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COMMUTATIVITY OF HOPF GALOIS EXTENSIONS
WITH HOPF ALGEBRAS OF DERIVATION TYPE

Dedicated to Professor Hirosi Nagao on his 60th birthday

ATtsusii NAKAJIMA and Kenimt YOKOGAWA

Introduction. Let R be a commutative ring with identity of prime char-
acteristic p = 0. We recall that an R-Hopf algebra H(p™) called as a Hopf
algebra of derivation type of degree p™ is defined as follows : H(p™) is an R-
algebra freely generated by d with relation d*" = 0 and its Hopf algebra
structure is given by

Ald)=d®1+1 ®d, e(d) =0 and A(d) = —d,

where A, ¢ and A are diagonalization, augmentation and antipode respec-
tively. (Hereafter, the letter “d” will always mean the above generator.)
Also we denote H(p) ®x...Q:H(p) (m-times) as H(p)" and its generators
1®.81®d®1 ®...81 (d in the i-th position) as d;. In the previous
paper [7] Theorem 7, the authors showed that a commutative R-algebra is
an H(p™)-Hopf Galois extension of R if and only if it is an H(p)™-Hopf
Galois extension. But the concepts of Hopf Galois extensions are extended to
the case of non-commutative ring extensions, especially to that of algebras,
which is natural from cohomological view-points cf. [3], [11], [12] etc.

In this paper we adopt the concepts of Hopf Galois extensions in the
case of algebras, namely an R-algebra A (not necessarily commutative) is
called to be an H-Hopf Galois extension of R for a finite R-Hopf algebra H
if A is a finitely generated faithful projective R-module and is an H-mod-
ule algebra and the natural homomorphism from the smash product algebra
A # H to the endomorphism algebra Endz(A) is an isomorphism. And we
shall show that there is a difference between H(p™)-Hopf Galois extensions
and H(p)™-Hopf Galois extensions. More precisely, we shall determine the
structure of H(p®)-Hopf Galois extensions of R, especially we shall show
that if R is a field then H(p®)-Hopf Galois extensions are necessarily commu-
tative this is done in §1. In §2, we shall show that they are commuta-
tive ring extensions of R or R-Azumaya algebras.

Throughout this paper, R (X,Y) means a polynomial ring with non-com-
mutative variables X, Y and R {(x,y) means an algebra (not necessarily com-
mutative) generated by x, y with certain relations. Unadorned ® and Hom
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etc. are taken over R and every map is R-linear. All modules and algebra
homomorphisms considered are unitary.

1. H(p*-Hopf Galois extensions of R. Let A be an R-algebra not
necessarily commutative and in this section we always assume that A is
an H(p®)-Hopf Galois extension of R unless otherwise stated. By the similar
way as [6] Lemma 1.1, there exists ¢ € A such that d*"'(c) = 1. Setting
x=d"” *c), weget d(x) = 1. Asto R[x], we have the following.

Proposition 1. R[x] =|a € A|d?(a) = 0|, and A is an R [d]-Hopf
Galois extension of R [x].

Proof. Since d®(x') = 0, the inclusion R[x] Cla € A | d°(a) =

0} is clear. Noting that R = A = {a € A | d(a) = 0}, we get easily

that if d”°(a) = 0 then d*"'(a) € R. We put d*'(a) = r,, so we get

rxt
2

processes, we get a € R[x]. Moreover by [11] Proposition 1.6, the latter

d* *a) = rix+r, = d( +rux) for some r, € R. Repeating this

assertion follows.

2
Next we shall set y' = d”?"'(c). Then we get d*'(y) =x = d(%-)
Repeating this processes we get d(y’) = rll)lx”"’+f(x), where f(x) is
an element of R[x] with degree less than p—1. Since deg f(x) < p—1,
there exists g(x) € R[x] such that d(g(x)) = f(x) (cf. [7] Lemma 8). Set-

ting y = y'—g(x), we get the following.

Lemma 2. Under the above notations, we have

d(y) sz——ll—)!-xp_‘ = —x*', d*(y) =x, yx—xy=r €R

and R{x,y) = R{x,y).
Proof. 1t suffices to prove that yx—xy € R. Since d(y) € R[x],

d(y)x = xd(y). Hence d(yx—xy) = d(y)x+yd(x)—d(x)y—xd(y) = d(y)x
+y—y—xd(y) = 0. Combining with the fact R = A'*, we get yx—xy € R.
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With the same notations in Lemma 2, we have the following.

Lemma 3.

1

yx" = "y +nrx™ ! and

yd(y) = =y (e ™ D (Do —1)-+(p—i)ris - ly™),

Proof. Using the relation yr—xy = r € R, the first relation is easily
seen by induction. So we shall prove the second relation by induction on n.
For n = 1, the assertion is clear by the first relation. We assume that the
assertion is valid for n. For n+1, we have
y*d(y) = y(y"d(y))

1 — n n n . i — - n-
=W((yx" Ny + 2 (Dp—1)--(p—i)riyx? "ly™ )
= rll),((-r""y+(p—1)rx"’2)y"+ 2 (Dp—=1)-(p—i)-
’ri(xp_i_ly-{—(p—i—l)rxp—‘_Z)y"_t)
1 ~-1,,n+ n -2,
= oo r @Y =D (D)"Y
+7{p—1)--(p—=)((D+(I))x T ly™ e
+(p—1)-p—(n 1))y igem1-me)
= oy D ()= 1) o — D)y,
This completes the proof.

The following lemma is well-known,

Lemma 4. (D) +("")+--+() = (1) for 1 < i< n. Especially
P+ 4+ +() =0 (mod p) for 1 < i< p-—2.

Lemma 5. Let y be the element of A defined in Lemma 2, Then we
have d(y™) = 2 3.1 y" *d(y)y*"! and d(y*) =

Proof. Since d is a derivation, the first relation is proved by easy in-
duction. We shall prove the second relation. By the first relation we have
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d(y”) = 20, yp_id(y)y"“

=T11“)‘_((:L‘° Lyt 3 (P N p—1) - (p—i)rix? Ty F)
+(JJP 1,P- 2+ 29 2 (P— 2)(p 1) (p_i),’.txp—i—lyp—z_i)y+‘“
+(x?~ 1yp ny Shesn (i) (p—1).. (p_i),rtx.o—i—lyp_n-i)yn_,+
+x°7'y*7")  (by Lemma 3)

=ﬁ(mp P (PT) 4 (P72 e () p— 1) 7 2yP 2
+((P7H) (%) + - AN p—-1)p—2)r Y S U
F((P) (D) + A+ p=1)-(p—i)rx? Ty
H((ED+EIp—1)--- 27"y +(p—1)1 ")

= (by Lemma 4).

In [5] Proposition 2.12, it is shown that A is freely generated by |c,
d(c),....d" *(c) = x,d” '(c) = 1} as R-module. The algebra structure of
A is given by the following theorem.

Theorem 6. An R-algebra A is an H(p*®)-Hopf Galois extension of R if
and only if A = R(X,Y)/(X?—nr,, Y°—7*'X—ry, YX—XY—7), (11, 70,
r € R) as H(p*)-module algebra, where the H(p®)-module structure of a right
1 p-1

- — Pl
(p—l)! X X s X,

hand side algebra is given by d(x) = 1, d(y) =
y residue classes of X, Y respectively.

Proof. We first prove if part. Let A' = R(X, Y)/(X?—r,, Y?—
r?'X—r,, YX—XY—r). Then by Lemmas 3 and 5, A’ is an H(p?)-module
algebra. Now let ¢ A # H(p*) ——End(A4’) be the natural homomorphism
defined by ¢( 2V a; #d)a) =28 didi(a’). Substituting 1,x,...,x°7",
vy, xy, xy, ..., x°7'y"7! for @' inductively, we get easily that ¢ is a mono-
morphism. The homomorphism ¢ induced by passing to residue class fields
is also a monomorphism as is easily seen. Counting ranks, we get that é is
an isomorphism. So ¢ is an isomorphism. Thus A’ is an H(p?)-Hopf Galois
extension of R. Next we shall prove only if part. Let A be an H(p*)-Hopf
Galois extension of R, and x, y elements of A chosen as Lemma 2. Then by if
part R{x,y) is also an H(p?)-Hopf Galois extension of R. So A = R{x,y)
by the similar manner as if part. This completes the proof.

Corollary 7. If R is a field then any H(p*)-Hopf Galois extension of R

is a commutative algebra.
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Proof. Let A = R{(x, y) be an H(p?)-Hopf Galois extension of R,
where x” =r,, y*—r*'x =1, and yx—xy =71, 1|, 10,7 € R. f r =0
there is nothing to prove. If r =0, r is a unit, so x € R[y?]. Thus
R{x,y) = R{y,y*). But this is impossible since R(y,y") is a commutative
ring.

The assumption of Corollary 7 would be too strong. The following is
due to the referee.

Remark. If R is reduced, then the assertion of Corollary 7 holds.
P+1 __ p—1yx = roy =
r°7'xy. Hence we have 7" '(yx—xy) = v =0, andso r = 0.

In fact, from the relation y*—r°7'x = r,, we get y
Yo —

T

2. H(p)*-Hopf Galois extensions of R. The structure of a commuta-
tive H(p)*-Hopf Galois extension is completely determined in [7] Corollary
4. So in this section we mainly consider a non-commutative Hopf Galois
extension (of course if there exists).

Theorem 8. Let A be an R-algebra. Then A is an H(p)*-Hopf Galois
extension of R if and only if A = R{X,Y)/(X°—r,, Y°—r, XY—YX—7),
71,72, 7 € R, as H(p)*-module algebra, where the H(p)*-module structure of
right hand side algebra is defined by d\(x) =1, d,(x) = 0, d,(y) = 0 and
d,(y) =1, and x, y are residue classes of X, Y respectively.

Proof. Only if part. It is easily seen that the integral
H(p)"" = |h € H(p)* | gh = e(g)h for any g € H(p)"|

is freely generated by d¥'df™' over R. Now let A be an H(p)*-Hopf Galois
extension of R. Then by similar way as [6] Lemma 1.1, there exists an
element ¢ € A such that df7'df7'(c)= 1. We set x = d?72d? *(c) and
y=df{7'd{7*(c). Then d\(x) =1, d,(x) =0, d,(y) =0 and d,(y) = 1.
Since d\(xy —yx) = d\(x)y+xd,(y) —d,(y)x—yd,(x) = 0 and similarly
dy(xy—yx) = 0, we get xy—yx € A" = R. Next by Lemma 5, d,(z?) =

Foa xR (x)x* ! = px®' = 0, and dy(x®) = 22, x?*d,(x)x* = 0.
Hence x* € R. Similary y® € R. Now we shall show that {x*y’}oc;;<p1
is linearly independent over R. Assume that 2.2, ri,x’y’ = 0. Applying
d,, we get
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Zf.jllo Tudl(x'yj)
= Zf».i-=10 ,rifdl(xt)y}-’_ fto 17X (y7)
= 2300 2k Tg;x‘—kdx(x)xk_lyj‘l' Zﬁf:‘n 2 ""uxil)'t_kdl(I)’)yk“1
— S R ey = 0,

where 7, = ir,,. Further applying d,, we get 2.2 2.5 rix'™%y’ = 0,
where 7, = i(i—1)r,;. And finally we get 2292 (p—1)!7,_,,5 = 0. Next
applying d,. (p—1)-times, we get 7,_, ,-, = 0. Hence inductively we get
Tp-1, = 0 for all j. Again inductively, we get r,, = 0 for all i, j. Thus
lx'y’ Jogiss0-1 is linearly independent over R. Usual arguments of passing to
residue class fields and counting ranks, we get that A = R{x,y).

If part. Let A be an R-algebra generated by x and y with the relation
x*=r,y=r,andxy—yx =7, r,,7,,7 € R. We define the action of d,
and d, as follows : d,(x) = 1, d,(y) =0, d,(x) = 0 and d,{(y) =1, and
then extend the actions of d,, d, to A as R-derivation. Since xy—yx € R,
d.d,(xy) = d,d,(yx), A is an H(p)*-module algebra as is easily seen. We de-
fine an homomorphism ¢: A # H(p)*——End(A) by ¢( Xa,, # d} ®dj)(a) =
Yia, didi(a). If ¢( Xa, # di ® d3) = 0, then substituting |y’ foc,ysp-1
for a, we get inductively a,, = 0. Thus ¢ is a monomorphism. By the usual
way of passing to the residue class fields and counting ranks, we get ¢ is
an isomorphism. Thus A is an H(p)*-Hopf Galois extension of R.

In the case of R is a field, we have the following normal form of H(p)*-
Hopf Galois extensions.

Theorem 9. Assume that R is a field and A is an R-algebra which is
non-commutative. If A/R is an H(p)'-Hopf Galois extension, then we can
define a new H(p)*-action on A (of course if necessary) such that A/R is
an H(p)*-Hopf Galois extension and A = R(x,y) where x, y satisfies the
following relations ; x®,y° € R,xy—yx=1,d,(x) =1,d,(y) =0,d,(x) =0
and d,(y) = 1 — this means that d, is an inner derivation afforded by —y
and d, is an inner derivation afforded by —x.

Proof. Let x,y € A be an element which satisfies the relations of
Theorem 8 (say xy—yx = r + 0). We set ¥ = r~'y, and define a new
H(p)*-actionon A = R{x,y) = R{(x,y) by d,(x) =1,d,(y) =0,d:(x) =0
and d.(y) = 1. By this new H(p)*>-module structure, A is an H(p)*-Hopf
Galois extension of R. This completes the proof.
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Proposition 10. Let R be a field and A = R{x, y) an H(p)*-Hopf
Galois extension of R, where x, y is chosen to satisfy x*,y* € R, xy—yx =1,
di(x) =1,d,(x) =0,d,(y) =0 and d,(y) =1 as Theorem 9. Then A is
a central simple R-algebra.

Proof. Let H be a Hopf algebra generated by d,. Then R[x]/R is an
H-Hopf Galois extension as is easily seen. We define a homomorphism f : H
A by fid]) =(—1)y’,0 < j < p—1. We note that f is an invertible ele-
ment in the convolution algebra Hom(H,A) — f™' is given by f7'(d{) = ¥’.
We want to show that f gives an A-inner action of H extending the action on
R[x]. To this end we must show that di(z) = 2 f(din)2f(d)s) for
z € R[x]. We proceed by induction on j. For j = 0,1 the assertion is

valid and we assume that the assertion holds for j < p—1. Then

di*'(z) = di(d{(2)) = di( Dah fdin)2f " (diw)
= —y 2ah fldin)2f(din) + Ziah fldin)2f 7 (de)y
= —y k=0 () —3)"2y" ™"+ 2hoo (£)(—) %2y~
= (=Y 24 2o () +EN( =) 2y’ 754 ( 2y’
Ao U (=) eyt %

= Zra{ﬂ)f(d’:ﬂm)zf—l( la).

Thus f gives a desired A-inner action. Next we shall consider the 2-cocy-
cle o associated of f. We formulate as the following lemma.

Lemma 11. Let 0 £ i,j < p—1. Then o(d! ® d{) =1 when i =
j=0, o(di ®d}) = —y° when i+j = p, and o(d! ® di) = 0 otherwise.

PTOOf. By definition U(df ®d{) = Z‘nd{)E(a{)f(dfm)f(d{u))f_l(df(z)d{(z))-
Sofor0 =i+j<p,

o(di @ di) = 260 2t ()(DA) AN (di~%d]™")
= 205=0 2it=o (§)(I)(—y) S tyt it
= D160 20 (E)()(—1)Hty !
= (-1 111y =1
ifi=j=0o0rod!®d!) =0if 0 <i+j<p. Next we consider the
case i+j = p. Noting that f~'(d{*™°7%) =0 if s+t < i+j—p, we get

O’(di ® di’) = Zg=o i=o (é)(i)(_l)s+ryi+J_ Zs+t5i+l—p (é)(i‘)(_l)SHy‘“-

We know that 2050 2010 (5)()(—=1)*'* = (1 —-1)(1—1)y** = 0 and
Dlsstsies—n (H)EN—1)**' = sum of coefficients of the polynomial
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1-X)1-Y)=(1-X")(1—X)"""* degree less than or equal to
i+ j—p, which is equal to (1 —1)*'"%. Thus o(d{ ® d7) = —y” if i+j = p,
or o(d! ® d{)=0 otherwise. Since A is associative, ¢ is indeed a 2-cocy-
cle. This completes the proof.

Now we return to the proof of Proposition 10. Since the associated
2-cocycle o is R-valued, the smash product R[x] # oH is a simple ring
(cf. [8] Proposition 9.1 or [10] Proposition 1.2). We define a homomor-
phism p: R[x] # ¢H—— A by p(a # d') = af(d*). p is a non-zero algebra
homomorphism, hence a monomorphism. |p(x # 1) = x, (1 # (—d.)) = y|
is a generator of A over R, so p is an epimorphism. This completes the
proof of proposition 10.

Corollary 12. An H(p)*-Hopf Galois extension A of R is a commutative
algebra or an Azumaya algebra.

Proof. We assume that A is non-commutative. By Theorem 8, A is
central as is easily seen. Also by [4] Proposition 1.1, A is a separable R-
algebra if and only if A/mA is a separable R/m-algebra for any maximal
ideal m of R. So we may assume that R is a field. Since the ring structure
is not changed in Theorem 9, we get the assertion by Proposition 10.
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