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SOME p-GALOIS EXTENSIONS OF
COMMUTATIVE RINGS

Mitstru SANEMASA

Throughout this paper. all rings and algebras will be assumed to be
commutative with identity element. Moreover, R will mean an algebra over
the prime field GF(p) of characteristic p > 0, and all ring extensions of R
will be assumed with identity element 1 coinciding with the identity element
of R. Let G be a finite p-group and ®(G) the Frattini subgroup of G. For
r € R, we define #(r) = r°—r and #(R) = |P(r); r € R}. Then
R/#(R) will always be considered as a vector space over GF(p).

In [3], K. Kishimoto proved the following theorem which is a generali-
zation of a main result in W. Witt [9] to connected rings, i.e., rings with no
idempotents other than 1 and 0, and moreover, this is related to the results
of D.J. Saltman [7], T. Nagahara and A. Nakajima [4].

Theorem (Kisuimoro), For a connecied ring R, the following conditions
are equivalent.

(i) There exists a G-Galois extension S of R such that S is a connected
ring.

(ii) There exists a G/ ®(G) - Galois extension M of R such that M is a
connected ring.

(iii) (R: #(R)), the index of the additive subgrovp #(R) of the addi-
tive group R, is not smaller than (G : ®(G)).

The purpose of this paper is to generalize the above Kishimoto's result
to some types of non-connected rings.

As in [8], B(R) will mean the Boolean ring consisting of all idempotents
in R, and Spec B(R) will mean the Boolean spectrum of R which is a Stone
space consisting of all prime ideals of B(R). The family of the subsets
U.=|y € Spec B(R): e € y} (e € B(R)) forms a base of the open subsets
of Spec B(R). Now, let xbe an element of Spec B(R). we shall use R, to
denote the ring of residue classes of R modulo the ideal Rx, where Rx is the
ideal of R generated by the elements of x. Then R, is a connected ring
([8, (2.13]). Let M be an R-module. Then M, will denote the tensor
probuct M @R, and for any element a € M, a. will denote the image of a
under the canonical homomorphism M — M,.

43



44 M. SANEMASA
First, we prepare some lemmas which have been used in the proofs of [5].

Lemma 1. Let S be a ring extension of R. Then S is connected for
every x € Spec B(R) if and only if B(R) = B(S).

Proof. Suppose that S, is connected for every x € Spec B(R). Let
e € B(S). Then, for any x € Spec B(R), we have ex € | 0%, 1,1, and so,
R.+(eR)z = R.. Therefore, it follows from [8,(2.11)] that R+eR = R,
which shows e € R. Thus, we obtain B(S) = B(R). The converse is

obvious.

Lemma 2. R is a regular ring (in the sense of Von Neumann) if and
only if Ry is a field for each x € Spec B(R).

Proof. See [6].

Lemma 3. Let S be a separable extension of R. If B(S) = B(R) and
R is a regular ring, then S is a regular ring.

Proof. Let x € Spec B(R). Then S, is a separable extension of R,.
Since R is a regular ring, R, is a field by Lemma 2, and since B(S) =
B(R), Si is connected by LLemma 1. Thus S is a feld for every x €
Spec B(S), and so, S is a regular ring.

By virtue of the above lemmas, we can generalize Kishimoto's result

[3, Theorem 2.2].

Theorem 1. Let S be a G-Galois extension of R and M the fixring of
&(G) in S. Then, B(M) = B(R) if and only if B(S) = B(R). Moreover,
if BI(M) = B(R) and R is a regular ring, then S is a regular ring.

Proof. Let x € Spec B(R). Then S, is a G-Galois extension of R
and M, is the fixring of &(G) in S,. If B(M) = B(R) then M, is connected
and by [3, Theorem 2.2], S, is connected, whence, it follows from Lemma 1
that B(S) = B(R). Combining this with Lemma 3. we obtain the second

assertion,

This theorem has been proved by Nagahara and Nakajima in the case that
G is abelian ([5]).

Now, Let R[X,, ..., Xi] be the ring of polynomials in variables Xj,---, X;
with coefficients in R. For ry,---,7x € R, define R[#Z (r,);1 i <k] =
R[X.\,--, Xi]/ I, where Iis the ideal generated by | #(X\)—n; 1 < i< k.
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Let A be an elementary abelian group, i.e., A = () X---X(ox) with (o)
of order p. Then, M is an A-Galois extension of R if and only if M is
isomorphic to R[#7Y(r;); 1 < i < k] for some r,,---,rx € R([7, Theorem
1.5]). When this is the case, M is connected if and only if R is connected
and 1+ &(R),---,rx+ P(R)are linearly independent in R/P(R) over
GF(p) ([7, Theorem 1.7]).

As a partial generalization of Kishimoto’s result [3, Theorem 2.3(1)] ,
we have the following

Theorem 2. Let A be an abelian group which is isomorphic to G/ ®(G).
Then, the following conditions are equivalent.

(i) There exists a G-Galois extension S of R with B(M) = B(R).

(ii) There exists an A-Galois extension M of R with B(M) = B(R).

Moreover, if one of these conditions is satisfied, then (Ry: #(Ry)) =
(G: &(G)) for every x € Spec B(R).

Proof. 1t is trivial that (i ) implies (ii). Let G be of order p™ and
assume (ii). First, by induction methods, we shall prove that (ii) implies
(i). If p™ =p then the assertion is clear. Thus, we assume that p™ > p,
and the implication (ii) = (i) is true for any p-group whose order is small
than p™. Then @(G) #+ 1. Hence, there exists a central subgroup C of order
pwhich is contained in #(G). We put p= G/C. Then &(P) = &(G)/C and
G/®(G) = P/®(P). By assumption, there exists a P/®(P)-Galois exten-
sion M of R with B(M) = B(R). Since p is of order p™~', it follows from
induction hypothesis that there exists a P-Galois extension T of R with B(T)
= B(R). We can imbed T/R into a G-Galois extension S/R such that S¢ =
T where S€ is the fixring of Cin S ([7, Lemma 1.8(a)]). Since TD S%°,
we obtain B(S®”) = B(R) and so B(S) = B(R) by Theorem 1. Next, we
shall prove the last assertion. Since A is an elementary abelian group, we
have M = R[# Yr); 1 < i < k] for some r,,---,7x € R, where p* is the
order of A. Now, let x be an arbitrary element of spec B(R). Then, since
B(M) = B(R), My = R,{# (rwn);1 < i < k] is connected. Hence 7,.+
P(Ry), -, 7rxt+ P (Ry) are linearly independent in R./P(R.) over GF(p).
Thus, we obtain (Rz: #(R)) = p*=(G: &(G)).

Now, we introduce the notions of a uniform polynomial and a weakly
uniform ring which were defined in F. DeMeyer [1].

First, let R be a connected ring. Then R has a locally strongly sepa-
rable, connected R-algebra I (unique up to isomorphism ) so that any finite
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subset of I' is contained in a (projective) extension R[ai,---,an of Rin I”
with a; the root of a separable polynomial over R[ay,---, a; J and so that any
separable polynomial over I factors into linear factors in I'. Such algebra
I" will be called a polynomial closure of R. If p(X) is a separable polynomial
in R(X) and p(X) = (X—a1)--«(X—an) in I'[X] then R[a, -, an) is a
Galois extension of R whose Galois group consists of all R-automorphisms,
and this group will be denoted by G(p(X)).

Next, let R be an arbitrary ring, and y € Spec B(R). Then, the
natural homomorphism from R onto R induces a homomorphism from R[X] to
R,[X]). For p(X) € R[X], we denote the corresponding polynomial in Ry{X)
by p,[X]. A separable polynomial p(X) € R[X] is called to be uniform if
for each x € Spec B(R), there exists a neighbourhood U of x in Spec B(R)
such that for all y € U, G(pAX)) = G(p«X)). For any uniform separable
polynomial in R]X], there exists a finite projective separable extension N of
R such that p(X) = (X,—a)--(X—an) in N[X], N=R[e, -, an] and
B(N) = B(R). Such N will be called a splitting ring for p(X).

If yis a topological space and A is a ring we let C(¥, A ) be the ring of
continuous functions from ¥ to A where A is with the topology such that point
sets are open. A ring R will be called to be weakly uniform if there is a
finite collection of totally disconnected compact Hausdorff spaces | xi, -, X!
and connected rings | Ay, -, An} such that R is ring isomorphic to the direct
product of rings C(Y, A), i=1,---,n.

Now, we shall prove the following theorem which contains Kishimoto’s
result [3, Theorem 2.3( 1 )].

Theorem 3. Let R be a weakly uniform ring, and A an abelian group
which is isomorphic to G/®(G). Then, the following conditions are equiva-
lent.

(i) There exists a G-Galois extension S of R which is weakly uniform
and satisfies B(S) = B(R).

(ii) There exists an A-Galois extension M of R which is weakly uniform
and satisfies B(M)= B(R).

(iii) (Rx: #(Ry:)) 2 (G: &(G)) for every x € Spec B(R).

Proof. 1t is obvious by Theorem 2 that (i) implies (iii). We show that
(iii) implies (ii). Let (G: #(G)) = p*, and x € Spec B(R). Then, there
exist elements 7,,+--7x € R such that rix+ P(R2), -, 75+ P(R,) are line-
arly independent in R,/ #(R,) over GF(p). Hence we obtain
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(1) T ixteFarrie & g(Rr)

for every (a,,.--,ax) € GF(p)'“’.= = GF(p)*\{(0,---,0)}, the complement of
{(0,---,0)} in the k-times product of GF(p). Now, for an element (ay, -, ap)
€ GF(p)** we set r = a,r,+---+axrx. Since X" —X—r is a separable
polynomial over the weakly uniform ring R ([4, Lemma 1.1]), X*—X—risa
uniform polynomial ([1, Corollary 2.4]). Hence |y € Spec B(R):r, &
P (R,)} is an open set in Spec B(R) containing x ([5, Proposition 2.1]).
Note that GF(p)"* is a finite set. Then, by (1), there exists an open
neighbourhood V of x such that

(2) a\ Tyt tariy € P(Ry) forallye V

where (a,,---,ax) runs over all the elements in GF(p)"*. Thus, for each
x € Spec B(R), we obtain apair (V,(r1,+-+, %)) of an open neighbourhood V
of x in Spec B(R) and an element (7,,---,7,) of R”* which satisfies (2).
Therefore, by partition property of Spec B(R) (see [6, p.12]), we can find
a finite subset { e, -+, e} of B(R) and a subset {(r ;.«<<,7,); j =1, 0} of
R* such that

Ue‘ n Uej =¢if l#:j,
UL, Ue, = Spec B(R), and
a(r)y 4+ ta(ry), € P(R,) forall y € U,

where (a,,---,ax) runs over all the elements in GF(p)**, and U, =1y e
Spec B(R);e;€ v} (j=1,---,n). Now, let be y an arbitrary element of Spec-
B(R). Then, there exists h € {1,..-,k} such that y € Ue, and vy & U, if
j#h. Clearly (1 —es), =1yand (1—e,), =0, for all j += h. We set here
s; = 2 (1 —es)ry It follows then that

(Z:ilaisi)y S DR DI (1—e)y(r)y = 2kaa; (rin)y & P(Ry)

for all (ay,---,ax) € GF(p)**. In other words. siy+@(R,), -, sxy+P(R5)
are linearly independent in R,/#(R,) over GF(p). Thus M = R[# '(s.);
1 =i= k] is an A-Galois extension of R such that M, = R,[ P (su):
1 < i < k] is connected. Since y is arbitrary in Spec B(R), this implies
B(M) = B(R) by Lemma 1. Weput R, = Rand R, =R,_\[Z7'(+)] (1 =
i £ k). Since R, is the splitting ring of the separable polynomial X?— X —s,
over the weakly uniform ring R ([4, Lemma 1.1]), R, is also weakly uniform
([1, Proposition 2.5]). Inductively., R, are weakly uniform for all i = 1,2,
..., k. Especially M = Ry is weakly uniform. This completes the proof of
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(iii) = (ii). Finally we show that (ii) implies (i). We use the same notations
as in the proof of Theorem 2. Then T can be taken as a weakly uniform ring
by induction hypothesis. Since S is a C-Galois extension of T and C is of
order p, then S is also weakly uniform.
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