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ON INTEGRAL BASES
OF PURE QUARTIC FIELDS

Takeo FUNAKURA

0. The aim of the paper is to report some topics related to integral
bases of pure quartic fields. In Section 1, we shall give their explicit bases
which Ljunggren [11] stated without proof in the case of “real” fields.
Wada [18] made a method of computation of integral bases of any biquadratic
field, but we shall give a direct and simple proof of Theorem 1. In Section
2. we shall study a relative integral bases over the quadratic subfield. In
Section 3, we shall study common inessential discriminant divisors and
power integral bases. The results of Theorems 4 and 6 are analogous to
Hall [9] and Dummit-Kislowsky [4]. We shall prove Theorem 5 without
depending on Engstrom [5]. Finally we shall determine all power integral
bases in terms of solvability of some diophantine equations.

Let B» be the root of an irreducible polynomial X*—m (m € Z) over
Q such that

_ |0 if m is positive,
arg fn = #/4 if m is negative.
Then Q(Bn) is called a pure quartic field. Now it is sufficient without loss
of generality to treat only of the form m = ab’c®, where (i) e+ 1, b and
¢ are square free and pairwise prime ; (ii) b and ¢ are positive ; (iii) | a|
=cifaisodd; (iv) ¢ is odd: (v) m + —4. We set

a= Bn’/bc, B=Ba. Y= PBa’/b’
E=Q(e), F=QB) =Q(y).

Throughout the paper, we assume the above conditions and use these nota-

tions.
1. First of all, we prove

Theorem 1. The numbers 1, A, u, v given by the following table form
an integral basis of a pure quartic field F with m.
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m 1 A M v
b b
1(mod 8) 1 lta 8 abtatbfty
2 4
2(mod 4)
3(mod 4) 1 o 4 7
4(mod 16) 1 1+a 8 B+
5(mod 8) 2 92
12(mod 32) 1 a 1+atps Bt
2 2
28(mod 32) | 1 a 1+§+’9 dot ?Hy

(The table contains all cases since m is not divisible by 8.)

Proof. By the general theory, an integral basis of F is given by
integers 1, A, &, v in F of the type

A= J"]"‘Izct
1= N1+ya+y8 (i, yi,2: € Q)
v = z1+ 2:0+ 2; 8+ 247,

such that x», ys, 24 are the smallest positive rational numbers as possible.
Since 1, A form an integral basis of the quadratic field E, it is obvious that
A is taken as in the table. In order to determine x and v, we need several
lemmas.

Lemma 1. Let K/k be a quadratic extension of number fields. Then
o is an integer in K if and only if both Norm s xa and Trace xxa are integers
in k.

Lemma 2. Lei d =1 be a square free rational integer. A quadratic
residue system modulo 4 of integers in Q(v/d ) is given by

d+1+42/d  d+9+6yd

0, 1, 1 , 1 if d=1(mod4)
0, 1, 2, 3+24/d if d=2(mod4)
0, 1, 3, 2vd if d= 3(mod4).

The proofs of Lemmas 1 and 2 are straightforward and omitted.
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Lemma 3. A number sf+1ty (s.t € Q) is an integer in F if and only
if

(i) s,t€eZ ifm=2, 3(mod4),

(ii) so=2s, t, =2t € Z, and s, = #,(mod 2) otherwise.

Proof. A number sf+ ty is an integer in F if and only if (s8+ty)% is
an integer in E, because its Trace and Norm for F/Eare 0 and —(s8+t7)*
respectively. Since both

(sB+ty)B = abct+ bese and (sB+ ty)y = abes+ abta
are integers in F and so are in E, we can put
s=u/2bc, t=10v/2ab (u,v € Z).
Thus we have

w a4+ cvt

2 W auTCY
(sB+ty) = 2b+ Tdbe ©

and so bluv and abc|(au’+ cv?). By the assumption on a, b and ¢, we get
alv, blv, blu and clu, so that u/bc and v/ab are rational integers.
Therefore we can put s = s,/2, t = #/2 (80,80 € Z). Since 8/2 and y/2
are not integers, it holds s, = fo(mod 2). Furthermore supposing s, = &, =
1(mod 2), we easily see that (sB+ty)? is an integer in E if and only if b =
O(mod 2) or ac = 1(mod 4). Thus the lemma is proved.

Using these lemmas, we shall determine 4 and v. Since 2y:8 = 2u—
Trace ;x4 is an integer in F, we have y; = 1/2 or 1 from Lemma 3.
Supposing ¥; = 1/2, we see that

Normer, ru = (11 + y:2)'—B°/4
is an integer in E. Thus we obtain
(Trace pe 1) = (2714 2y2a) = bea(mod 4).
By Lemma 2, we must have
b = 0(mod 2) and ac = 3(mod 4).
Conversely if m = 12(mod 16). then it holds
(14+e)* = bea(mod 4).
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Accordingly we can take as u.(1+a+£)/2 if m= 12(mod 16), B if otherwise.
Similarly we can determine v. Since 22:84+22,7y = 2v—Tracegsv is an
integer, we have (2;5.2,) = ((21+1)/4,1/4). (I/2,1/2), or ({/2,1) for some
l € Z. Normgev is an integer in E if and only if the congruence

*) (22+220) = (22:8+22,7) (mod 4)

holds. Suppose now that (zs.2:) = ((2/4+1)/4,1/4) and m %= 2, 3(mod 4).
Norme,q of the right side of (*) is equal to —ab’cl(a—c)/4—cl(I+1) %,
which has to be a quadratic residue modulo 8 in Z. Therefore

(i) ac=1(mod 8). b= 1(mod2). i.e., m = 1(mod8).

(ii) ac= 7{mod 8). b = 0(mod 2). i.e., m = 28(mod 32),
or (iii) ac= 1(mod4), b= 0(mod2), i.e., m = 4(mod 16).
Hence if m = 1(mod 8) or 28(mod 32), then it is sufficient to show that
Normge of v given by the table is an integer in E. It is immediate, for if
m = 1(mod 8) then

o SE L) (25 {55 (24|

and if m = 28(mod 32) then

4a+b,8+27) _ ac( 1-(b/2)? )—(b/z)( a+(b/2)zc)a

N°”“W< 8 4 8

Lemma 2 implies that if m = 4(mod 16) then the right side of (*),
abe(21+1) ab+bc(21+1)°
2 4
Therefore if neither m = 1{mod 8) nor m =28(mod 32). then the denominator
of 23 is1 or 2. Furthermore if m = 4(mod 16), 5(mod 8), or 12(mod 32),
then by Lemma 3. a number (8+ ¥)/2 is an integer in F. so that we can take
it as v. Finally substituting (23,24) = ([/2,1/2) for the right side of (*). we
obtain 2abc+ (ab+ bel?)a which is not a quadratic residue modulo 4 if m=
2 orlS(mod 4). Then we may take 7y as v. Hence the proof is completed.

a, is not a quadratic residue modulo 4.

Corollary 1. The discriminant d(F') of F is

—2%a%b% ¢!t if m= 1(mod 8). 28(mod 32),
d(F) = {—-2'*b’¢? if m=4(mod16), 5(mod 8). 12(mod 32),
—2%a*b*¢®  if m= 2(mod4), 3(mod4).

Proof. This is immediate from Theorem 1.
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Lemma 4. A pure quartic field F with m = ab*c® is Galois over Q if
and only if ac = —1, that is, m= —b’, in which case F = Q(+v—1 ,+/20 ).

Proof. Suppose that F/Q is Galois and ac + —1. Since v—1 S is
conjugate to £, we have ¥ —1 € F. On the other hand, the assumption ac +
—1 yields v—1 & E. Therefore F = E(y/—~1 ), which implies g €
Q(v/—=1, a), that is,

ﬂz a+ av/—1 + a:ata/—1 a (ai S Q)

and so
bea = ﬂz = (ao+ aza)z_(al+aaa)2+2(ao+ azd)(al+aaa)‘v—1 .

Thus we get either ap+a.a = 0 or a1+ asa = 0. In the former case, we

have bce = —(a1+ asa)?, so that a,’+ a;s’ac = 0, giving ac = —1 as ac is
square free. In the latter case, we have 8 = a,+ a;a € E. A contradiction
arises in either case. Hence if F/Q is Galois, then ac = —1. The con-

verse is obvious.

As to a generalization of Lemma 4, see [8].

Corollary 2. Let n = 2 be a square free rational integer. An integral

basis of Q(v/—1 ,4/n) is given by

1, +/—1, %, —"_1_; v—n if n=1(mod4) :
1, V=1, ‘/"_+2"_n, ﬁ_z —n if n=2(mod4);

if n=3(mod4).

1, /T 1+v2—n , 1/—_12+ﬁ
Proof. We take b = n/2 when n is even. As b is odd, we have m =
—b® = 3(mod 4), and so by Theorem 1,

1, A=a=v—-1, p=8= 1+‘/2—_1 Vb = ﬁ+2_n,
_ o —1+V/-1T - —va+v=n
vEYS— Vb = 3

form an integral basis of F = Q(v/—1 ,+/n ). Next we take b = 2n when
n is odd. Then m= —b* = 28(mod 32), and
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1+a+8 _ 1+vV=1+Vn+v/—n

1, A=a=+v—-1, u=

2 2
_b=2(=1)"  2a+(=1)" B+
v 3 B = 4
_(_1Yn-1/2 _ nm-1)/2
B == Ve,

form an integral basis of F = Q(v/—1 ,#/n ). The rest is simple arithmetic.

As to any bicyclic biquadratic field, see Brid-Parry [2], Fujisaki [6],
(7], Nakahara [15], [16], and Williams [19], since in this paper we treat
only pure quartic Galois fields Q(v—1 ,v/n ).

2. We shall consider a relative integral basis of a pure quartic field
F over the subfield E. For any wi, w: € F, their discriminant over E
coincides with that of 1, w:'w:, where w' is conjugate to w, over E. Hence
if there exists a relative integral basis then we may take wi = 1, w:. = §.
Numbers 1, £ form an integral basis of F over E if and only if 1, A, & A€
form an integral basis of F over Q. Let f(x) be the minimal polynomial of
£ over E and let d(E) be the discriminant of E, The discriminant of 1, A,
£, Af is equal to

d(E)zNormg/Qf'(E)’.
Thus 1, £ form a relative integral basis if and only if it holds
Norm%f’(f)2 = —2%ab’c,

where x= —2 if m=28(mod32) ; x=0 if m= 12(mod 32) ; x = 2 if
m= 1(mod 8) ; x = 4 if otherwise. On the other hand, we set

= x+ yA+ zu+ wy (x,y,z,weE Z)
=x+yatzf+wy (x,y,2,w' € Q)

and then we have
I\Iorm%f'(f)2 = —2'ab’c(cz’— aw”)?,
which implies

c(dz+bw)—auw® = +8 if m= 1(mod 8),
ct—aw® = £1 if m= 2, 3(mod 4),
c(2z4w)—aw® = +4 if m= 4(mod 16), 5(mod 8),



ON INTEGRAL BASES OF PURE QUARTIC FIFLDS 33

clz+w)—aw® = +1 if m=12(mod 32),
c(2z+(b/2)w)—aw® = £2 if m= 28(mod 32).

Hence the existence of relative integral bases corresponds with the solv-
ability in Z of the equation

| aX?—cY?| = e,

where e=1 if m= 2, 3(mod 4) or 12(mod 32) ; e= 2 if m= 28(mod 32) ;
e=4 if m= 4(mod 16) or 5(mod 8): e= 8 if m= 1(mod 8). For, if
m= 1(mod 8) then aX*—cY? = +8 implies that either Y—5X or Y+ bX
is divided by 4 since b is odd, and the rest is obvious.

Theorem 2. All pure quartic fields which contain a given quadratic
field Q(v/n ), where n+ 1 is a square free rational integer, have relative
integral bases over Q(v/n) if and only if all prime divisors of n are principal
ideals in Q(v/n ) and further so are the prime divisors of 2 if n %= 3(mod 8).

Proof. 1In the case of n = 2(mod 4) : Any divisor a of n is a square of
some ideal 4 in Q(v/n ). If A is principal in Q(v7 ), then X’—nY? = +a
is solvable, that is, aX?*—cY? = 41 is solvable, where ¢ = n/a. Hence
Q(¥ab’c® ) for any square free b has relative integral bases over Q(v'n ).
Conversely since for any rational prime divisor p of n, the field Q(¥/p(n/p)? )
has relative integral bases over Q(v/n ), the equation | X’—nY?| = p is
solvable, so that the prime divisors of p are principal. Therefore this case
is completed. The other cases are similar and omitted.

Remark. We can not remove the exception “n= 3(mod 8)” from Theo-
rem 2. For example, in the case of n= —13, the divisor (2,14+4/—13 )
of 2 is not principal, while | —13X*— Y?| =1 has a trivial solution, so

that every Q(¥/ —13b% ) has relative integral bases over Q(v—13 ).

We feel an interst in Theorem 2 as compared with the Mann's result
in [13], “all quadratic extension fields of a number field have relative
integral bases if and only if all its ideals are principal”. Theorem 2 asserts
that it is impossible to replace the former “all” with “infinitely many” in
Mann’s result.

In the imaginary case, we have
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Theorem 3. An imaginary pure quartic field F with m = ab*c® (a < 0)
has no relative integral basis over the quadratic subfield E if and only if
either ¢ =1 or m= 1(mod 8), 28(mod 32), except for (a,c) = (—7,1),
(—5,3), in which case there exists relative integral bases,

Corollary 3. Let n be a square free positive integer. Every pure
quartic field which contains the subfield Q(v/—n ) has relative integral bases
over Q(v/—n ) if and only if n=1, 2, 7, or a prime number congruent to
3 or 5 modulo 8.

3. Finally we shall consider a power integral basis and a common
inessential discriminant divisors. Let Of be the ring of all integers in F.
For £ € Of, we set i(§) = [OF: Z[£]], which is called the index of an
element £ and let i(F') be the greatest common divisor of all finite indices
i(€). We say that i(F) is the index of a field F. The prime divisors of
i(F) are called common inessential discriminant divisors. An integer ¢ sat-
isfying i(€) = 1, that is, Or = Z[£], is called a power integral basis of F.
If there is such a basis, then there is no common inessential discriminant
divisor. But after Dedekind we have obtained many examples of number
fields which have neither common inessential discriminant divisors nor
power integral bases. Let m(F) be the minimal of all finite indices i(¢)
on F. We shall see in Theorem 7 that there also exist infinitely many pure
quartic fields F with m(F) = 1. By definition, it holds i(F) < m(F).
Thus m(F) = 1 leads i(F) = 1, but the converse does not always hold.
We note that there exists a power integral basis if and only if m(F) = 1.

Lemma 5. For any integer

£ = x+yA+zutwy (x,y,z,we Z)
=x+yatzf+uwy (x,y,2,w' € Q),

the discriminant d(§) is equal to
—2%a*b P (aw’? — cz'?)?| b (aw'— cz’*) + 4 ac(y* — bz'w' ) |?

and the index i(€) is given by the following table.
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" i(€)
aw’' — c(4z+ bw )’ |
8
1(mod 8
( ) ! lez ﬂw’_c(4z+bw)2 2 [(2_)’+w)z_b(4z+bw)wlzl
-+ ac
.8 4
gtx :% | aw®— c2*| X | b*(aw®— c2*)*+ 4 ac(y’ — bzw )?|
aw’—c(22+ w)®
4(mod 16) 4
2 __ 232
5(mod 8) x | 44?]-2£ c(fz+w) +acly’' —b(2z4+w)w?
| aw’— c(z+ w)?|
12(mod 32) v (b/Z)ziawz—C(Z-l'W)2|z+aC](2y+z)z—b(z+w)w Iz
4
aw’—c(22+(b/2)w)’ |><| (b/2)"(aw®— c(22+(b/2)w)?)/2
2 16
28(mod 32) + aci2(2y+z+w) —(b/2)(22+(b/2)w)w |*
16

Proof. The lemma follows from the identity d(£) = d(F)i(€£)2.

Lemma 6. The number m{F) is nol less than the following ;

(1) Real field (m = ab’c®, a> 0)
bz

4b*

tf m= 1(mod 8), 2, 3(mod 4),
if m= 4(mod 16), 5(mod 8),

min| (4 ac+ b*)/16,b6*/2]|
min|{ (4 ac+ b%)/64,b%/8]
(1)
min{(—a+c)/8,—2a,2¢}
min| —a,c}
min{{—a+¢c)/4,—a,c]|
min{(—a+c¢)/2,—2a,2c!

tf m=12(mod 32),
if m= 28(mod 32),

Imaginary field (m = ab’c®, a << 0)

if m= 1(mod 8),

if m=2, 3(mod 4), 12(mod 32),
if m= 4(mod 16), 5(mod 8),

if m= 28(mod 32).

Proof. Considering congruences modulo suitable powers of 2, we see
that the insides of {...} and |...| in Lemma 5 are rational integers. This

yields the lemma.
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Theorem 4. The number m(F) is unbounded as F runs over the set of
pure quartic fields.

Proof. This follows from Lemma 6.

We easily see that 2 and 3 have the following factorizations into prime
ideals in F, where f; and e; are degrees and ramification indices of prime
ideals respectively.

Prime [f,f:.fs] [ei,e:,es]  Condition

2 [1] [4] m= 2, 3(mod 4), 12(mod 32)
(2] [2] m = 5(mod 8), 20(mod 32)
[1,1] [2.2] m = 4, 28(mod 32)
[2,1] [1,2] m = 9(mod 16)
(1,1,1) [1,1,2] m = 1(mod 16)

3 1] [4] 3 ac
(2] (2] 316, ac = 2(mod 3)
[1,1] [2.2] 30 b ac = 1(mod 3)
(2,2] [1,1] 3} abe, ac = 2(mod 3)

[1,1,2] (1,1,1] 3 [ abe, ac = 1(mod 3).

Therefore by referring to Engstrom [5], we obtain

Theorem 5.

) (2 if m=1(mod16),
i(F) = 1  otherwise.

Alternative Proof of Theorem 5. This is a direct proof without de-
pending on Engstrom [5].

Now the greatest common divisor of

i(8) = V—2'’b*c*/d(F) and i(a+7) = v—2°a"b'c*(ab’+4c¢)*/d(F)

is 1 or a.non-zero power of 2 according as m= 2, 3(mod 4) or m = 0, 1
(mod 4). Consequently if m = 9(mod 16), 4(mod 16), 5(mod 8) or 12(mod
16), then it is sufficient to find an integer with an odd index. In the case of
m= 1(mod 16), we must show that every finite index is even and that there
exists an integer ¢ such that i(£) is not divided by 4. In fact, we can easily
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check the following integers with odd indices ;

A+ u if m= 4(mod 16), 5(mod 8),
1 if m=12(mod 32),
v if m= 9(mod 16), 28(mod 64),

| —(b+2)A+2but+4vi/4 if m=60(mod 64).

In the cace of m= 1(mod 16), if {aw’—c(42+ bw)?}/8 is odd then both z
and w are odd and so {(2y+w)*—b(4z+bw)w|/4 is odd. Therefore it
follows from Lemma 5 that any i(£) is even if m = 1(mod 16). On the
other hand,

i(A+u) = 2c’(a+4bc)

is not divided by 4. Hence the proof is completed.

Theorem 6. There exist infinitely many pure quartic fields which have
neither inessential common discriminant divisors nor power integral bases.

Proof. This follows from Theorems 4 and 5.

The similar results to Theorem 6 are contained in Hall [9], Nakahara
[15]. [16], and Dummit-Kislowsky [4].

Theorem 7-a. A real pure quartic field F with m = ab*c® (a > 0) has
a power integral basis if and only if m satisfies one of the following condi-
tions, where X, Y € Z.

Condition Power integral basis
m= 9(mod 16), b =1 XYy—-X? Y?—X?
| aX*—cY*| =8 2 At 4 ut Xy
=2, 3(mod4), b=1
7|naX‘—cY(‘To= 1) XY Vit X'
m= 3.2¢ M A—u
m=5.2%.3° A—v, u—v, v

Proof, The proof follows from LLemma 6. In the case m = 1(mod 8),
we have b= 1 and

aw’'—c(dz+w)* = +8, (2y+w)*—(4z+w)w = 0.
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Since ¥ = w(z—y) and (w.z) = 1, we obtain (y, z,w) = +(st, st+ >, s?)
and so
as'—c(2t+s)' = 8.
In the case m = 2, 3(mod 4), we have 6 =1 and
aw’—cz* = +1, y'—zw = 0.
Similarly we obtain (y,2z,w) = +(st,s* t*) and so
at'—es' = +1.

In the case m = 4(mod 16) or 5(mod 8), there exists no power integral
basis as m(F) = 2. In the case m = 12(mod 32), we have only a= 3,
b=2,c¢c=1 and

3w'—(2+w)’ = —1, (2y+2)'—2(z+w)w=1.
Thus (y,2z,w) = +(st,#*, s’+ st) and so
(' +2st4+25") —(14+25) = 2.
By Ljunggren [12], the equation
3*-Y' =2

has only the solution X = Y =1 in positive integers. Hence we obtain
(y,2,w) = £(0,1,0), +(1,—1,0). In the case m = 28(mod 32), Lemma

5 gives four cases
(a,b,c) =(5,2,3), (7.2,1), (7,6,1), (15,2,1),
but we easily reject the latter three cases. The first case leads to
5w'—3(2z2+w)* =2, 2(2y+z4+uw)—2z+w)w=1,
which imply (y,z,w) = +(s*+ st,—st,— s*—st—#*) and so
(48 +7st+41)*—15(s+ 1) = 1.
Since by Cohn [3],
X*—15Y' =1

has only the solution X = 4, Y = 1 in positive integers, we obtain (y,z,w)
= i(lyov_l)v i(O,l,—l), j:(0,0,l).
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Theorem 7-b. An imaginary pure quartic field F with m = ab*c® (a
< 0) has a power integral basis if and only if m satisfies one of the following
conditions, where X € 7Z.

Condition Power integral basis
m= 2, 3(m
a+ —2—1?(1:(21:? bidaxt =1 | XA
I |
m= 12(mod 32) X—1
c=1, b+4aX' = +16 g Mty
m= —T7b% b= 1(mod 2) X—1 b—(—1)-17
Ob +14(—1)> VX —TX =16 | 2 * 4~
m= —1 MV
m= —3 Aty A—py, u—v, v
m= —2%.3% 2u—v, A—2u+v, At u—v, A—u—v
m= —2%.5% A—2ut+v, 2u—v
m= —5:3° A—v, v
m= —5.31%.33 A+8u—v, Bu—v

Proof. This is similar to that of Theorem 7-a. If m = 1 (mod 8),
we have (a,c¢) =(—5, 3), or (—7.1). In the former case, we get
(z,w) = £((b— (—1)*""*)/4,—1) and

[(—1)*""2b+15(2y+w)?|/4)*—15(2y+w)* = 1,

which implies b = 1, 31. In the latter case, the above equation is replaced
by

962 +14(—1)*""*b(2y+w )’ —7(2y+w)* = 16.

In the case m= 2, 3(mod 4), we have c =1 (z,w) = (+1,0) and 4 ay*+ b*
=1; further b=1, c=1 and (y,z,w) = (0,0,+1) if a= —1. In the
case m= 4(mod 16) or 5(mod 8), we have c =1, (2, w) = (+1,0), and
ay*+4b* = 1; further c =1, (z,w) = £(1,—1), (0,+1), and (b+35*)*
—12y* =1 if a= —3. By Cohn [3],

X'—12Y' =1
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has no solution in positive integers, so that =1, y= 0. In the case
m= 12(mod 32), we have c =1, (z,w) = (+1,0), and b*+4a(2y+2)*
= 4+16. In the case m = 28(mod 32), we have a= —1, ¢ =1 and

(b/2)'—12(2y+ 2+ w)’'—(b/2)(22+(6/2)w)w |’ = £186,

which implies 5= 6 or 10, and so y, z, w are determined.

We define two integers £, 7 to be in the same index class if either §—7
or £+7 is a rational integer. If £, 7 are in the same index class, then their
discriminants are the same and so their indices are also the same. In
paticular, if ¢ is a power integral basis, then so is any integer in the index
class of §. Since we give in Theorem 7 all power integral bases contained
in distinet index classes, we obtain

Corollary 4. The power integral bases of any pure quartic field F are
divided into at most four index classes.

Proof. Ljungrren showed in [11] that AX‘— BY* = C, where A, B,
C are positive integers, has at most one solution in positive integers, when

C=1, 2, 4, 8 (See also Cohn [3].). Hence Theorem 7 yields the corollary.

Corollary 5. Let n= 2 be a square free rational integer. A biquad-
ratic field Q(v—1 ,v/n ) has a power integral basis if and only ifn= 2, 3,

or 5.

Proof. This follows from Lemma 4 and Theorem 7-b.

Remark. Q(v—1,+2 ) and Q(v/—1,+3 ) are the eight and the

twelfth cyclotomic fields respectively.

REFERENCES

[1] M. ARar: On quartic fields having common inessential discriminant divisors, (Japanese),
Sugaku 29 (1976). 366 —369.

[2] R.H. Brip and C.J. PaRRY : Integral bases for bicyclic biquadratic fields over quadratic
subfields, Pacific J. Math. 66, No.1, (1976), 29 —36.

[3] J.H.E. Coun: Eight diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153
—166.

[4] D.S.Dummit and H, KisLowsky : Indices in cyclic cubic fields, Number Theory and Algebra,

Academic Press, New York (1977), 29 —42,



(5]
(6]

(8]
[9]
(10]
11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]

(18]

=

ON INTEGRAL BASES OF PURE QUARTIC FIELDS 41

. T. ENGSTROM : On the common index divisors of an algebraic field, Trans. Amer. Math.

Soc. 32 (1930), 223 —237.

. Fulisaki :  Some examples of number fields without relative integral bases, J. Fac. Soc.

Univ. of Tokyo 21 (1974), 93 —95.

. Funsaki: Note on a paper of E. Artin, Sci. Pap, Coll. Gen. Educ. Univ. of Tokyo 24

(1974), 93 —98.

. FUNAKURA : A note on absolute Galois subfields of pure extension number fields, Bull.

Okayama Univ. of Sci. 15 (1979), 5—8.

. HAaLL : Indices in cubic fields, Bull. Amer. Math. Soc. 43 (1937), 104 —108.
. HasseE: Number Theory, (English Trans.), Springer-Verlag, Berlin'1981.
', LIUNGGREN : Eigenschaften der Einheiten reele quadratischer und rein biquadraischer

Zahlkirper, Oslo Vid-Akad Skrifter, 1 (1936), No. 12.

. LIUNGGREN : [Ein Satz iiber die diophantische Gleichung AX’—~BY'= C(C=1,2,4),

Tolfte Skandinaviska Mathematikerkongressen i Lund (1953), 188 —194.

. B. MANN :  On integral bases, Proc. Amer. Math. Soc. 9 (1958), 167 —172.
.J. MorDELL : Diophantine Equations, Academic Press, London, 1969,
. NAKAHARA : On a power basis of the integer ring in an abelian biquadratic field, (Japanese),

RIMS Kokyiroku 371 (1979), 31 —46.

. NAKAHARA : On eyclic biquadratic fields related to a problem of Hasse, Monatsh, Math,

94 (1982), 125 —132.

'. NARKIEWICZ : Elementary and Analytic Theory of Algebraic Numbers, PWN, Warszawa,
1973.
. WaDA : Integral bases of quadratic extensions over quadratic fields, (Japanese), Sugaku 28

(1976), 257 —258.

. S. WiLLiaMS :  Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519 —526.

DepPERTMENT OF GENERAL EpucaTtion
Okayama UNIVERSITY OF SCIENCE
1-1 Ripai.cho, Oxayama 700, Japan

(Received July 20, 1983)



