ON A THEOREM OF S. KOSHITANI

YASUSHI NINOMIYA

The purpose of this note is to present a theorem which refines the result of S. Koshitani [5, Theorem]. Throughout the present paper, F will represent a field of characteristic p > 0, and G a finite p-solvable group. Let B be a block ideal of the group algebra FG, and J(B) the Jacobson radical of B. Recently, in [5], S. Koshitani proved that if d is the defect of B, then the least positive integer t such that $J(B)^t = 0$ is greater than or equal to d(p-1)+1. In view of [3, IV, Lemma 2.2 and Theorem 4.5], [2, Lemma 4.6] and [6, Lemma 12.9], we see that there exists an irreducible B-module a vertex of which is a defect group of B. Hence Koshitani's result follows from the following

Theorem. Let M be an irreducible FG-module. If a vertex of M has order p^v , then the Loewy length of the projective cover of M is greater than or equal to v(p-1)+1.

All modules considered here are finitely generated right modules. The following notation will be used in the proof of the theorem. Given an FG-module M, we denote by $vx_G(M)$ a vertex of M and by L(M) the Loewy length of M. If H is a subgroup of G, then $M \mid_H$ is an FH-module obtained from M by restricting the domain of operators to FH. The full matrix ring of degree m over a ring R is denoted by $M_m(R)$. If n is a positive integer, then $\nu(n)$ is the exponent of the highest p-power dividing n.

Proof of Theorem. Let e be a primitive idempotent of FG such that eFG is a projective cover of M. If E is a finite extension field of F, then it is well known that $J(EG) \cong E \otimes_F J(FG)$, and so $E \otimes_F M$ is a completely reducible EG-module. Let $E \otimes_F M = X_1 \oplus \cdots \oplus X_r$ be a decompsition of $E \otimes_F M$ into a direct sum of irreducible EG-submodules. Then observing that

$$eEG/eJ(EG) \cong E \otimes_F eFG/eJ(FG) \cong E \otimes_F M$$

we see that eEG is a projective cover of $E \otimes_F M$, and so eEG is a direct sum of projective covers of X_i ($i=1,\dots,r$). It is clear that eEG has the same Loewy length as eFG. Further, by [2, Lemma 4.6], each X_i and M have a vertex in common. Therefore, in order to prove the theorem, we may assume that F contains the cyclotomic field of order |G| over GF(p). Then F

20 Y. NINOMIYA

is a splitting field for all subgroups of G. The proof is by induction with respect to |G| and $\nu(|G|)$. Suppose, if possible, G is a minimal counterexample.

Case 1: Assume that $Q = O_{\rho}(G) \neq \langle 1 \rangle$.

Since $Q \subset \operatorname{Ker} M$, M becomes an $F\overline{G}$ -module, where $\overline{G} = G/Q$, and [4, Lemma 1.3] asserts $vx_{\overline{G}}(M) \equiv vx_G(M)/Q$. Let $\omega(Q)$ be the augmentation ideal of FQ. Then $FG/\omega(Q)FG \cong F\overline{G}$ and $eFG/e\omega(Q)FG$ is a projective cover of the $F\overline{G}$ -module M. Set $v_1 = \nu(|vx_G(M)/Q|)$ and $v_2 = \nu(|Q|)$. Then $L(eFG/e\omega(Q)FG) \geq v_1(p-1)+1$ by induction. Hence $eJ(FG)^{v_1(p-1)}$ is not contained in $e\omega(Q)FG$. Let $\hat{Q} = \sum_{S \in Q} s$ in FG. Then we have

$$|x \in eFG \mid x\hat{Q} = 0| = |x \in FG \mid x\hat{Q} = 0| \cap eFG$$

= $FG\omega(Q) \cap eFG$
= $eFG\omega(Q) = e\omega(Q)FG$.

Therefore we get $eJ(FG)^{v_1(p-1)}\hat{Q} \neq 0$. Since $L(FQ)-1 \geq v_2(p-1)$, we see that \hat{Q} is contained in $\omega(Q)^{v_2(p-1)}$. Hence, noting that $\omega(Q) \subset J(FG)$, we get

$$0 \neq eJ(FG)^{v_1(\rho-1)}\hat{Q} \subset eJ(FG)^{v_1(\rho-1)}J(FG)^{v_2(\rho-1)}$$

= $eJ(FG)^{v(\rho-1)}$,

proving that $L(eFG) \ge v(p-1)+1$. So this case does not occur. Case 2: Assume that $O_p(G) = \langle 1 \rangle$.

Let $H = O_{\rho'}(G)$. Suppose that M belongs to the block ideal B of FG. Let N be an irreducible component of $M|_{H}$ and let T be the inertial group of N in G:

$$T = \{g \in G \mid N \otimes_{FH} g \cong N \text{ as } FH\text{-modules}\}.$$

At first, suppose that $G \neq T$. Then, by [5, Lemma 1], there exists a block ideal b of FT with block idempotent f and the F-algebra isomorphism $\phi \colon B \cong \operatorname{End}(FGf_{FTf})$ given by $[\phi(x)](y) = xy$, $x \in B$, $y \in FGf$. Further, the map sending X to $X^c = X \otimes_{FT} FG$ is a one to one correspondence between irreducible b-modules and irreducible B-modules ([3, V, Theorem 2.5]). We set $t = [G \colon T]$ and let $|g_1 = 1, g_2, \cdots, g_t|$ be a right transversal of T in G. Then $\{f, g_2^{-1}f, \cdots, g_t^{-1}f\}$ is a basis for the free FTf-module FGf. We denote by ϕ the isomorphism $\operatorname{End}(FGf_{FTf}) \cong M_t(FTf)$ defined naturally with respect to this basis. Now let X and Y be irreducible b-modules. Then the above together with Frobenius reciprocity theorem implies that

$$\dim_{F} \operatorname{Hom}_{FT}(Y, X^{c}|_{\tau}) = \dim_{F} \operatorname{Hom}_{FG}(Y^{c}, X^{c}) \\
= \begin{cases} 1 & \text{if } Y \cong X, \\ 0 & \text{if } Y \not\cong X. \end{cases}$$

Hence we see that the socle of $X^c|_{\tau}$ is isomorphic to a direct sum of X and irreducible FT-modules which belong to blocks different from b. Therefore, noting that X is isomorphic to a direct summand of $X^c|_{\tau}$, we get $X^cf\cong X$. We may assume that X is a minimal right ideal of b, and so we may identify X^c with a right ideal of B generated by X. Then we have

$$[\phi(X^c)](g_i^{-1}f) = (X^c)g_i^{-1}f = (X^cg_i^{-1})f = X^cf = X.$$

for all i, $1 \le i \le t$. Thus we get

$$\phi\phi(X^c) = egin{pmatrix} X & X & \cdots & X \ 0 & 0 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & 0 \end{pmatrix} \subset M_t(FTf).$$

Now, we may assume that $M \cong X^c$. Then from the above we get

$$eFG \cong \begin{pmatrix} P & P & \cdots & P \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

where P is a projective cover of X, and hence we have L(eFG) = L(P). Since $G \neq T$, noting that $vx_G(M) = vx_T(X)$, ([1, Theorem 19.16]), we get

$$L(eFG) = L(P) \ge v(p-1) + 1$$

by induction. Next, suppose that G=T. Set $\overline{G}=G/H$. Then [7, Theorem 2] asserts that there exists a finite group \widetilde{G} and a short exact sequence

$$\langle 1 \rangle \longrightarrow Z \longrightarrow \tilde{G} \longrightarrow \overline{G} \longrightarrow \langle 1 \rangle$$

where Z is a cyclic p'-subgroup in the center of \tilde{G} , and there exists a block ideal \tilde{B} of $F\tilde{G}$ such that $B \cong M_n(F) \otimes_F \tilde{B}$ $(n = \dim_F X)$. This asserts that there is an irreducible \tilde{B} -module \tilde{M} such that $M \cong I \otimes_F \tilde{M}$, where I is an irreducible $M_n(F)$ -module. So we have $eFG \cong I \otimes_F \tilde{P}$, where \tilde{P} is a projective cover of \tilde{M} , and so we get $L(eFG) = L(\tilde{P})$. Since G is p-solvable and $\nu(|G|) \geq 1$, it is clear that $O_p(\tilde{G}) \neq \langle 1 \rangle$. Hence, noting that $vx_G(M) \cong vx_G^*(\tilde{M})$, we have

$$L(eFG) = L(\tilde{P}) \ge v(p-1)+1$$

by Case 1 applied for \tilde{G} . So this case does not occur either, and the theorem is proved.

REFERENCES

- [1] C.W. CURTIS and I. REINER: Methods of Representation Theory with Applications to Finite Groups and Orders, vol. 1, John Wiley and Sons, New York-Chichester-Brisbane-Toronto, 1981.
- [2] K. ERDMANN: Principal blocks of groups with dihedral Sylow 2-subgroups, Comm. Alg. 5 (1977), 665-694.
- [3] W. Feit: The Representation Theory of Finite Groups, North-Holland, Amsterdam-New York-Oxford, 1982.
- [4] W. HAMERNIK and G.O. MICHLER: On vertices of simple modules in p-solvable groups, Mitt. Math. Sem. Giessen 121 (1976), 147-162.
- [5] S. KOSHITANI: On lower bounds for the radical of a block ideal in a finite p-solvable group, Proc. Edinburgh Math. Soc. 27 (1984), 65-71.
- [6] G.O. MICHLER: Blocks and centers of group algebras, Lectures on Rings and Modules: Lecture Notes in Math. 246, Springer-Verlag, Berlin-Heidelbelg-New York, 1972, 429-563.
- [7] Y. TSUSHIMA: On the second reduction theorem of P. Fong, Kumamoto J. Sci. (Math.) 13 (1978), 6-14.

Shinshu University

(Received June 6, 1984)