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ON THE RADICAL OF AN INFINITE
GROUP ALGEBRA

Dedicated to Professor Hirosi Nagao on his 60th birthday
Yasusur NINOMIYA

Throughout the present paper, k will represent an algebraically closed
field of characteristic p > 0. and G a group. In [7], D. A. R. Wallace gave
necessary and sufficient conditions for the Jacobson radical J(kG) of the
group algebra kG to be commutative under the assumption that p is odd. For
the case p = 2, in [2], we gave conditions for J(kG) to be commutative.
However, the problem of which group algebras kG have the radicals of square
zero remains unsolved. In § 1, we shall give a condition for J(kG) to be of
square zero.

The Jacobson radical J(Z(kG)) of the center Z(kG) of kG is a nil ideal
([3. Lemma 4.1.11]), and so it is clear that J(kG) D J(Z(kG))kG. In
case where G is finite, it is well known that the equality J(kG)=J(Z(kG))-
kG holds if and only if kG is an Azumaya algebra (over the center), and in
(4], Y. Tsushima proved that J(kG) = J(Z(kG))kG holds if and only if the
commutator subgroup G’ of G is a p’-group. On the other hand, in case where
G is an infinite group, it is true that if kG is an Azumaya algebra then J(kG)
= J(Z(kG))kG, but the converse implication is not necessarily true. Re-
cently, F. R. DeMeyer and G. J. Janusz [1] gave a necessary and sufficient
condition for kG to be an Azumaya algebra. In particular, they showed that
if kG is an Azumaya algebra, then G' is a finite p’-group. In § 2, we show
that if G’ has no elements of order a power of p, then N(kG)= J(Z(kG))-
kG, where N(kG) is the sum of all the nilpotent ideals of kG.

In what follows, we denote by A(G) and A®(G) the characteristic sub-
groups of G given by

A(G) ={x € G| [G:Cxx)] is finite| and
A%(G) = {(x € A(G) | x has order a power of p)

respectively,
1. At first, suppose that J(kG) # 0 and J(kG)? = 0. Then J(kG) =

N(kG) = J(kA®(G))kG([3. Theorem 8.1.9]) and A%(G) is finite ([3, The-
orem8.1.12]). Hence it follows from [5, Theorem] that p=2 and | A¥G) |
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= 2m (m is odd). Conversely, if p=2, |A(G)| =2m (m is odd) and
J(kG) is nilpotent, then J(kG)* = J(kA*G))*kG = 0. Thus, we obtain
the next

Lemma. The following are equivalent :
(1) J(kG) #= 0 and J(kG)* = 0.
(2) p=2, |A(G)| = 2m (mis odd) and J(kG) is nilpotent.

Now, a necessary and sufficient condition for J(kG) to be nilpotent is
given in [3, Corollary 8.1.14]. By making use of the similar argument as
in the proof of it, we can obtain the next

Proposition 1. The following are equivalent :
(1) J(kG) #+ 0 and J(kG)* = 0.
(2) p=2, |AXG)|=2m (mis odd) and kC(s)/{s) is semi-simple,

where s is an involution of AXG).

Proof. (1) = (2) : By Lemma, it suffices to prove that J(kH/(s)) =
0, where H= C((s). Clearly [G:H] <, and hence by [3, Lemma 7.2.8],
J(kH) is nilpotent. Thus, we have J(kH) = N(kH) = J(kA*(H))kH ([3,
Theorem 8.1.9]). Since [G : H] < oo, clearly AG) D A*H), and there-
fore we have AH) = {s), because |AYG)| = 2m. Thus, we get J(kH)
= J(k{s))kH. This implies that J(kH/(s)) = J(kH)/J(k{s))kH = 0.

(2) = (1) : Since J(kCi(s))/J(k(s))kCi(s) = J(kCs(s)/(s)) =0,
we see that J(kGg(s)) = J(k(s)) kC{s) is nilpotent. Thus because
[G: Cds)] <o, J(kG) is nilpotent by [3, Lemma 7.2.8], and so J(kG)*
=0 by Lemma.

Now, we assume that p = 2 and |A¥G)| = 2m (mis odd). Then
J(kA(G))*= 0, because J(kA(G))= J(kA(G))kA(G) ([3, Lemma 8.1.8]).
Hence, if [G : A(G)] < o0, J(kG) is nilpotent by [3, Lemma 7.2.8]. This
together with Lemma implies the following

Proposition 2. Assume that [G : A(G)] < oo, Then the following are
equivalent :

(1) J(kG) #+ 0 and J(kG)® = 0.

(2) p=2 and |AYG)| = 2m (m is odd).

Next, suppose that J(kG)* = 0 and let N be a normal subgroup of A G)
of index 2 in A¥G). Then N is a normal subgroup of G. If G = G/N, then
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J(kG)? = 0, because kG is isomorphic to a direct summand of kG. Noting

that A(G) = A*(G)/N = S a Sylow 2-subgroup of A*(G), we get
J(kG) = N(kG) = J(kAYG))kG = J(kS )G,

where S is the image (if S in E_ This together with the isomorphism
kG/ A¥G) = kG/S = kG/J(kS kG implies

J(kG/A¥G)) = J(kG/J(kS)kG) = 0.

Hence, we have the following

Proposition 3. If J(kG) + 0 and J(kG)? = 0, then p = 2, | A%G)|
= 2m (mis odd) and kG/ A G) is semi-simple.

Unfortunately, up to the present, the structure of a group whose group
algebra is semi-simple is not known, and so we cannot give the structure of
G/A¥G) in the above proposition. Accordingly, we don’t know whether the
converse of the proposition is true or not.

Now, we state our theorem as follows :

Theorem 1. The following are equivalent :

(1) JkG) *+ 0 and J(kG)* = 0.

(2) p= 2 and one of the following holds.

(i) 1A%G)| = 2 and J(kG/AXG)) = 0.

(ii) | A%G)| = 2m, where m is an odd number greater than 1, and the
centralizer Ci(s) of an involution s of AG) has a subgroup H such that
[Cds): H] < oo and J(kH) = 0.

Proof. (1) =(2) : In view of Lemma and Proposition 3, we may as-
sume that p = 2 and | A(G)| = 2m, where m is an odd number greater than
1. Let s be an involution of A*(G). Then it is evident from our assumption
that G #= Ci(s). Hence we can choose an element x of G — Ci(s). Now set
H= Cqs) N Cis)*. Since s € A(G), it is clear that [G : Cy(s)] < oo,
and so [G:H] <. Thus we have [Cqs): H] <oo. Since J(kH) is
nilpotent ([3, Lemma 7.2.8]), in order to prove that J(kH) = 0, it suffices
to show that A*(H) = (1) ([3, Theorem 8.1.9]). Now, suppose that AXH)
has an element ¢t &= 1 of order a power of 2. Then t € AXG), because
[G: H] < oo, Further, since t € Cq(s)and t € Cq(s)% it is clear that (¢, s)
and (t, s*) are 2-subgroups of A*(G). Hence we have s = t = s*, because
|A%(G)| = 2m. This implies that x € Cq(s) contrary to our choice of x.



16 Y. NINOMIYA

This shows that A2(H) = (1).

(2)=> (1) : If (i) holds, then by Proposition 1, J(kG)* = 0. Next,
suppose that (ii) holds. Then A*(H) = (1) by [3, Theorem 8.1.9]. Hence
HN {s) = (1), and so T= H{s) is a direct product of H and {(s). There-
fore, by [6, Lemma 2.8] J(kT) = J(k(s))kT, and hence J(kT)* = 0.
Since [G : T] < oo, J(kG) is nilpotent. Thus, it follows from Lemma that
J(kG)* = 0.

Corollary 1. Let p=2, |AXG)| = 2m (m is odd) and the center
Z(AYG))of A(G) = (1). Then J(kG)* = 0 if kG/ A G) is semi-simple.

Proof. Set H= Ci(A¥G)). Then [G: H] <o, and so we have
[Cis): H] < oo, where s is an involution of A(G). Set G= G/AYG)
and let H be the image of H in G. Since [G:H] < oo and J(kG) = 0,
J(kH) is nilpotent ([3, Lemma 7.2.8]), and so we have J(kH) = 0 because
A*(H) = (1). This together with the isomorphism

H= HAYG)/A¥G) = H/HN AYG) = H/Z(A¥G)) = H
implies that J(kH) = 0. Hence J(kG)* = 0 by Theorem 1.

Remark. We assume that J(kG) = 0 and J(kG)? = 0. Let s be an
involution of AXG). If G # C4s), then H, = N:ccCe(s)* is a normal sub-
group of G of finite index in G because [G : C¢(s)] < o0, Hence J(kH,)* =0
by [3, Theorem 7.2.7]. Therefore, noting that A*H,) = (1), we have
J(kH,) = 0. This shows that there exists a normal subgroup H, of G such
that J(kH,) = 0 and [G : H,] is even. Conversely, suppose that G has such
a normal subgroup H, and p = 2. Besides, if we assume that [G : Ho) is not
divisible by 4, then G has a normal subgroup N such that NO H, and [G: N]
= 2. Since [N : H,] is not divisible by 2, we have J(kN) = J(kH,)kN = 0.
Therefore it follows from [3, Theorem 7.2.7] that J(kG)? = 0. However,
Wallace [6, Example 6.5] shows that there exists a group G with J(kG)* =
0 which contains a normal subgroup H, such that [G : H,] = 4 and J(kH,)
= 0.

2. Let W be a finite group whose commutator subgroup is a p’-group.
The genetators of J(kW) have been given by Y. Tsushima [4]. Now, by
making use of his result, we show the following
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Theorem 2. If the commutator subgroup G' of G has no elements of
order a power of p, then N(kG) = J(Z(kG))kG.

Proof. By [3, Theorem 8.1.9], N(kG) = (UJ(kW))kG, where the
union is over all finite normal subgroups W of G contained in A”(G). Hence,
in order to prove our theorem, it suffices to prove that ( *) if W is a finite
normal subgroup of G. then J(kW) C J(Z(kG))kG. From our assumption,
it is easy to see that W is a p-nilpotent group with an abelian Sylow p-
subgroup and W' C W N G’ C N, where N is a normal p-complement in W.
Now, let H be a subgroup of W containing N. Then it easily follows from
W N G C N that H is normal in G. Hence the sum of the block idempotents
of kH of full defect is an element of Z(kG). Hence, in order to prove ( *),
by [4, Proposition 8], it suffices to prove that if C is a conjugate class of a
p-element of W such that C C H, then C is a conjugate class in G. Letg €
G and s € C. Since N(s) is normal in G, there exist x € N and a positive
integer n such that gsg™' = xs™x™'. Hence we have s" '€ G'N {s) = (1),
and so n=1. This implies that C is a conjugate class in G, and the theorem
is proved.

If G= A(G), then J(kG) = N(kG) by [3, Lemma 8.1.8], and so we

have the following

Corollary 2. If G= A(G) and G’ has no elements of order a power of
p. then J(kG) = J(Z(kG))kG.

Remark. In [6, Example 6.3], D. A. R. Wallace has shown that there
exists a group G which satisfies that |G'| = 2 and G/G’ is a torsion-free
abelian group. Now, let p = 2 and G a group with this property. Then we
have

J(kG) = J(kG) kG = J(Z(kG))kG.

This implies that the converse of the corollary is not true.
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