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THE SPECTRUM OF A CONJUGACY CLASS
GRAPH OF A FINITE GROUP

Nosoru ITO

Introduction. Let G be a finite group, C a conjugacy class of G and
h = |C]|, the number of elements in C. Then a conjugacy class graph I"
= I'(G,C) is defined as follows. The vertex set V(I') of I' is G. For
elements x and y in G.|x,y}| belongs to the edge set E(I") of ' if y = cx
for some element ¢ in C. In order to secure the undirected and connected
property of I we assume that C = C™' and G = (C), namely that C is
real and G is generated by C.

The main purpose of this note is to show that the spectrum of I” can
be determined if the portion of the character table of G corresponding to C
and the identity element e of G is known. Namely we prove the following
theorem (§ 1).

Theorem. Let y be an irreducible character of G. Then ) contributes
Jor the spectrum of I" an eigenvalue A = hy(c)/ x(e), where c is an element
of C, with multiplicity y(e)®. Distinct characters may contribute the same
eigenvalue. Therefore the multiplicity of A in the specirum of I' equals the
sum of all y(e)?*s such that hy(c)/x(e) = A

In § 2 we consider a condition for I" to be bipartite, and we see that
I is bipartite if G is solvable. In § 3 we describe a special situation where
G is a symmetric group and C is the class of transpositions. In § 4 we state
a few remarks.

1. Proof of the theorem. In order to describe the adjacency matrix
A of I" we need a labelling of elements of G. So we put G = {x,. 22, ...,xg},
where g denotes the order of G. Let 8c(z) = 1 or 0 according as z is in C
or not. Then we can put A = (8clax,™)), 1 = i, j = g.

Now 8¢ is a class function of G. Therefore 8¢ is a C-linear combina-
tion of irreducible characters of G, where C denotes the field of complex
numbers :

k
Oc = i_Z;ml% a e C,
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where k denotes the number of distinct irreducible characters of G. By the
orthogonality relation of irreducible characters of G we obtain that

&
ag = 3 dclz) xdz") = I alx™) = hile), c € C=C.

So we have that a; = hyic)/s.
k
Put Dy(y(xx, ")) 1= i, j < g. Then we have that A =(h/g) 3, x:(c) D,.
=1

Here we recall the following relation of group characters ([2], p. 32):

Y

(1) Z‘{ ¥s(x:™ ") xrloxry) = (xr(y)/ xr(e))gbr.s,

where 6,5 denotes the Kronecker delta.
Put Xs: = (ys(xi™"), ... ¥s(xe™)). 1 £ s £ k, and consider X5, A =

k
(h/g) Z}l ¥{¢)XsiDi. Then by (1) the j-th component of X:.D: equals

£
g{ Xs(x ) iz, ) = (¥s(x,™ ")/ ¥s(e))gds.. So the j-th component of Xs,A

equals (hys(c)/xs(e))xs(x,”'). Namely X, is an eigenvector of A corre-
sponding to the eigenvalue hys(c)/xs(e).

Now we recognize that X, is the first row vector of Ds. Let Xsn be
the m-th row vector of D5, 2 < m < g. Then X» is an eigenvector of A
corresponding to the eigenvalue Ays(c)/xs(e). too. In fact, we notice that

g

Z s(xmxz Xl(xzxj ) = ZE XS(xi_l)Xl(IiImIJ_l) = (ng(mej_l)/Xs(e))ds.l-

Then any linear combination of the Xs», 1 = m < g, is an eigenvector of
A corresponding to the eigenvalue hys(c)/ xs(e).

As remarked in the formulation of the theorem it is possible that
xs(e)/ xs(e) = xc)/ x{e) for s + t. However, for s + ¢, Xs; and X}, are
orthogonal as complex vectors. Namely by (1) we have that X, Xin =

Z-‘l Xslox ) xlxixn™') = ):. ¥s(x™ ") xlxixixn™') = 0. Thus in order to

complete the proof of the theorem it remains to show that the rank af D,
equals Y(e)’, 1 <[/ < k.
Let R be the regular representation of G and 7y the character of R.

k
So y(z) = g or 0 according as z = e or not. Since ¥y = 2, xfle)x ([2],
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p.14), we have that
. k
(2) (y(xx,™")) = 121 x:(e)D,.

Let e; be the standard basis vector of Cg, the space of all complex row
K

vectors of size g, 1 = i = g. Then (2) yields that ge; = > xi(e) Xy,
=1

1 i< g Namely the Xs;, 1 £ s =k, 1 £ i = g, generates Cg.
13

Therefore, since g = 2 Yi{e)? ([2]. p. 14). it suffices to show that the rank

l=1
of D, does not exceed yfe)’. 1 £ i< k.
Let Ry(x) = (afs{x)). 1 = 7. s = yle), x € G be an irreducible
representation of G corresponding to the character ¥;, 1 =< / < k. Then it
holds that Ri(x;)Rx,~") = Ryx;x,”'). Thus we obtain that

xe)
(3) xlxex, ') = ”Z_'.1 arx:) air(x, ).
a"ill)(l‘l)s coen a(i‘;lel(xl). a(!l§(11_1)~ vy a':lli!(xg_l)
Let AV = | - : : : 1= i< xe).
a‘(ill)(xg)s cees a(ig:e)(xg) a{)l.':fe'i(xl_ 1), cees a'(Il,::_e":(Ig_])

Then by (3) we have that D, = A"+...+ A%... Obviously the rank of each
AY does not exceed Y,(e). Therefore the rank of D, does not exceed yi(e)’.
This completes the proof.

Remark. Since our eigenvectors are independent from the choice of C,
a similar theorem holds, when C is replaced by an inverse closed union of
conjugacy classes.

2. Bipartition condition.

Proposition 1. Let G' denote the commutator subgroup of G. Then
I'(G,C) is bipartite if and only if G/G' has order two and G = G’ {c),
c e C.

Proof. Suppose that G/G' has order two and G= G' (e}, c € C. Now
h = | C| is the largest eigenvalue of I'(G,C). Let 5 be the linear character
of G whose kernel equals G'. Then 3 yields the eigenvalue —A. Therefore
by a result of A.J. Hoffman ([4], p.227) I'(G.C) is bipartite.
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Suppose that I'(G, C) is bipartite. Let N be the set of all elements x
of G such that the distance d(e,x) from e is even. Then since I'(G,C)
contains no odd cycle ([1], p.50), N forms a subgroup of G of index two.
If G/G' has order larger than two, then we have that G # (C).

Proposition 2. If G is solvable, then I'(G,C) is bipartite.

Proof. Let N be a normal maximal subgroup of prime index p. If p
+ 2, then C = C~'. Thus we get p = 2. By the same reason we have that’
N= G

3. A special case. Let G = Sym n be a symmetric group on n letters
and C the class of transpositions. Thenh = |C| = n(n—1)/2. Let I'(n)
= I'(G,C). Then eigenvalues of I'(n) are given explicitly in term of the
characteristics of Young diagrams. However, we have to recognize that,
for a given n the number of Young diagrams equals p(n), the number of
partitions of n, and p(n) increases very rapidly when n increases.

Let ¥ be an irreducible character of G corresponding to the Young
diagram Y(X). Now the number r of nodes on the diagonal initiating at the
top-left of Y(X) is called the rank of Y(X). Let a; be the number of nodes
to the right of the i-th node on the diagonal and b; the number of nodes

beneath the i-th node on the diagonal, 1 < i < r. Then (g' gz g’) is
1 U2 ... T

called the characteristic of Y(X). For example, in the Young diagram

we have that r =2, a, = 3, a2 =1, b, = 4 and b, = 2. In general, we
have that &y > a; > -+ > a, 20, b, > b, > . > b, =20 and n—r =

r

> (a;+b,). Now we have a result of G. Frobenius ([3a, b]):

i=1

r

hx(e)/x(e) = (1/2) (3 bdbir D)= 3 adact1)).

i=1

It might be interesting to have a detailed description of the spectrum
of I'(n). We prove the following proposition,

Proposition 3. If n is not so small, then every integer i in the interval
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[—n,n] is an eigenvalue of I'(n).

Remark. They are yielded by characters of rank at most three. Our
bounds for n are probably not best possible.

Proof. We identify the character with the characteristic of the corre-
sponding Young diagram. Since I'(rn) is bipartite (see Proposition 1), we
may assume that 0 = i = n. It is convenient to divide into four cases.

(i) The case n =1 (mod 4). Let n = 4m+1.

The characters (gm) and <2m—1
m

2m+1) yield the eigenvalues 0 and n

respectively.

(i ;-l—l) yields the eigenvalue i = y+1. Since 2x+2y = n—3,

0 <yand y+2 £ x, we get all values i such that 1 < i < (n—5)/4.
Here the bound for n is 9.

x+1
2x+2y=n—3,0 =< yand y+1 = x, we get all values i such that (n+3)/4
< i£(n—1)/2. Here the bound for #n is 5.

(x z) yields the eigenvalue i = x+1 = (n—1)/2—y. Since

<i+1 ;+2) vields the eigenvalue i = x+2y+4 = y+(n+3)/2.

Since 2x42y = n—5, 0 = y and y+2 < x, we get all values i such that
(n+3)/2 £ i< 3(n—1)/4. Here the bound for n is 9.

(i+2 §+1) yields the eigenvalue i = 2x+y+4 = n—1—3y. Since

2x+2y=n—5, 0 =y and y+1 < x, we get all values i such that
(3n+5)/4 =< i < n—1. Here the bound for n is 9.

So there are only three gaps, namely (n—1)/4, (n+1)/2 and (3n+1)/4.
We fill these three gaps by using characters of rank three.

(EZ:B;: &Z:g;;i (l)) yields the eigenvalue (n—1)/4. Here the

bound for n is 13.

(EZigg;i EZ:%?;;: 2) yields the eigenvalue (n+1)/2. Here the

bound for n is 37.

Let n=1 (mod 8). Then (8:;%)1/)48 gz:g%g 8) yields the eigen-

value (3n+1)/4. Here the bound for n is 17.
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Let n =15 (mod 8). Then (gz:%g/)gs E::g%g g) yields the eigen-

value (3n+1)/4. Here the bound for n is 29.

(ii) The case n = 3 {mod 4).

We may proceed as in the case n =1 (mod 4). Bounds for n in this
caseare 7, 7, 11 and 7 instead of 9, 5. 9 and 9. We get three gaps again.
They are (n+1)/4, (n+1)/2 and (3n—1)/4.

(EZi%gg;i é::ggg;i g) yields the eigenvalue (n+1)/4. Here the

bound for n is 39.

((n-{- 25)/4 (n—47)/4
(n+25)/4 (n—39)/4

bound for n is 67.

g) yields the eigenvalue (n+1)/2. Here the

Let n =3 (mod 8). Then (Egz:g;)sm Eﬁ:g;?g 8) yields the eigen-
value (3n—1)/4. Here the bound for n is 27.

Let n= 7 (mod 8). Then (g:ﬁq—-é)s/)S/S 2::%42 8) yields the eigen-

value (3n—1)/4. Here the bound for n is 15.

(iii) The case n = 0 (mod 4).

(; g:_'_l 8) yields the eigenvalue i = y+1. Since 2x+2y = n—4,
1<y and y+2 = x, we get all values i such that 2 < i < (n—4)/4.
Here the bound for n is 12.

(i+l z 8) yields the eigenvalue i = x+1 = (n—2)/2—y. Since
2x+2y=n—4,1 =< yand y+1 =< x, we get all values i such that (n+4)/4
< i< (n—4)/2. Here the bound for n is 12.

(i—i—l §+2 8) vields the eigenvalue i = x+2y+4 = (n+2)/2+y.
Since 2x+2y = n—6. 1 =< y and y+2 < x. we get all values i such that
(n+4)/2 £ i< (3n—8)/4. Here the bound for n is 16.

(;;_*_2 §:+1 8) vields the eigenvalue { = 2x+y+4 = n—2—y.

Since 2x+2y=n—6, 1 = y and y+1 = x, we get all values { such that
(3n)/4 £ i £ n—3. Here the bound for n is 12.

So there are ten gaps, namely 0, 1, n/4. (n—2)/2, n/2, (n+2)/2.
(3n—4)/4, n—2, n—1 and n.
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(EZ:%;;% 8) yields the eigenvalue 0. Here the bound for n is 4.

(Ez:g;;§ g (1)) vields the eigenvalue 1. Here the bound for n is 16.

Let n =0 (mod 8). Then ((337:}8_8)/8 ?1/18—8)/8) vields the eigenvalue

n/4. Here the bound for n is 8. Let n =4 (mod 8). Then (82:852
(n—12)/8
(n+4)/8

(E:ijg;i EZ: %(2)%3 (3)) yields the eigenvalue (n—2)/2. Here the bound

) yields the eigenvalue n/4. Here the bound for n is 12.

for n is 28. ((72?}/22)—1) yields the eigenvalue n/2. (%i EZ:é?)fl g)

yields the eigenvalue (n+2)/2. Here the bound for n is 24. Let n = 0 (mod

8). Then (gzzgggfg 221—3353 g) yields the eigenvalue (3n—4)/4. Here

the bound for n is 32. Let n =4 (mod 8). Then (gﬁ:i?}éS EZ:i;;g (1))

n/4

yields the eigenvalue (3n—4)/4. Here the bound for n is 20. ((n+4)/4

527}212)/4) yields the eigenvalue n—1. Here the bound for n is 12.

((717};4)/2 8) vields the eigenvalue n—1. Here the bound for n is 8.

(EZ;:%I% 5:}/44)_2) yields the eigenvalue n. Here the bound for n is 8.

(iv) The case n = 2 (mod 4).

We may proceed as in the case n = 0 (mod 4). Bounds for n in this
case are 14, 10, 14 and 14 instead of 12, 12, 16 and 12. We get ten gaps
again. They are 0. 1, (n—2)/4, (n—2)/2, n/2. (n+2)/2, (3n—2)/4,
n—2, n—1 and n. Moreover. for i = 0. 1. n/2 and n—1 we may proceed
as in the case = 0 (mod 4). For i = 0, 1 and n—1 bounds for = in this
case are 6, 14 and 6 instead of 4. 16 and 8.

(Ez__::ggﬁi E::iig;i g) vields the eigenvalue (n—2)/4. Here the

bound for n is 26. Let n = 2 (mod 8). Then (égg;%?}éS &Zt(liz)/)ijg)
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yields the eigenvalue (n—2)/2. Here the bound for n is 18. Let n =6 (mod

8). Then ((3"—2>/8 (n—22)/8

(3n—2)/8 (n+10)/8) yields the eigenvalue (n—2)/2. Here

the bound for n is 22. Let n= 2 (mod 8). Then (Eg::g%g EZ;%E%;S)

yields the eigenvalue (n+2)/2. Here the bound for nis 18. Let n = 6 (mod

(3n+6)/8 (n—14)/8
the bound for n is 14. Let n = 2 (mod 8). Then (ggz:gg%g g:igg;g g)

yields the eigenvalue (3n—2)/4. Here the bound for n is 26. Let n =6

(mod 8). Then (gz: %3/)8/8 E::g%g (1)) yields the eigenvalue (3n—2)/4.

(n—50)/2 18 0
(n—46)/2 18 9

) yields the eigenvalue (n+2)/2. Here

Here the bound for n is 22. ( ) yields the eigenvalue n— 2.

Here the bound for n is 90. Finally (EZ;%%: g::%())/)iii) yields the

eigenvalue n. Here the bound for n is 10.
We add a proposition which states a well known fact on G in a graph
theoretical terminology.

Proposition 4. Let x be an element of G whose cycle structure consists
of cycles of lengths ny, n,y, ..., nr, where n = my+mn,+ --- +n,. Then the
distance d{e,x) from e to x in I'(n) equals n— r.

Proof. Assume that there exists an x such that x is a product of m
transpositions where m is less than n—r. Then choose x so that m is the
least. Let x = (a,b)) -+ (anbn). Then we may assume that either the first
cycle of the cycle structure of x is of the form (a, ... b, ...) or the first and
second cycles are of the form (a, ...) (b ...). Consider {(a:b,)x. Then it is
a product of m—1 transpositions. On the other hand, the cycle structure
of (a,b,)x consists of cycles of lengths either n., m, 7., ..., n,, where
n = ny+ng, or m—+ne, N, ..., nr.. In both cases it contradicts the least
property of m,

In particular, the diameter of I'(n) equals n—1.

4. Remarks. Let I'= I'(G,C) is a conjugacy class graph, and AutI”
the automorphism group of I. Clearly AutI” contains G which acts on V(I")
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as the right multiplication. Furthermore, AutI” contains G/ Z(G). where
Z(G) denotes the center of G. In this case G acts on V(I") as the conju-
gation and so Z(G) is the kernel of the action. Hence I' is symmetric.
Now we notice the following.

Proposition 5. The mapping ¢ on V(I") defined by xo = x~', x € G,
belongs to Autl.

Proof. fy=cx, c€ C, x,¥ e G, theny'=x'¢c'=x"¢c 'xx".
fG=(C), C*+C "' and I'=T(G, CU C7"), then Proposition 5

shows that I" is also symmetric. It may be interesting to determine Autl.

Proposition 6. The girth of ' = I'(G.C) is at most four.

Proof. Let x and y be distinct elements of C. Then the sequence 1, x,
xy = xyx ' -x, y forms a cycle.

A conjugacy class C of a finite group G is called rational, if an element
¢ of C has order r and if s is relatively prime to r, then c¢® belongs to C.
So any class of involutions is rational.

Proposition 7. A conjugacy class graph I" = I'(G,C) is integral if
and only if C is rational.

Proof. It is well known that hy(c)/x(e) is an algebraic integer for
every irreducible character ¥ of G ([2]). Now let C be rational. x(c) is
a sum of some 7-th roots of unity and any algebraic conjugate of y(c) equals
to y(c®) for some integer s prime to r. Since Y(c) = y(c°) by the definition
of C. y(c) is a rational integer. Thus hy(c)/x(e) is a rational integer,
and hence I' is integral. Conversely if Ay(c)/ x(e) is a rational integer for
every irreducible character Y. then ¥(c) is rational for every irreducible
character y. If s is relatively prime to r, then y(¢) and y(c®) are algebrai-
cally conjugate. So y(c) = y(c®) for every irreducible character y. By the
orthogonality relation of group characters this implies that ¢ and ¢° are
conjugate.

For integral graphs see ([5]).
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