ON THE RADICAL OF AN INFINITE GROUP ALGEBRA

Dedicated to Professor Hirosi Nagao on his 60th birthday

YASUSHI NINOMIYA

Throughout the present paper, k will represent an algebraically closed field of characteristic p > 0, and G a group. In [7], D. A. R. Wallace gave necessary and sufficient conditions for the Jacobson radical J(kG) of the group algebra kG to be commutative under the assumption that p is odd. For the case p = 2, in [2], we gave conditions for J(kG) to be commutative. However, the problem of which group algebras kG have the radicals of square zero remains unsolved. In § 1, we shall give a condition for J(kG) to be of square zero.

The Jacobson radical J(Z(kG)) of the center Z(kG) of kG is a nil ideal ([3, Lemma 4.1.11]), and so it is clear that $J(kG) \supset J(Z(kG))kG$. In case where G is finite, it is well known that the equality $J(kG) = J(Z(kG)) \cdot kG$ holds if and only if kG is an Azumaya algebra (over the center), and in [4], Y. Tsushima proved that J(kG) = J(Z(kG))kG holds if and only if the commutator subgroup G' of G is a p'-group. On the other hand, in case where G is an infinite group, it is true that if kG is an Azumaya algebra then J(kG) = J(Z(kG))kG, but the converse implication is not necessarily true. Recently, F. R. DeMeyer and G. J. Janusz [1] gave a necessary and sufficient condition for kG to be an Azumaya algebra. In particular, they showed that if kG is an Azumaya algebra, then G' is a finite p'-group. In § 2, we show that if G' has no elements of order a power of p, then $N(kG) = J(Z(kG)) \cdot kG$, where N(kG) is the sum of all the nilpotent ideals of kG.

In what follows, we denote by $\Delta(G)$ and $\Delta^{\rho}(G)$ the characteristic subgroups of G given by

$$\Delta(G) = \{x \in G \mid [G : C_c(x)] \text{ is finite} | \text{ and } \Delta^p(G) = \langle x \in \Delta(G) \mid x \text{ has order a power of } p \rangle$$

respectively.

1. At first, suppose that $J(kG) \neq 0$ and $J(kG)^2 = 0$. Then $J(kG) = N(kG) = J(k\Delta^p(G))kG([3, Theorem 8.1.9])$ and $\Delta^p(G)$ is finite ([3, Theorem 8.1.12]). Hence it follows from [5, Theorem] that p = 2 and $|\Delta^2(G)|$

14 Y. NINOMIYA

= 2m (m is odd). Conversely, if p=2, $|\Delta^2(G)|=2m$ (m is odd) and J(kG) is nilpotent, then $J(kG)^2=J(k\Delta^2(G))^2kG=0$. Thus, we obtain the next

Lemma. The following are equivalent:

- (1) $J(kG) \neq 0$ and $J(kG)^2 = 0$.
- (2) p=2, $|\Delta^2(G)|=2m$ (m is odd) and J(kG) is nilpotent.

Now, a necessary and sufficient condition for J(kG) to be nilpotent is given in [3, Corollary 8.1.14]. By making use of the similar argument as in the proof of it, we can obtain the next

Proposition 1. The following are equivalent:

- (1) $J(kG) \neq 0$ and $J(kG)^2 = 0$.
- (2) p=2, $|\Delta^2(G)|=2m$ (m is odd) and $kC_c(s)/\langle s \rangle$ is semi-simple, where s is an involution of $\Delta^2(G)$.
- *Proof.* (1) \Rightarrow (2): By Lemma, it suffices to prove that $J(kH/\langle s \rangle) = 0$, where $H = C_c(s)$. Clearly $[G:H] < \infty$, and hence by [3, Lemma 7.2.8], J(kH) is nilpotent. Thus, we have $J(kH) = N(kH) = J(k\Delta^2(H))kH$ ([3, Theorem 8.1.9]). Since $[G:H] < \infty$, clearly $\Delta^2(G) \supset \Delta^2(H)$, and therefore we have $\Delta^2(H) = \langle s \rangle$, because $|\Delta^2(G)| = 2m$. Thus, we get $J(kH) = J(k\langle s \rangle)kH$. This implies that $J(kH/\langle s \rangle) \cong J(kH)/J(k\langle s \rangle)kH = 0$.
- $(2) \Rightarrow (1)$: Since $J(kC_c(s))/J(k\langle s\rangle)kC_c(s) \cong J(kC_c(s)/\langle s\rangle) = 0$, we see that $J(kG_c(s)) = J(k\langle s\rangle)kC_c(s)$ is nilpotent. Thus because $[G:C_c(s)] < \infty$, J(kG) is nilpotent by [3, Lemma 7.2.8], and so $J(kG)^2 = 0$ by Lemma.

Now, we assume that p=2 and $|\Delta^2(G)|=2m$ (m is odd). Then $J(k\Delta(G))^2=0$, because $J(k\Delta(G))=J(k\Delta^2(G))k\Delta(G)$ ([3, Lemma 8.1.8]). Hence, if $[G:\Delta(G)]<\infty$, J(kG) is nilpotent by [3, Lemma 7.2.8]. This together with Lemma implies the following

Proposition 2. Assume that $[G : \Delta(G)] < \infty$. Then the following are equivalent:

- (1) $J(kG) \neq 0$ and $J(kG)^2 = 0$.
- (2) p = 2 and $|\Delta^{2}(G)| = 2m$ (m is odd).

Next, suppose that $J(kG)^2=0$ and let N be a normal subgroup of $\Delta^2(G)$ of index 2 in $\Delta^2(G)$. Then N is a normal subgroup of G. If $\overline{G}=G/N$, then

 $J(k\overline{G})^2=0$, because $k\overline{G}$ is isomorphic to a direct summand of kG. Noting that $\Delta^2(\overline{G})=\Delta^2(G)/N\cong S$ a Sylow 2-subgroup of $\Delta^2(G)$, we get

$$J(k\overline{G}) = N(k\overline{G}) = J(k\Delta^2(\overline{G}))k\overline{G} = J(k\overline{S})k\overline{G},$$

where \overline{S} is the image of S in \overline{G} . This together with the isomorphism $kG/\Delta^2(G) \cong k\overline{G}/\overline{S} \cong k\overline{G}/J(k\overline{S})k\overline{G}$ implies

$$J(kG/\Delta^2(G)) \cong J(k\overline{G}/J(k\overline{S})k\overline{G}) = 0.$$

Hence, we have the following

Proposition 3. If $J(kG) \neq 0$ and $J(kG)^2 = 0$, then p = 2, $|\Delta^2(G)| = 2m$ (m is odd) and $kG/\Delta^2(G)$ is semi-simple.

Unfortunately, up to the present, the structure of a group whose group algebra is semi-simple is not known, and so we cannot give the structure of $G/\Delta^2(G)$ in the above proposition. Accordingly, we don't know whether the converse of the proposition is true or not.

Now, we state our theorem as follows:

Theorem 1. The following are equivalent:

- (1) $J(kG) \neq 0$ and $J(kG)^2 = 0$.
- (2) p = 2 and one of the following holds.
- (i) $|\Delta^{2}(G)| = 2$ and $J(kG/\Delta^{2}(G)) = 0$.
- (ii) $|\Delta^2(G)| = 2m$, where m is an odd number greater than 1, and the centralizer $C_c(s)$ of an involution s of $\Delta^2(G)$ has a subgroup H such that $[C_c(s):H] < \infty$ and J(kH) = 0.

Proof. $(1) \Rightarrow (2)$: In view of Lemma and Proposition 3, we may assume that p=2 and $|\Delta^2(G)|=2m$, where m is an odd number greater than 1. Let s be an involution of $\Delta^2(G)$. Then it is evident from our assumption that $G \neq C_G(s)$. Hence we can choose an element x of $G-C_G(s)$. Now set $H=C_G(s)\cap C_G(s)^x$. Since $s\in \Delta^2(G)$, it is clear that $[G:C_G(s)]<\infty$, and so $[G:H]<\infty$. Thus we have $[C_G(s):H]<\infty$. Since J(kH) is nilpotent ([3, Lemma 7.2.8]), in order to prove that J(kH)=0, it suffices to show that $\Delta^2(H)=\langle 1\rangle$ ([3, Theorem 8.1.9]). Now, suppose that $\Delta^2(H)$ has an element $t\neq 1$ of order a power of 2. Then $t\in \Delta^2(G)$, because $[G:H]<\infty$. Further, since $t\in C_G(s)$ and $t\in C_G(s)^x$, it is clear that $\langle t,s\rangle$ and $\langle t,s^x\rangle$ are 2-subgroups of $\Delta^2(G)$. Hence we have $s=t=s^x$, because $|\Delta^2(G)|=2m$. This implies that $x\in C_G(s)$ contrary to our choice of x.

16 Y. NINOMIYA

This shows that $\Delta^2(H) = \langle 1 \rangle$.

 $(2) \Rightarrow (1)$: If (i) holds, then by Proposition 1, $J(kG)^2 = 0$. Next, suppose that (ii) holds. Then $\Delta^2(H) = \langle 1 \rangle$ by [3, Theorem 8.1.9]. Hence $H \cap \langle s \rangle = \langle 1 \rangle$, and so $T = H \langle s \rangle$ is a direct product of H and $\langle s \rangle$. Therefore, by [6, Lemma 2.8] $J(kT) = J(k\langle s \rangle)kT$, and hence $J(kT)^2 = 0$. Since $[G:T] < \infty$, J(kG) is nilpotent. Thus, it follows from Lemma that $J(kG)^2 = 0$.

Corollary 1. Let p=2, $|\Delta^2(G)|=2m$ (m is odd) and the center $Z(\Delta^2(G))$ of $\Delta^2(G)=\langle 1 \rangle$. Then $J(kG)^2=0$ if $kG/\Delta^2(G)$ is semi-simple.

Proof. Set $H=C_G(\Delta^2(G))$. Then $[G:H]<\infty$, and so we have $[C_G(s):H]<\infty$, where s is an involution of $\Delta^2(G)$. Set $\overline{G}=G/\Delta^2(G)$ and let \overline{H} be the image of H in \overline{G} . Since $[\overline{G}:\overline{H}]<\infty$ and $J(k\overline{G})=0$, $J(k\overline{H})$ is nilpotent ([3, Lemma 7.2.8]), and so we have $J(k\overline{H})=0$ because $\Delta^2(\overline{H})=\langle \overline{1} \rangle$. This together with the isomorphism

$$\overline{H} = H\Delta^2(G)/\Delta^2(G) \cong H/H \cap \Delta^2(G) = H/Z(\Delta^2(G)) \cong H$$

implies that J(kH) = 0. Hence $J(kG)^2 = 0$ by Theorem 1.

Remark. We assume that $J(kG) \neq 0$ and $J(kG)^2 = 0$. Let s be an involution of $\Delta^2(G)$. If $G \neq C_G(s)$, then $H_0 = \bigcap_{x \in G} C_G(s)^x$ is a normal subgroup of G of finite index in G because $[G:C_G(s)] < \infty$. Hence $J(kH_0)^2 = 0$ by [3, Theorem 7.2.7]. Therefore, noting that $\Delta^2(H_0) = \langle 1 \rangle$, we have $J(kH_0) = 0$. This shows that there exists a normal subgroup H_0 of G such that $J(kH_0) = 0$ and $[G:H_0]$ is even. Conversely, suppose that G has such a normal subgroup H_0 and p = 2. Besides, if we assume that $[G:H_0]$ is not divisible by 4, then G has a normal subgroup N such that $N \supset H_0$ and [G:N] = 2. Since $[N:H_0]$ is not divisible by 2, we have $J(kN) = J(kH_0)kN = 0$. Therefore it follows from [3, Theorem 7.2.7] that $J(kG)^2 = 0$. However, Wallace [6, Example 6.5] shows that there exists a group G with $J(kG)^2 = 0$ which contains a normal subgroup H_0 such that $[G:H_0] = 4$ and $J(kH_0) = 0$.

2. Let W be a finite group whose commutator subgroup is a p-group. The genetators of J(kW) have been given by Y. Tsushima [4]. Now, by making use of his result, we show the following

Theorem 2. If the commutator subgroup G' of G has no elements of order a power of p, then N(kG) = J(Z(kG))kG.

Proof. By [3, Theorem 8.1.9], $N(kG) = (\bigcup J(kW))kG$, where the union is over all finite normal subgroups W of G contained in $\Delta^p(G)$. Hence, in order to prove our theorem, it suffices to prove that (*) if W is a finite normal subgroup of G, then $J(kW) \subset J(Z(kG))kG$. From our assumption, it is easy to see that W is a p-nilpotent group with an abelian Sylow p-subgroup and $W' \subset W \cap G' \subset N$, where N is a normal p-complement in W. Now, let H be a subgroup of W containing N. Then it easily follows from $W \cap G' \subset N$ that H is normal in G. Hence the sum of the block idempotents of kH of full defect is an element of Z(kG). Hence, in order to prove (*), by [4, Proposition 8], it suffices to prove that if C is a conjugate class of a p-element of W such that $C \subset H$, then C is a conjugate class in G. Let $g \in G$ and $g \in G$. Since $g \in G$ is normal in $g \in G$, there exist $g \in G$ and a positive integer $g \in G$ such that $g \circ g^{-1} = g \circ g \circ g$. Hence we have $g \circ g \circ g \circ g \circ g$ and the theorem is proved.

If $G = \Delta(G)$, then J(kG) = N(kG) by [3, Lemma 8.1.8], and so we have the following

Corollary 2. If $G = \Delta(G)$ and G' has no elements of order a power of p, then J(kG) = J(Z(kG))kG.

Remark. In [6, Example 6.3], D. A. R. Wallace has shown that there exists a group G which satisfies that |G'| = 2 and G/G' is a torsion-free abelian group. Now, let p = 2 and G a group with this property. Then we have

$$J(kG) = J(kG')kG = J(Z(kG))kG.$$

This implies that the converse of the corollary is not true.

REFERENCES

- F.R. DEMEYER and G.J. JANUSZ: Group rings which are Azumaya algebras, Trans. Amer. Math. Soc. 279 (1983), 389-395.
- [2] Y. NINOMIYA: On the commutativity of the radical of the group algebra of an infinite group, Osaka J. Math. 17 (1980), 27-33.

18 Y. NINOMIYA

- [3] D.S. PASSMAN: The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977.
- [4] Y. TSUSHIMA: Some notes on the radical of a finite group ring, Osaka J. Math. 15 (1978), 647-653.
- [5] D.A.R. WALLACE: Group algebras with radicals of square zero, Proc. Glasgow Math. Assoc. 5 (1962), 158-159.
- [6] D.A.R. WALLACE: On commutative and central conditions on the Jacobson radical of the group algebra of a group, Proc. London Math. Soc. 19 (1969), 385-402.
- [7] D.A.R. WALLACE: On commutative and central conditions on the Jacobson radical of the group algebra of a group [], J. London Math. Soc. 4 (1971), 91-99.

SHINSHU UNIVERSITY

(Received March 25, 1984)