y',y')=(y',y)'=0$.

Since $y^2+y\in [R]$, we can apply (3) to see that $2y'y^2=(y',y^2+y)=((y^2+y)',y^2+y)=0$, and so

(4)
$$y'y^2 = y^2y' = 0$$
 and $y^2y'' = (y^2y')' = 0$.

If $y' \in [R]$, then $(y')^2 y'' = 0$ by (4). Since $[y,(y')^2] = 0$ (Lemma 1 (2)), by (3) we have $2(y')^4 = (y')^2((y'',y)+(y',y')) = 0$, i.e., $(y')^4 = 0$. Thus, we assume henceforth that $y' \in [R]$. Then, by Lemma 1 (1), either $y+y' \in [R]$ or $y-y' \in [R]$. We assume first that $y+y' \in [R]$. Then, by (3) we have

(5)
$$(y',y'') = (y+y',(y+y')') = 0.$$

Since $[y', y''] \in C$, (5) proves that $y'y'' \in C$ and $y''y' \in C$. Hence, by (3) and (4), we get

$$y'(y''y'+(y')^2) = (y')^2y''+(y')^3 = (y^2+(y')^2+(y',y))(y'+y'')$$

$$= (y+y')^2(y+y')' = 0.$$

Obviously, if y''y' = 0 then $(y')^3 = 0$. On the other hand, if $y''y' \neq 0$ then $y''y'(y'y'' + (y')^2) = 0$ gives $y'y'' + (y')^2 = 0$, and so y''y'(y'' + y') = 0, whence it follows that y'' + y' = 0. This together with (5) implies $(y')^2 = 0$. Also, in case $y - y' \notin [R]$, we can see that $(y')^3 = 0$.

(2) This is [3, Lemma 4 (3)].

Lemma 3 ([2, Lemma 1]). Let f be a non-trivial idempotent of R. If (f+fx-fxf)'=0 for all $x \in R$, then d=0.

Lemma 4. Let Q be the Martindale quotient ring of R. Let p, q, r be elements of Q. If puqur = 0 for all $u \in U$, then one, at least, of p, q, r is zero.

Proof. If x, y are elements of Q such that xUy = 0, then x or y is zero. By making use of this fact, we can prove the lemma in the same way as in the proof of [6, Lemma 2].

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2. By [6, Theorem 2], it suffices to show that d is centralizing, and so we may assume that R is of characteristic not 2. In view of Lemma 2 (2), we may further assume that C=0. Then R satisfies the non-trivial differential identity $[x^2, x'] = 0$. By [4, Corollary 5], the central closure S of R is a primitive ring with non-zero socle. According to [2, Lemma 4], we can extend d in a unique way to a derivation of S, which is also denoted by $d: x \to x'$. Now, let e be an arbitrary idempotent Then there exists a non-zero ideal A of R such that $eA \subseteq R$ and $Ae \subseteq R$. For any $a \in A$, we have either ea(ea)' = (ea)'ea or ea(ea)' =-(ea)'ea. In either case, we have e(ea)'ea = (ea)'ea. Hence, we see that (ee'-e')aea=0 for all $a \in A$, and so ee'=e' by Lemma 4. Similarly, we can show that e'e = e'. We see therefore that $e' = (e^2)' = ee' + e'e =$ 2e', that is, e' = 0. Noting here that f + fx - fxf is an idempotent for every idempotent $f \in S$ and every $x \in S$ and that d is non-zero, we see that S has no non-trivial idempotents (Lemma 3). Hence S has to be a division ring, and so R is a domain. Now, by Lemma 2 (1), we conclude that d is centralizing.

3. Throughout this section, d will represent a derivation of R, and

U a differential ideal of R with l(U) = 0. If R is a prime ring of characteristic not 2 and d is non-zero, then we can prove that the conditions a), e) and f) are equivalent (see Corollary 1 below).

We say that R is differentially prime (abbr. d-prime) if one of the following equivalent conditions is satisfied:

- 1) If I is a non-zero differential ideal of R and $xIy^{(k)} = 0$ $(x, y \in R)$ for all $k \ge 0$ then x = 0 or y = 0.
- 2) If I is a non-zero differential ideal of R and $x^{(k)}Iy = 0$ $(x, y \in R)$ for all $k \ge 0$ then x = 0 or y = 0.
 - 3) If I, J are differential ideals of R and IJ = 0 then I = 0 or J = 0.

As is easily seen, if R is d-prime then R is either of prime characteristic or torsion free. A differential ideal P of R is said to be d-prime if the factor ring R/P is d-prime. The intersection of all d-prime ideals of R is called the d-prime radical of R. We say that R is differentially semiprime (abbr. d-semiprime) if the d-prime radical of R is zero. It is a routine to verify the equivalence of the following conditions:

- i) R is d-semiprime.
- ii) R contains no non-zero nilpotent differential ideals.
- iii) R is differentially isomorphic to a subdirect sum of d-prime rings.

A little care is needed here. If R is d-semiprime then l(U)=0 shows that the intersection of all d-prime ideals not including U is zero. Needless to say, every semiprime (resp. prime) differential ring is d-semiprime (resp. d-prime). If R is d-prime, "l(U)=0" becomes " $U\neq 0$ ".

Lemma 5. Suppose d is non-zero.

- (1) If R is d-prime then $U' \neq 0$.
- (2) If R is d-semiprime and 2R = R then $U'' \neq 0$.

Proof. (1) Suppose, to the contrary, that U'=0. Then, for any non-zero $u \in U$ and $x \in R$, we have 0=(ux)'=ux'. Hence 0=u(yx)'=uyx', whence it follows that $uRx^{(k)}=0$ for all $k \ge 1$. Hence x'=0 for all $x \in R$. But this is a contradiction.

(2) It suffices to prove the case that R is d-prime. Suppose, to the contrary, that U''=0. Then 2u'v'=(uv)''-u''v-uv''=0, and hence u'v'=0 for all $u,v\in U$. The relation u'vu'=(uv)'u'=0 gives $u'Uu^{(k)}=0$ for all $k\geq 1$, whence U'=0 follows. This contradicts (1).

Lemma 6. If R is d-semiprime then e) implies f). If, furthermore,

2R = R, then e) and f) are equivalent.

Proof. It suffices to prove the case that R is d-prime. In case U'=0, there is nothing to prove. We may therefore assume that $U'\neq 0$.

Since u''[v,w'] = [u''v,w'] = [(u'v)',w'] = 0 $(u,v,w \in U)$, we have u''v[x,w'] = u''[vx,w'] - u''[v,w']x = 0, and therefore $u''U[x,w']^{(k)} = 0$ for all $k \geq 0$ $(u \in U, x \in R)$. Hence U'' = 0 or $U' \subseteq C$, and so $U'' \subseteq U' \subseteq C$. Suppose now that 2R = R. We shall show that f implies e. Obviously, [v',u'] = 0 and

$$u'''[v', u'] = [u'''v', u'] = [(u'v')'', u'] - 2[u''v'', u'] - [u', u']v''' = 0.$$

Hence $u'''R[v',u']^{(k)}=0$ for all $k\geq 0$ $(u,v\in U)$. Then, either U'''=0 or U' is commutative. If U'''=0 then

$$u''[v',u'] = [(uv')'',u'] - 2[u',u']v'' - [uv''',u'] = 0,$$

and hence $u''R[v',u']^{(k)}=0$ for all $k\geq 0$. Noting here that $U''\neq 0$ by Lemma 5 (2), we get e), again.

Careful scrutiny of the proof of Proposition 1 shows the following

Lemma 7. Let R be a d-prime ring, and $d \neq 0$. Then b) implies a).

We are now ready to prove the following principal theorem of this section.

Theorem 3. Let R be a d-semiprime ring with 2R = R. If $K = |x \in R| |x' = 0|$ is commutative then the conditions a), e) and f) are equivalent.

Proof. In view of Lemma 6, it remains only to prove that e) implies a). We claim first that $U' \subseteq C$. To see this, we may assume that R is d-prime. As was shown in the proof of Lemma 6, either U'' = 0 or $U' \subseteq C$. If U'' = 0 then U' = 0 by Lemma 5 (2), and therefore $U' \subseteq C$ in either case.

Now, let $\bigcap_{\lambda \in \Lambda} P_{\lambda} = 0$ with d-prime ideals $P_{\lambda} \supseteq U$. Put $\Lambda_1 = \{\lambda \in \Lambda \mid P_{\lambda} \supseteq U'\}$ and $\Lambda_2 = \{\lambda \in \Lambda \mid P_{\lambda} \supseteq U'\}$. Let D be the commutator ideal of R. Then, Lemma 7 shows that $D \subseteq P_{\lambda}$ for all $\lambda \in \Lambda_2$. Hence $D'U \subseteq (DU)' + DU' \subseteq P_{\lambda}$ for all $\lambda \in \Lambda$, and therefore $D' \subseteq \bigcap_{\lambda \in \Lambda} P_{\lambda} = 0$, namely $D \subseteq K$. By hypothesis, D is then a commutative ideal. Now, let $\mu \in \Lambda_1$. Then $\overline{R} = R/P_{\mu}$ is a prime ring. (Note that $R'U \subseteq (RU)' + RU' \subseteq P_{\mu}$

implies $R' \subseteq P_{\mu}$.) If $D \nsubseteq P_{\mu}$ then \overline{D} is a non-zero commutative ideal of the prime ring \overline{R} . Hence, by [3, Lemma 1 (1)], \overline{R} is commutative, which contradicts $\overline{D} \neq 0$. We have thus seen that $D \subseteq P_{\lambda}$ for all $\lambda \in \Lambda$, namely D = 0, which proves the commutativity of R.

Careful scrutiny of the proof of Theorem 3 shows the following

Corollary 1. Let R be a prime ring of characteristic not 2. If $d \neq 0$ or K is commutative then the conditions a), e) and f) are equivalent.

REFERENCES

- L. O. CHUNG and J. LUH: Derivations of higher order and commutativity of rings, Pacific J. Math. 99 (1982), 317-326.
- [2] B. FELZENSZWALB: Derivations in prime rings, Proc. Amer. Math. Soc. 84 (1982), 1-6.
- [3] Y. HIRANO, A. KAYA and H. TOMINAGA: On a theorem of Mayne, Math. J. Okayama Univ. 25 (1983), 125-132.
- [4] V. K. KHARCHENKO: Differential identities of prime rings, Algebra i Logika 17 (1978), 220
 -238: Algebra and Logic 17 (1978), 155-168.
- [5] J. H. MAYNE: Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122-126.
- [6] E. C. Posner: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- [7] A. TRZEPIZUR: Sur certaines conditions pour la commutativité des anneaux différentiels semi-premier, Math. J. Okayama Univ. 26 (1984), 129-131.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received June 4, 1984)