ON CONNECTEDNESS OF STRONGLY ABELIAN EXTENSIONS OF RINGS

Dedicated to Prof. Noboru Itô on his 60th birthday

Kazuo KISHIMOTO

A ring with an identity 1 is said to be a connected ring if 1 and 0 are only idempotents of its center. Recently in [1], we have studied on the connectedness of p-Galois extensions of connected rings of characteristic p > 0. In this paper, we shall continue the study on the connectedness of strongly abelian extensions of connected rings.

As is proved in [3], a strongly abelian extension of a ring is obtained by a homomorphic image of a skew polynomial ring of automorphism type, and so as a preparation, some general remarks about a skew polynomial ring of automorphism type are given in § 1.

In § 2, we study necessary and sufficient conditions for a strongly cyclic extension over a connected ring to be connected, and results of this section are applied in § 3 for a study on the connectedness of some types of strongly abelian extensions.

1. Notations and general remarks. Throughout this paper, we assume that A is a ring with an identity 1 such that n(>1) is an invertible element for some integer n and the center C(A) contains a primitive n-th root ζ of 1 such that $\{1-\zeta^i; i=1,...,n-1\}$ are invertible elements.

Let $|\rho_i|$; i = 1,...,m be automorphisms of A and $\mathcal{A} = |a_{ij} \in U(A)$; i, j = 1,...,m where U(A) is the group of all invertible elements of A. If $|\rho_i|$; i = 1,...,m and \mathcal{A} satisfy the conditions

- (1) $a_{ij}a_{ji} = a_{ii} = 1$
- (2) $\rho_i \rho_i \rho_i^{-1} \rho_i^{-1} = \tilde{a}_{ij}$, the inner automorphism $(a_{ij})_i (a_{ji})_r$
- $(3) \quad a_{ij}\rho_{j}(a_{ik})a_{jk} = \rho_{i}(a_{jk})a_{ik}\rho_{k}(a_{ij}),$

for all i, j, k = 1, ..., m, then the set of all polynomials $\{\sum X_1^{\nu_1} X_2^{\nu_2} ... X_m^{\nu_m} a_{\nu_1 \nu_2 ... \nu_m} ; a_{\nu_1 \nu_2 ... \nu_m} \in A \}$ becomes an associative ring by the rules

$$aX_i = X_i \rho_i(a)$$
 for all $a \in A$ and $X_i X_i = X_i X_i a_{ij}$. (See [3]).

This ring is denoted by $R_m = A[X_1,...,X_m; \rho_1,...,\rho_m,\mathcal{A}]$ or $R_m =$

 $A[X_1,...,X_m; \rho_1,...,\rho_m, | a_{ij}; i,j=1,...,m]$ and is called a skew polynomial ring of automorphism type. Moreover, by R_k $(0 \le k \le m)$, we denote the skew polynomial ring $A[X_1,...,X_k; \rho_1,...,\rho_k, | a_{ij}; i,j=1,...,k]$ which is a subring of R_m , where $R_0 = A$. In particular, if m=1, we denote it by

$$R = A[X; \rho] = |\sum X^i a_i; a_i \in A|$$

and its multiplication is given by

$$aX = X\rho(a)$$
 for $a \in A$.

Remark 1.1. For a permutation π of k letters, 1,2,...,k, $(k \leq m)$, we have an A-ring isomorphism $R_k \cong A[X_{\pi(1)},...,X_{\pi(k)}; \rho_{\pi(1)},...,\rho_{\pi(k)}, | a_{\pi(l)\pi(j)}; i,j=1,...,k]$ which maps X_l to $X_{\pi(l)}$ (i=1,...,k).

Remark 1.2. ρ_{k+1} can be extended to an automorphism ρ^*_{k+1} of R_k by $\rho^*_{k+1}(X_j) = X_j a_{jk+1}$ for j = 1,...,k and $\rho^*_{k+1} | A = \rho_{k+1}$. Moreover, there holds $R_{k+1} \cong R_k[X_{k+1}; \rho^*_{k+1}]$.

Definition 1.3. Let $g = X_i^s + \sum_{h=0}^{t-1} f_h(X_1, ..., X_{t-1}, X_{t+1}, ..., X_m) \in R_m$. g is said to be a generator in R_m if $s \ge 1$ and $gR_m = R_m g$. A generator g in $R = A[X; \rho]$ is said to be weakly irreducible (abbreviate w-irreducible) if g has no proper factors which are generators.

Let $G = (\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_m)$ be an abelian group such that $|\sigma_i| = n_i$ and $n = \prod_{i=1}^m n_i$.

Definition 1.4. A G-Galois extension B of A is said to be a G-strongly abelian extension if $B_A \oplus > A_A$ (i.e., A_A is an A-direct summand of B_A) and there exist $x_1, ..., x_m \in U(B)$ such that $\sigma_l(x_j) = x_j(\zeta_j)^{\varepsilon}$ where $\zeta_j = \zeta^{n/n_j}$ and $\varepsilon = \delta_{l,l}$, the Kronecker's delta.

Remark 1.5. A has a G-stronly abelian extension if and only if there exist automorphisms $|\rho_i|$; i=1,...,m of A and a set of elements $\mathscr{A}=|a_{ij}|$ $\in U(A)$; i,j=1,...,m which satisfy conditions (1)-(3), $\rho_i(\zeta)=\zeta$ and there exist elements $\alpha_1,...,\alpha_m\in U(A)$ such that $X_k^{nk}-\alpha_k$ is a generator in $R_m=A[X_1,...,X_m;\rho_1,...,\rho_m,\mathscr{A}]$ for k=1,...,m. Moreover, if this is the case, B is isomorphic to R_m/M , $M=(X_1^{n_1}-\alpha_1,...,X_m^{n_m}-\alpha_m)R_m$ and $\sigma_i(x_j)=x_j(\zeta_j)^\varepsilon$ where x_j is the coset of X_j modulo M. Hence, we may write

$$B = A[x_1, ..., x_m; \rho_1, ..., \rho_m, \mathcal{A}]$$

= $\sum \oplus (x_1^{\nu_1} x_2^{\nu_2} ... x_m^{\nu_m}) A \quad (0 \le \nu_l \le n_l - 1)$

with $x_i^{n_i} = a_i \in U(A)$, $ax_i = x_i \rho_i(a)$ for $a \in A$, $\rho_i(\zeta) = \zeta$ and $x_i x_j = x_j x_i a_{ij}$.

- Remark 1.6. If $\mathcal{A} = \{1\}$, we denote R_m by $A[X_1, ..., X_m ; \rho_1, ..., \rho_m]$. Then $X_i^{n_i} \alpha_i$ is a generator in R_m if and only if $\alpha_i \in \bigcap_{j=1}^m A^{\rho_j}$ where $A^{\rho_j} = \{a \in A ; \rho_j(a) = a\}$.
- Remark 1.7. If $G=(\sigma)$ is a cyclic group of order n then we say that a G-strongly abelian extension B of A is an n-strongly cyclic extension. In this case, B is obtained by $A[x; \rho] = \sum_{i=0}^{n-1} \oplus x^i A$ with $x^n = \alpha \in U(A)$, $ax = x\rho(a)$ for $a \in A$, $\rho(\zeta) = \zeta$ and $\sigma(x) = x\zeta$.
- Remark 1.8. Let $f(X) = X^s + \sum_{i=0}^{s-1} X^i a_i \in R = A[X; \rho]$. If $a_0 \in U(A)$ then f(X) is a generator in R if and only if $a_i \in A^\rho$ and $\rho^i(a)a_i = a_i \rho^s(a)$ for any $a \in A$ and i = 0, 1, ..., s. Hence f(X) is contained in $C(A^\rho)[X]$.

Let H be a group. A normal subgroup N of H is said to be a small group (abbreviate an s-group) if only subgroup H' of H such that H = NH' is H. The followings are proved in [1].

- **Remark 1.9.** Let A be connected and let B/A be an H-Galois extension for a finite group H.
- (1) If B is disconnected, then there exists a nontrivial idempotent $e \in C(B)$ such that $e\tau(e) = 0$ or $\tau(e) = e$ for every $\tau \in H$.
 - (2) If B^N is connected for an s-subgroup N of H, then B is connected.
- 2. Connected n-strongly cyclic extensions. The purpose of this section is to study about the connectedness of an *n*-strongly cyclic extension of a connected ring. For this, we denote by B an n-strongly cyclic extension of A. Thus we may assume that $B = A[x; \rho] = \sum_{i=0}^{n-1} \oplus x^i A$ for some automorphism ρ of A and an element $\alpha \in U(A)$ such that $\rho(\zeta) = \zeta$, $x^n = \alpha$, $\rho^n = \tilde{\alpha}^{-1}$, $ax = x\rho(a)$ for $a \in A$ and $\sigma(x) = x\zeta$.
- **Theorem 2.1.** Let A be connected. Then B is connected if and only if $f(X) = X^n \alpha$ is w-irreducible.

Proof. Let B be connected. If f(X) is not w-irreducible then f(X) = g(X)h(X) for some generators $g(X) = \sum_{i=0}^{s} X^{i}a_{i}$ and $h(X) = \sum_{i=0}^{t} X^{i}b_{i}$. Since both a_{0} and b_{0} are invertible elements, g(X) and h(X) are contained in $C(A^{\rho})[X]$ by Remark 1.8. Hence

$$nX^{n-1} = f'(X) = g'(X)h(X) + g(X)h'(X)$$

for an ordinal derivation ' of $C(A^o)[X]$. Since $nx^{n-1}=g'(x)h(x)+g(x)h'(x)$ is an invertible element in $C(A^o)[x]$ which is a subring of B, (g(x)) and (h(x)) are co-maximal ideals such that $0=(g(x))(h(x))=(g(x))\cap (h(x))$. Thus $B=B/(g(x)h(x))\cong B/(g(x))\oplus B/(h(x))$ and this is a contradiction.

Conversely, assume f(X) is w-irreducible and B is disconnected. Then there exists a nontrivial idempotent $e \in C(B)$ such that either $e\tau(e)=0$ or $\tau(e)=e$ for $\tau\in(\sigma)$ by Remark 1.9. Let $H=\mid \tau\in(\sigma)$; $\tau(e)=e\mid =(\sigma^m)$. Then $T_\sigma(e\,;\,m)=e+\sigma(e)+\cdots+\sigma^{m-1}(e)$ is an idempotent of C(A) and so $T_\sigma(e\,;\,m)$ is either 0 or 1. If $T_\sigma(e\,;\,m)=0$ then we have a contradiction that $0=e\,T_\sigma(e\,;\,m)=e$. Thus $T_\sigma(e\,;\,m)=1$. Let $T=B^{\sigma^m}$. Then $T=\sum_{i=0}^{m-1}\oplus(x^{m'})^iA$ where $m'=\mid H\mid$ and m=n/m'. Further we can easily see that $T^\sigma=A$ and $\{x_i=y_i=\sigma^i(e)\,;\,i=0,1,...,m-1\}$ satisfies $\sum_{i=0}^{m-1}x_i\sigma^i(y_i)=\delta_{1,\sigma^j}$ for j=1,...,m. Thus T/A is a $\sigma\mid T$ -cyclic extension and, by ([6, Theorem 2.3]),

 $T = Ae + A\sigma(e) + \cdots + A\sigma^{m-1}(e)$ and this sum is a direct sum since $\sigma^{i}(e)\sigma^{j}(e) = 0$ for each i, j = 0, 1, ..., m-1 with $i \neq j$.

(1) Let $y=a_0e+a_1\sigma(e)+\cdots+a_{m-1}\sigma^{m-1}(e)$ where $y=x^{m'}$ and $a_i\in A$. Then

(2)
$$y = x^{-1}yx = \rho(a_0)e + \rho(a_1)\sigma(e) + \cdots + \rho(a_{m-1})\sigma^{m-1}(e)$$

and

(3)
$$ay = y\sigma^{m'}(a) = aa_0e + aa_1\sigma(e) + \dots + aa_{m-1}\sigma^{m-1}(e)$$

= $a_0\rho^{m'}(a)e + a_1\rho^{m'}(a)\sigma(e) + \dots + a_{m-1}\rho^{m'}(a)\sigma^{m-1}(e)$

for any $a \in A$. Thus we obtain

(4)
$$y\sigma^i(e) = a_i\sigma^i(e) = \rho(a_i)\sigma^i(e)$$
 for $i = 0,1,...,m-1$ by (1) and (2), and

(5)
$$aa_i\sigma^i(e) = a_i\rho^{m'}(a)\sigma^i(e)$$
 for $a \in A$ by (3).

Noting that $T_{\sigma}(\sigma^{i}(e); m) = 1$, we have

(6)
$$\rho(a_i)=T_\sigma(\rho(a_i)\,\sigma^i(e)\,;\,m)=T_\sigma(a_i\sigma^i(e)\,;\,m)=a_i$$
 by (4) and

(7)
$$aa_i = T_{\sigma}(aa_i\rho^i(e); m) = T_{\sigma}(a_i\rho^{m'}(a)\sigma^i(e); m) = a_i\rho^{m'}(a).$$

Further

 $\alpha\sigma^{i}(e) = y^{m}\sigma^{i}(e) = (y\sigma^{i}(e))^{m} = (a_{i}\sigma^{i}(e))^{m} = a_{i}^{m}\sigma^{i}(e) \text{ (by (4))}$ and hence, $\alpha = T_{\sigma}(\alpha\sigma^{i}(e); m) = T_{\sigma}(a_{i}^{m}\sigma^{i}(e); m) = a_{i}^{m}.$ Therefore

$$X^{n} - \alpha = (X^{m'})^{m} - (a_{i})^{m}$$

= $(X^{m'} - a_{i})((X^{m'})^{m-1} + (X^{m'})^{m-2}a_{i} + \dots + (a_{i})^{m-1})$

by (6). Moreover, (6) and (7) show that $X^{m'}-a_i$ and $X^{m'}+(X^{m'})^{m-1}a_i+\cdots+(a_i)^{m-1}$ are generators. This is a contradiction.

We say that t is the index of ρ and denote it by $ind. \rho$ if t is the index of the subgroup of inner automorphims in (ρ) . Since $\rho^n = \tilde{\alpha}^{-1}$, $ind. \rho \leq n$.

Lemma 2.2. (i) If ind. $\rho = n$ then $X^n - \alpha$ is w-irreducible.

- (ii) If ind, $\rho=1$ then we may assume $R=A[X;\rho]=A[Y]$, a polynomial ring with a commutative indeterminate $Y\in R$ and $X^n-\alpha=(Y^n-z)a^n$ for some central polynomial Y^n-z and $\alpha\in U(A)$.
- *Proof.* (i) If a generator g(X) is a factor of $X^n a$, then the constant term a_0 of g(X) must be an invertible element and $\rho^k = \tilde{a_0}^{-1}$ for $k = \deg g(X)$. Thus k = n since $ind. \rho = n$.
- (ii) Let $\rho = \tilde{a}^{-1}$ for some $a \in U(A)$. Then $\tilde{a}^{-1} = \rho^n = \tilde{a}^{-n}$ implies $\alpha = a^n z$ for some $z \in U(C(A)) (= U(C(A))^{\rho})$. Then $Y = Xa^{-1}$ is central in $A[X; \rho]$ and $A[X; \rho] = A[Y]$. Further $X^n \alpha = ((Xa^{-1})^n z)a^n = (Y^n z)a^n$ for a central polynomial $Y^n z$.

Corollary 2.3. Let A be connected and n a prime. Then $X^n - \alpha$ is either w-irreducible or a product of generators of degree 1.

Proof. Ind. ρ is either n or 1. If $ind. \rho = n$ then $X^n - \alpha$ is w-irreducible by Lemma 2.2.(i). While, if $ind. \rho = 1$, then R = A[Y] and $X^n - \alpha = (Y^n - z)a^n$ for $Y = Xa^{-1}$ with $a \in U(A)$ by Lemma 2.2.(ii). Hence, if $X^n - \alpha$ is not w-irreducible, then $Y^n - z$ is reducible in C(R) = C(A)[Y] and so a product of linear factor $\prod_{i=1}^n (Y - u\zeta^i)$ by ([5, Lemma 1.4]). Hence $X^n - \alpha = \prod_{i=1}^n (Y - u\zeta^i)a^n = \prod_{i=1}^n (Ya - ua\zeta^i) = \prod_{i=1}^n (X - ua\zeta^i)$ and each $X - ua\zeta^i$ is a generator.

Let $U(A)_n^{\rho} = \{a \in U(A)^{\rho}; \rho^n = \tilde{a}\}$. Then we have the following

- Theorem 2.4. Let A be connected and n a prime. Then A has a connected n-strongly cyclic extension if and only if one of the following conditions (a) and (b) is satisfied.
- (a) $n \leq (U(C(A)): U(C(A))^n)$, the index of the subgroup $U(C(A))^n = |c^n; c \in U(C(A))|$.
- (b) A has an automorphism ρ of index n such that $\rho(\zeta) = \zeta$ and $U(A)^{\rho}_{n} \neq \emptyset$.

Proof. First, we assume that A has a connected n-strongly cyclic extension B. Then there exist an automorphism ρ of A and an element $\alpha \in U(A)$ such that $X^n - \alpha$ is w-irreducible in $R = A[X; \rho]$ and $B \cong R/(X^n - \alpha)$. If it is possible to choose ρ as inner, then we may assume R = A[Y] and $B \cong R/(Y^n - z)$ for some central polynomial $Y^n - z$ which is irreducible in C(R) = C(A)[Y] by Corollary 2.3. Hence $z \in U(C(A)) \setminus U(C(A))^n$. Since $z \notin U(C(A))^n$ (i = 0, 1, ..., n-1) are distinct cosets in $U(C(A))/U(C(A))^n$, there holds (a). On the other hand, if ρ is non inner, then $ind. \rho = n$ and $\alpha \in U(A)^n$. Conversely, if (a) is hold then C(A) has a commutative connected n-strongly cyclic extension Z and $Z \in C(A)$ is a connected $Z \in C(A)$ is $Z \in C(A)$ and $Z \in C(A)$ is hold then $Z \in C(A)$ is $Z \in C(A)$ is connected $Z \in C(A)$ is connected $Z \in C(A)$ is connected $Z \in C(A)$ is connected by $Z \in C(A)$ is connected $Z \in C(A)$ is connected by $Z \in C(A)$ is connected by $Z \in C(A)$.

Let $n=p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}$ and $\tau=\sigma^{p_1\rho_2\cdots \rho_s}$ where p_1,\ldots,p_s are distinct primes. Then (τ) is an s-subgroup of (σ) . Hence if A is connected then B is connected if B^{τ} is connected by Remark 1.9. Therefore we may assume that $n=p_1p_2\cdots p_s$ to study the connectedness of B over a connected ring A. Thus in the following we assume that $n=p_1p_2\cdots p_s$, a product of distinct primes. Let $\tau_l=\sigma^{\rho_l}$ and $B_l=B^{\tau_l}$. Then $B_l=\sum_{j=0}^{\rho_l-1}\oplus (y_l)^jA\cong A[Y;\rho^{q_l}]/(Y^{\rho_l}-\alpha)$ where $y_l=x^{q_l}$ and $q_l=n/p_l$.

Theorem 2.5. Let A be connected. Then B is connected if each B_i is connected. Conversely, if B is connected and $U(A)^{\rho^{q_i}} = U(A)^{\rho}$ for all i, then B_i is connected for all i.

Proof. Let B be connected and $U(A)^{\rho^{q_i}} = U(A)^{\rho}$ for all i. An element $c = \sum_{j=0}^{\rho_{i-1}} (y_j)^j a_j \in B_i$ is contained in $C(B_i)$ if and only if $\rho^{q_i}(a_j) = a_j$ and $(\rho^{q_i})^j(a)a_j = a_ja$ for any $a \in A$. But this means that c is also contained in C(B). Thus each B_i is connected. Conversely, assume that each B_i is connected and we put $S_1 = B^{\theta_1}$ where $\theta_1 = \sigma^{q_1}$. First, we show that B is

connected if B_1 and S_1 are connected. If this assertion is true then we can reduce the connectedness of S_1 from that of B_i , i=2,...,s applying the same methods on S_1 . Suppose now B is disconnected. Then there exists a nontrivial idempotent $e \in C(B)$ such that $e\tau_1(e)=0$ and $e\theta_1(e)=0$ by Remark 1.9. We now show that $\theta_1{}^i(e)\theta_1{}^j(e)=0$ for $i\neq j$. For, we may assume i< j and $1\leq j-i\leq p_1-1$. Hence $\theta_1{}^{j-i}$ is a generator of (θ_1) . Hence, if $\theta_1{}^i(e)\theta_1{}^j(e)\neq 0$, then $\theta_1{}^i(e\,\theta_1{}^{j-i}(e))\neq 0$ and this implies a contradiction $e=\theta_1{}^{j-i}(e)\in S_1=B^{\theta_1}$. Therefore

$$f = e + \theta_1(e) + \dots + \theta_1^{p_1 - 1}(e) = 1$$

since f is a central idempotent of S_1 . Next we shall show that $\tau_1(e) \theta_1^{i}(e) = 0$ for $i = 0, 1, ..., p_1 - 1$. For, $\tau_1(e) \theta_1^{i}(e) = \sigma^{p_1}(e \sigma^{-p_1} \theta_1^{i}(e)) = \sigma^{p_1}(e \sigma^{q_1^{i-p_1}}(e))$ and $(q_1^{i} - p_1, p_j) = 1$ for j = 1, ..., s. Therefore we have a contradiction $e = \sigma^{q_1^{i-p_1}}(e) \in B^{\sigma} = A$ if $\tau_1(e) \theta_1^{i}(e) \neq 0$. Thus we have a contradiction $\tau_1(e) = \tau_1(e) f = 0$ again.

Corollary 2.6. Let A be connected. Then A has a connected n-strongly cyclic extension B if there exist an automorphism ρ of A and an element $\alpha \in U(A)^{\alpha}_{n}$ which satisfy

- (1) $\rho(\zeta) = \zeta$
- (2) $ind. \rho^{q_i} = p_i \text{ for } i = 1,...,k$
- (3) ind. $\rho^{q_i} = 1$ and $\alpha(\zeta^{q_i})^j U(C(A))^{p_i}$ $(j = 0, 1, ..., p_i 1)$ are distinct cosets in $(U(C(A)): U(C(A))^{p_i})$ for i = k+1, ..., s.

Proof. If there exist an automorphism ρ and an element $\alpha \in U(A)_n^{\rho}$ which satisfy conditions (1)-(3), then $B=A[X:\rho]/(X^n-\alpha)$ is an *n*-strongly cyclic extension. Further (2) and (3) show that each B_i is connected, and so B is connected.

If A is a connected commutative ring and B is a commutative n-cyclic extension, then B is an n-strongly cyclic extension, and so B is connected if and only if there exists an element $\alpha \in U(A)$ such that $\alpha \notin U(A)^{p_i}$ for each i. Moreover, it is known that if A is a local ring (resp. a domian) then so is B, and conversely (See $[4, \S 1]$). Hence we have the following

Corollary 2.7. Let A be a connected commutative ring. Then A has a connected commutative n-cyclic extension B if and only if there exists $\alpha \in U(A)$ such that $\alpha \notin U(A)^{\rho_i}$ for i=1,...,s. Further, if this is the case, B is a local ring (resp. a domain) if and only if so is A.

Let A be a two sided simple ring. Then each ideal of $A[X; \rho]$ is generated by a generator and the ideal is maximal if and only if the generator is w-irreducible. Since each generator f(X) is decomposed into $\prod_{i=1}^{\kappa} g_i(X)$, a product of w-irreducible polynomials, if $g_i(X) \neq g_i(X)$ for $i \neq j$ then (f(X)) is a product (= the intersection) of the maximal ideals $(g_i(X))$. Hence we have the following

Theorem 2.8. Let A be a two sided simple ring (resp. a simple artinian ring).

- (a) $B = A[X; \rho]/(X^n \alpha)$ is a finite direct sum of two sided simple rings (resp. simple artinian rings).
- (b) $B = A[X; \rho]/(X^n \alpha)$ is a two sided simple ring (resp. a simple artinian ring) if and only if B is connected.
- *Proof.* (a) Let $X^n \alpha = \prod_{i=1}^k g_i(X)$ be a decomposition into w-irreducible polynomials in $A[X; \rho]$. Since $X^n \alpha$ is separable in R, $(g_i(X))$ and $(g_j(X))$ are co-maximal ideals if $i \neq j$ by ([7, Theorem 1.10]). Thus $B = \sum_{i=1}^k \bigoplus A[X; \rho]/(g_i(X))$ and each $A[X; \rho]/(g_i(X))$ is a two sided simple ring (resp. a simple artinian ring).
 - (b) is an immediate consequence of (a).

As is shown in ([1, Lemma 2.1]), if A is of characteristic p for a prime p and B is a connected p^e -cyclic extension of A then A is also connected. But the following example shows that there exists a connected n-strongly cyclic extension B of A even if A is disconnected.

- **Example 2.9.** Let $A=Q\oplus Q$ be the direct sum of 2-copies of the rational numbers field Q. Then C(A)=A is disconnected. The map $\rho:A\to A$ such that $(q_1,q_2)\to (q_2,q_1)$ is an automorphism of A of order 2, $A^\rho=Q=\{(q,q):q\in Q\}$ and X^2-2 is a generator of $R=A[X:\rho]$ where Q=(Q,Q). Then Q=(Q,Q) is a 2-strongly cyclic extension of Q with Q with Q with Q is Q is a 2-strongly cyclic extension of Q with Q is Q is a 2-strongly cyclic extension of Q with Q is Q is a 2-strongly cyclic extension of Q with Q is Q is Q is a 2-strongly cyclic extension of Q is Q is a 2-strongly cyclic extension of Q is Q is Q is Q is Q is Q is Q.
- 3. Connected strongly abelian extensions. Let $G = (\sigma_1) \times (\sigma_2) \times \cdots$ (σ_m) be an abelian group of order n such that $|\sigma_i| = n_i$. If G is a p-group and A is of characteristic p, then the connectedness of a G-abelian extension G of G implies that of G (see [1]). But the following examples show that the above are not valid when G is a G-strongly abelian extension.

Examples 3.1. (i) Let $A=Q[\sqrt{-1}]$ and $R=A[X_1,X_2;\{-1\}]=|\sum X_1^{\nu_1}X_2^{\nu_2}a_{\nu_1\nu_2};\ a_{\nu_1\nu_2}\in A\}$ such that $aX_i=X_ia$ and $X_2X_1=-X_1X_2$. Then $M=(X_1^2-1,X_2^2-1)R$ is a two sided ideal of R and $B=A[x_1,x_2;\{-1\}]=R/M$ becomes a G-strongly abelian extension with respect to $G=(\sigma_1)\times(\sigma_2)$ by $\sigma_i(x_j)=(-1)^{\varepsilon}x_j$ where $\varepsilon=\delta_{ij}$. Then $C(B)=Q[\sqrt{-1}]$ is connected, $B^{\sigma_1}=A\oplus x_2A=C(B^{\sigma_1})$ and $e=1/2(1+x_2)$ is a nontrivial idempotent of $C(B^{\sigma_1})$.

(ii) Let $K=Q[\sqrt{-1}]$, $A=K[\sqrt{3}]$, $\rho(k_0+k_1\sqrt{3})=k_0-k_1\sqrt{3}$ and $R=A[X_1,X_2:\rho_1=\rho_2=\rho]$. Then $M=(X_1^2-2,X_2^2-2)R$ is a two sided ideal of R and $B=A[x_1,x_2:\rho_1=\rho_2=\rho]=R/M$ becomes a G-strongly abelian extension with respect to $G=(\sigma_1)\times(\sigma_2)$ by $\sigma_l(x_l)=(-1)^\epsilon x_l$. Then $C(B)=K\oplus x_1x_2K$ and $e=1/2(1+1/2(x_1x_2))$ is a nontrivial idempotent of C(B). On the other hand, $C(B^{\sigma_1})=C(B^{\sigma_2})=K$ is connected.

Hereafter we put B is a G-strongly abelian extension of a connected ring A such that $B = A[x_1, ..., x_m : \rho_1, ..., \rho_m]$ and $x_i^{n_i} = \alpha_i$ (i.e., $ax_i = x_i \rho_i(a)$ for $a \in A$ and $x_i x_i = x_j x_i$).

Let r_i be the product of distinct prime factors of n_i . Then B is connected if $T=B^H$ is connected for $H=(\sigma_1^{r_1})\times\cdots\times(\sigma_m^{r_m})$. Therefore we may assume that $n_i=\prod_{j=1}^s p_j^{e_{ji}},\ e_{ji}=1$ or 0 for all $i=1,\ldots,m$ to study the connectedness of B. We now put

$$A_k = A[x_1, ..., x_k; \rho_1, ..., \rho_k]$$

 $Z_k = \bigcap_{j=1}^k U(A)^{\rho_j}.$

Then we have the following

Lemma 3.2. Let A_{k-1} be connected and $U(A)^{\rho_k q} = U(A)^{\rho_k}$ for some $q = n_k/p$ where p is a prime factor of n_k . Then the following conditions are equivalent.

- (1) $Y^{\rho} \alpha_{k}$ is w-irreducible in $A_{k-1}[Y; \rho_{k}^{*q}]$.
- (2) $\alpha_k \notin \Lambda_p = \{ \alpha_1^{\mu_1} \cdots \alpha_{k-1}^{\mu_{k-1}} a^p ; \mu_j \text{ is an integer such that } n_j \mu_j = p \nu_j \text{ for some integer } \nu_j, \ a \in Z_k \text{ and } \tilde{\alpha} \rho_k^{\ q} = \rho_{k-1}^{\nu_{k-1}} \cdots \rho_1^{\nu_1} \}.$

Proof. (1) \rightarrow (2). If $\alpha_k \in \Lambda_p$, then $\alpha_k = \alpha_1^{\mu_1} \cdots \alpha_{k-1}^{\mu_{k-1}} a^p$ where each μ_j is an integer such that $n_j \mu_j = p \nu_j$ for some integer ν_j . Hence we have $\alpha_k = (x_1^{\nu_1} \cdots x_{k-1}^{\nu_{k-1}} a)^p$, and $Y^p - \alpha_k = (Y - \beta)(Y^{p-1} + Y^{p-2}\beta + \cdots + \beta^{p-1})$ where $\beta = x_1^{\nu_1} \cdots x_{k-1}^{\nu_{k-1}} a$. Since $Y - \beta$ and $Y^{p-1} + y^{p-2}\beta + \cdots + \beta^{p-1}$ are generators of $A_{k-1}[Y; \rho_k^{*q}]$ by the conditions $a \in Z_k$ and $\tilde{a}\rho_k^{q} = \rho_{k-1}^{\nu_{k-1}} \cdots \rho_1^{\nu_1}, Y^p - \alpha_k$ is not w-irreducible.

- $(2) \to (1)$. Assume $Y^{\rho} \alpha_k$ is not w-irreducible. Then there exists $f \in U(A_{k-1})$ such that Y f is a generator and a factor of $Y^{\rho} \alpha_k$ by Corollary 2.3. Hence f satisfies
 - (i) $\rho_i^*(f) = f$ for $1 \le j \le k-1$
 - (ii) $\rho_k *^q(f) = f$
 - (iii) $gf = f\rho_k^{*q}(g)$ for each $g \in A_{k-1}$.

Noting that $\rho_j^* \sigma_i = \sigma_i \rho_j^*$ for each i, j, we can see that $f^{-1} \sigma_j(f) = \sigma_j(f) f^{-1}$ and $f^{-1} \sigma_j(f) \in C(A_{k-1})$ for j = 1, ..., m by (i) - (iii). Further $(f^{-1} \sigma_j(f))^p = (f^{-p} \sigma_j(f^p)) = \alpha_k^{-1} \alpha_k = 1$ show that $\sigma_j(f) = f \eta_j$ for $\eta_j \in \{\zeta^i; i = 1, ..., n\}$ by ([2, Corollary 2.5]). Thus

$$f = x_1^{\nu_1} \cdots x_{k-1}^{\nu_{k-1}} a$$
 for $a \in Z_k$ and $\tilde{a} \rho_k^{q} = \rho_{k-1}^{\nu_{k-1}} \cdots \rho_1^{\nu_1}$.

Consequently, we have

 $a_k = f^{\rho} = (x_1)^{\rho \nu_1} \cdots (x_{k-1})^{\rho \nu_{k-1}} a^{\rho}$. Since $\{x_1^{\varrho_1} \cdots x_{k-1}^{\varrho_{k-1}}; 0 \leq \xi_i \leq n_i - 1\}$ is linearly independent over A, this means that $p \nu_j = n_j \mu_j$ for some μ_j and $a_k = a_1^{\mu_1} \cdots a_{k-1}^{\mu_{k-1}} a^{\rho}$.

Corollary 3.3. Let A be connected. If there exist automorphisms $\rho_1, ..., \rho_m$ of A and elements $\alpha_1, ..., \alpha_m \in U(A)$ such that

- (i) $\rho_i^{n_i} = \tilde{\alpha}_i^{-1}$, $\rho_j(\alpha_i) = \alpha_i$, $\rho_j(\zeta) = \zeta$ for i, j = 1, ..., m,
- (ii) $U(A)^{\rho_1^q} = U(A)^{\rho_i} (i = 1, ..., m)$ for each prime factor p and $q = n_i/p$,
- (iii) For each prime factor p of n_k (k = 1, ..., m), $\alpha_k \notin \Lambda_p = |\alpha_1^{\mu_1} \cdots \alpha_{k-1}^{\mu_{k-1}} a^p$; each μ_j is an integer such that $n_j \mu_j = p \nu_j$ for some integer ν_j , $a \in Z_k$ and $\tilde{a} \rho_k^{\ q} = \rho_{k-1}^{\nu_{k-1}} \cdots \rho_1^{\nu_1}$ for $q = n_k/p$, then A has a connected G-strongly abelian extension B.

Proof. By (i), $B = A[X_1,...,X_m; \rho_1,...,\rho_m]/(X_1^{n_1}-\alpha_1,...,X_m^{n_m}-\alpha_m)$ is a G-strongly abelian extension of A. Then (ii) and (iii) show that each A_k is connected by Lemma 3.2 and Theorem 2.5.

Let A be a commutative ring. Then it is known that a commutative G-abelian extension of A is a G-strongly abelian extension. Hence, if B is a commutative G-abelian extension of A, then B is obtained by $A[X_1, ..., X_m]/(X_1^{n_1} - \alpha_1, ..., X_m^{n_m} - \alpha_m)$ for $\alpha_i \in U(A)$, i = 1, ..., m. Assume now A_{k-1} is connected and $Y^{\rho} - \alpha_k$ is not w-irreducible in $A_{k-1}[Y]$ for some prime factor p of n_k . Then, as is shown in the proof of Lemma 3.2.(2), there exists

 $f=x_1^{\nu_1}\cdots x_{k-1}^{\nu_{k-1}}a,\ a\in U(A)$ such that $\alpha_k=f^p=x_1^{\rho\nu_1}\cdots x_{k-1}^{\rho\nu_{k-1}}a^\rho$, and hence $p\,\nu_j=n_j\mu_j$ for some μ_j . Let $\mu_j=ph_j+s_j\ (0\leq s_j< p)$. Then $x_j^{\rho\nu_j}=x_j^{n_j\mu_j}=a_j^{s_j}\beta_j$ where $\beta_j=(\alpha_j^{h_j})^\rho$. Hence we may put $\Lambda_\rho=\{\alpha_1^{\mu_1}\cdots\alpha_{k-1}^{\mu_{k-1}}U(A)^\rho;\ 0\leq \mu_t< p\}$ in Lemma 3.2. Combining this with Lemma 3.2, we have the following

Theorem 3.4. Let A be a connected commutative ring.

- (a) A has a connected commutative G-abelian extension B if and only if there exist $\alpha_1, ..., \alpha_m \in U(A)$ such that $\alpha_i U(A)^p$ is a distinct cosets from $\{\alpha_i^{\mu_1} \cdots \alpha_{i-1}^{\mu_{i-1}} \alpha_{i+1}^{\mu_{i+1}} \cdots \alpha_m^{\mu_m} U(A)^p ; 0 \leq \mu_i \leq n_i 1\}$ in $U(A)/U(A)^p$ for each prime factor p of n_i and i = 1, 2, ..., m.
- (b) If each $n_i = p_1 p_2 \cdots p_s$, then A has a connected commutative G-abelian extension B if and only if there exist elements $\alpha_1, \ldots, \alpha_m \in U(A)$ such that $\alpha_1^{\mu_1} \cdots \alpha_m^{\mu_m} U(A)^{\rho_i}$ ($0 \le \mu_j < p_j$) are distinct cosets in $U(A)/U(A)^{\rho_i}$ for $i = 1, \ldots, s$.

Proof. (a) is a direct consequence of Lemma 3.2 and Corllary 3.3.

(b) Let $B \cong A[X_1, \ldots, X_m]/(X_1^{n_1} - \alpha_1, \ldots, X_m^{n_m} - \alpha_m)$ be a connected commutative G-abelian extension of A. If $\alpha_1^{\mu_1} \cdots \alpha_m^{\mu_m} U(A)^{\rho_l} = \alpha_1^{\nu_1} \cdots \alpha_m^{\nu_m} U(A)^{\rho_l}$ for some j with $\mu_j \neq \nu_j$, then we may assume $\alpha_j = \alpha_1^{\ell_1} \cdots \alpha_{j-1}^{\ell_{j-1}} \alpha_{j+1}^{\ell_{j+1}} \cdots \alpha_m^{\ell_m} c^{\rho_l}$ for some $c \in U(A)$ and $0 \leq \xi_l < p_l$ since $\alpha_j^{\mu_j - \nu_j} U(A)^{\rho_l}$ is a generator of a cyclic group $(\alpha_j U(A)^{\rho_l})$ in $U(A)/U(A)^{\rho_l}$. But this means that $\alpha_j = ((x_1^{n_1/\rho_l})^{\ell_1} \cdots (x_{j-1}^{n_{j-1}/\rho_l})^{\ell_{j-1}} (x_{j+1}^{n_{j+1}/\rho_l})^{\ell_{j+1}} \cdots (x_m^{n_m/\rho_l})^{\ell_m} c)^{\rho_l}$ and this contradicts to the irreduciblity of $X_j^{\rho_j} - \alpha_j$ in $A[x_1, \ldots, x_{j-1}, x_{j+1}, \ldots x_m][X_j]$. Conversely, if there exist $\alpha_1, \ldots, \alpha_m \in U(A)$ which satisfy the condition, then $B = A[X_1, \ldots, X_m]/(X_1^{n_1} - \alpha_1, \ldots, X_m^{n_m} - \alpha_m)$ is a connected commutative G-abelian extension of A.

When A is a two sided simple ring, we can characterize a connected G-strongly abelian extension $S = A[x_1, ..., x_m : \rho_1, ..., \rho_m, \mathcal{A}]$ as follow.

Theorem 3.5. Let A be a two sided simple ring (resp. a simple artinian ring). Then a G-strongly abelian extension S of A is a two sided simple ring (resp. a simple artinian ring) if and only if S is connected.

Proof. Since $A[X_t; \rho_t]/(X_t^{n_t} - \alpha_t)$ is a finite direct sum of two sided simple rings (resp. simple artinian rings) by Theorem 2.8, we can see that S is also a finite direct sum of two sided simple rings (resp. simple artinian rings) by inductive argument. Thus S is a two sided simple ring (resp. a simple artinian ring) if and only if S is connected.

REFERENCES

- [1] M. FERRERO and K. KISHIMOTO: On connectedness of p-Galois extensions of rings, Math. J. Okayama Univ. 25 (1983), 103-121.
- [2] G. J. JANUSZ: Separable algebras over commutative rings, Trans. Amer. Math. Soc., 122 (1966), 461-479.
- [3] K. KISHIMOTO: On abelian extensions of rings [], Math. J. Okayama Univ. 15 (1971), 57-70.
- [4] K. KISHIMOTO: On p-extensions of an algebra of characteristic p, J. Algebra, 88 (1984), 173-177.
- [5] T. NAGAHARA and A. NAKAJIMA: On strongly cyclic extensions of commutative rings, Math. J. Okayama Univ. 15 (1971), 91-100.
- [6] Y. MIYASHITA: On finite outer Galois theory of rings, J. Fac. Sci. Hokkaido Univ. 19 (1966), 114-134.
- [7] Y. MIYASHITA: On a skew polynomial ring, J. Math. Soc. Japan, 31 (1979), 317-330.

DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY

(Received July 25, 1984)