THE SPECTRUM OF A CONJUGACY CLASS GRAPH OF A FINITE GROUP

Noboru ITO

Introduction. Let G be a finite group, C a conjugacy class of G and h = |C|, the number of elements in C. Then a conjugacy class graph $\Gamma = \Gamma(G,C)$ is defined as follows. The vertex set $V(\Gamma)$ of Γ is G. For elements x and y in $G,\{x,y\}$ belongs to the edge set $E(\Gamma)$ of Γ if y=cx for some element c in C. In order to secure the undirected and connected property of Γ we assume that $C = C^{-1}$ and $G = \langle C \rangle$, namely that C is real and G is generated by C.

The main purpose of this note is to show that the spectrum of Γ can be determined if the portion of the character table of G corresponding to C and the identity element e of G is known. Namely we prove the following theorem (§ 1).

Theorem. Let χ be an irreducible character of G. Then χ contributes for the spectrum of Γ an eigenvalue $\lambda = h\chi(c)/\chi(e)$, where c is an element of C, with multiplicity $\chi(e)^2$. Distinct characters may contribute the same eigenvalue. Therefore the multiplicity of λ in the spectrum of Γ equals the sum of all $\chi(e)^2$'s such that $h\chi(c)/\chi(e) = \lambda$.

In § 2 we consider a condition for Γ to be bipartite, and we see that Γ is bipartite if G is solvable. In § 3 we describe a special situation where G is a symmetric group and C is the class of transpositions. In § 4 we state a few remarks.

1. Proof of the theorem. In order to describe the adjacency matrix A of Γ we need a labelling of elements of G. So we put $G = \{x_1, x_2, ..., x_g\}$, where g denotes the order of G. Let $\delta_c(z) = 1$ or 0 according as z is in C or not. Then we can put $A = (\delta_c(x_ix_j^{-1})), 1 \le i, j \le g$.

Now δ_c is a class function of G. Therefore δ_c is a \mathbb{C} -linear combination of irreducible characters of G, where \mathbb{C} denotes the field of complex numbers:

$$\delta_c = \sum_{i=1}^k a_i \chi_i, \ a_i \in \mathbb{C},$$

where k denotes the number of distinct irreducible characters of G. By the orthogonality relation of irreducible characters of G we obtain that

$$a_i g = \sum_{j=1}^{g} \delta_c(x_j) \chi_i(x_j^{-1}) = \sum_{x \in C} \chi_i(x^{-1}) = h \chi_i(c), c \in C = C^{-1}.$$

So we have that $a_i = h\chi_i(c)/g$.

Put $D_l(\chi_l(x_lx_j^{-1}))$, $1 \le i, j \le g$. Then we have that $A = (h/g) \sum_{l=1}^k \chi_l(c) D_l$. Here we recall the following relation of group characters ([2], p. 32):

(1)
$$\sum_{i=1}^{g} \chi_s(x_i^{-1}) \chi_r(x_i y) = (\chi_r(y)/\chi_r(e)) g \delta_{r,s},$$

where $\delta_{r,s}$ denotes the Kronecker delta.

Put $X_{s,1}=(\chi_s(x_1^{-1}),\ldots,\chi_s(x_g^{-1})),\ 1\leq s\leq k$, and consider $X_{s,1}A=(h/g)\sum_{l=1}^k\chi_l(c)X_{s,1}D_l$. Then by (1) the j-th component of $X_{s,1}D_l$ equals $\sum_{l=1}^g\chi_s(x_l^{-1})\chi_l(x_lx_j^{-1})=(\chi_s(x_j^{-1})/\chi_s(e))g\delta_{s,l}.$ So the j-th component of $X_{s,1}A$ equals $(h\chi_s(c)/\chi_s(e))\chi_s(x_j^{-1})$. Namely $X_{s,1}$ is an eigenvector of A corresponding to the eigenvalue $h\chi_s(c)/\chi_s(e)$.

Now we recognize that $X_{s,1}$ is the first row vector of D_s . Let $X_{s,m}$ be the *m*-th row vector of D_s , $2 \le m \le g$. Then $X_{s,m}$ is an eigenvector of A corresponding to the eigenvalue $h\chi_s(c)/\chi_s(e)$, too. In fact, we notice that

$$\sum_{i=1}^{g} \chi_{s}(x_{m}x_{i}^{-1}) \chi_{i}(x_{i}x_{j}^{-1}) = \sum_{i=1}^{g} \chi_{s}(x_{i}^{-1}) \chi_{i}(x_{i}x_{m}x_{j}^{-1}) = (g\chi_{s}(x_{m}x_{j}^{-1})/\chi_{s}(e)) d_{s,i}.$$

Then any linear combination of the $X_{s,m}$, $1 \le m \le g$, is an eigenvector of A corresponding to the eigenvalue $h\chi_s(c)/\chi_s(e)$.

As remarked in the formulation of the theorem it is possible that $\chi_s(c)/\chi_s(e)=\chi_t(c)/\chi_t(e)$ for $s\neq t$. However, for $s\neq t$, X_{st} and X_{ts} are orthogonal as complex vectors. Namely by (1) we have that $X_{st}\cdot X_{tm}=\sum_{i=1}^g \chi_s(x_ix_i^{-1})\chi_t(x_ix_m^{-1})=\sum_{i=1}^g \chi_s(x_i^{-1})\chi_t(x_ix_m^{-1})=0$. Thus in order to complete the proof of the theorem it remains to show that the rank af D_t equals $\chi_t(e)^2$, $1\leq t\leq k$.

Let R be the regular representation of G and γ the character of R. So $\gamma(z)=g$ or 0 according as z=e or not. Since $\gamma=\sum_{l=1}^k \chi_l(e)\chi_l\left([2], \frac{1}{2}\right)$ p. 14), we have that

$$(2) \qquad (\gamma(x_ix_j^{-1})) = \sum_{l=1}^k \chi_l(e)D_l.$$

Let e_i be the standard basis vector of \mathbb{C}_s , the space of all complex row vectors of size g, $1 \leq i \leq g$. Then (2) yields that $ge_i = \sum_{l=1}^k \chi_l(e) X_{li}$, $1 \leq i \leq g$. Namely the $X_{s,i}$, $1 \leq s \leq k$, $1 \leq i \leq g$, generates \mathbb{C}_s . Therefore, since $g = \sum_{l=1}^k \chi_l(e)^2$ ([2], p. 14), it suffices to show that the rank of D_l does not exceed $\chi_l(e)^2$, $1 \leq i \leq k$.

Let $R_l(x) = (a_{rs}^{(l)}(x))$, $1 \le r$, $s \le \chi_l(e)$, $x \in G$ be an irreducible representation of G corresponding to the character χ_l , $1 \le l \le k$. Then it holds that $R_l(x_l)R_l(x_l^{-1}) = R_l(x_lx_l^{-1})$. Thus we obtain that

(3)
$$\chi_l(x_l x_j^{-1}) = \sum_{\tau,l=1}^{\chi_{(e)}} a_{\tau l}^{(l)}(x_l) a_{t\tau}^{(l)}(x_j^{-1}).$$

$$\text{Let } A_i^{(l)} = \begin{pmatrix} a_{i1}^{(l)}(x_1), \dots, a_{i\chi(e)}^{(l)}(x_1) \\ \vdots & \vdots \\ a_{i1}^{(l)}(x_g), \dots, a_{i\chi(e)}^{(l)}(x_g) \end{pmatrix} \begin{pmatrix} a_{1i}^{(l)}(x_1^{-1}), & \dots, a_{1i}^{(l)}(x_g^{-1}) \\ \vdots & \vdots \\ a_{\chi(e)i}^{(l)}(x_1^{-1}), & \dots, a_{\chi(e)i}^{(l)}(x_g^{-1}) \end{pmatrix}, 1 \leq i \leq \chi_l(e).$$

Then by (3) we have that $D_t = A_1^{(l)} + \cdots + A_{x_i(e)}^{(l)}$. Obviously the rank of each $A_t^{(l)}$ does not exceed $\chi_t(e)$. Therefore the rank of D_t does not exceed $\chi_t(e)^2$. This completes the proof.

Remark. Since our eigenvectors are independent from the choice of C, a similar theorem holds, when C is replaced by an inverse closed union of conjugacy classes.

2. Bipartition condition.

Proposition 1. Let G' denote the commutator subgroup of G. Then $\Gamma(G,C)$ is bipartite if and only if G/G' has order two and $G=G'\setminus C$, $c\in C$.

Proof. Suppose that G/G' has order two and $G = G' \langle e \rangle$, $c \in C$. Now h = |C| is the largest eigenvalue of $\Gamma(G,C)$. Let η be the linear character of G whose kernel equals G'. Then η yields the eigenvalue -h. Therefore by a result of A.J. Hoffman ([4], p. 227) $\Gamma(G,C)$ is bipartite.

Suppose that $\Gamma(G,C)$ is bipartite. Let N be the set of all elements x of G such that the distance d(e,x) from e is even. Then since $\Gamma(G,C)$ contains no odd cycle ([1], p. 50), N forms a subgroup of G of index two. If G/G' has order larger than two, then we have that $G \neq \langle C \rangle$.

Proposition 2. If G is solvable, then $\Gamma(G,C)$ is bipartite.

Proof. Let N be a normal maximal subgroup of prime index p. If $p \neq 2$, then $C \neq C^{-1}$. Thus we get p = 2. By the same reason we have that N = G'.

3. A special case. Let $G = \operatorname{Sym} n$ be a symmetric group on n letters and C the class of transpositions. Then h = |C| = n(n-1)/2. Let $\Gamma(n) = \Gamma(G,C)$. Then eigenvalues of $\Gamma(n)$ are given explicitly in term of the characteristics of Young diagrams. However, we have to recognize that, for a given n the number of Young diagrams equals p(n), the number of partitions of n, and p(n) increases very rapidly when n increases.

Let χ be an irreducible character of G corresponding to the Young diagram $Y(\chi)$. Now the number r of nodes on the diagonal initiating at the top-left of $Y(\chi)$ is called the rank of $Y(\chi)$. Let a_i be the number of nodes to the right of the i-th node on the diagonal and b_i the number of nodes beneath the i-th node on the diagonal, $1 \leq i \leq r$. Then $\begin{pmatrix} a_1 & a_2 & \dots & a_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix}$ is called the characteristic of $Y(\chi)$. For example, in the Young diagram

we have that r=2, $a_1=3$, $a_2=1$, $b_1=4$ and $b_2=2$. In general, we have that $a_1>a_2>\cdots>a_r\geq 0$, $b_1>b_2>\cdots>b_r\geq 0$ and $n-r=\sum_{i=1}^r (a_i+b_i)$. Now we have a result of G. Frobenius ([3a, b]):

$$h\chi(c)/\chi(e) = (1/2) \left(\sum_{i=1}^{r} b_i(b_i+1) - \sum_{i=1}^{r} a_i(a_i+1) \right).$$

It might be interesting to have a detailed description of the spectrum of $\Gamma(n)$. We prove the following proposition.

Proposition 3. If n is not so small, then every integer i in the interval

[-n,n] is an eigenvalue of $\Gamma(n)$.

Remark. They are yielded by characters of rank at most three. Our bounds for n are probably not best possible.

Proof. We identify the character with the characteristic of the corresponding Young diagram. Since $\Gamma(n)$ is bipartite (see Proposition 1), we may assume that $0 \le i \le n$. It is convenient to divide into four cases.

(i) The case $n \equiv 1 \pmod{4}$. Let n = 4m+1.

The characters $\binom{2\,m}{2\,m}$ and $\binom{2\,m-1}{2\,m+1}$ yield the eigenvalues 0 and n respectively.

 $\begin{pmatrix} x & y \\ x & y+1 \end{pmatrix}$ yields the eigenvalue i=y+1. Since 2x+2y=n-3, $0 \le y$ and $y+2 \le x$, we get all values i such that $1 \le i \le (n-5)/4$. Here the bound for n is 9.

 $\begin{pmatrix} x & y \\ x+1 & y \end{pmatrix}$ yields the eigenvalue i=x+1=(n-1)/2-y. Since 2x+2y=n-3, $0 \le y$ and $y+1 \le x$, we get all values i such that $(n+3)/4 \le i \le (n-1)/2$. Here the bound for n is 5.

 $\begin{pmatrix} x & y \\ x+1 & y+2 \end{pmatrix}$ yields the eigenvalue i=x+2y+4=y+(n+3)/2. Since 2x+2y=n-5, $0 \le y$ and $y+2 \le x$, we get all values i such that $(n+3)/2 \le i \le 3(n-1)/4$. Here the bound for n is 9.

 $\begin{pmatrix} x & y \\ x+2 & y+1 \end{pmatrix}$ yields the eigenvalue i=2x+y+4=n-1-y. Since 2x+2y=n-5, $0 \le y$ and $y+1 \le x$, we get all values i such that $(3n+5)/4 \le i \le n-1$. Here the bound for n is 9. So there are only three gaps, namely (n-1)/4, (n+1)/2 and (3n+1)/4. We fill these three gaps by using characters of rank three.

 $\binom{(n-1)/4 \ (n-9)/4 \ 0}{(n-1)/4 \ (n-5)/4 \ 1}$ yields the eigenvalue (n-1)/4. Here the bound for n is 13.

 $\binom{(n+7)/4}{(n+7)/4} \cdot \binom{(n-25)/4}{(n-17)/4} \cdot \binom{0}{4}$ yields the eigenvalue (n+1)/2. Here the bound for n is 37.

Let $n \equiv 1 \pmod{8}$. Then $\binom{(3n-11)/8}{(3n+5)/8} \binom{(n-9)/8}{(n-9)/8} \binom{0}{0}$ yields the eigenvalue (3n+1)/4. Here the bound for n is 17.

Let $n \equiv 5 \pmod{8}$. Then $\binom{(3n-23)/8}{(3n-7)/8} \binom{(n-5)/8}{(n-5)/8} \binom{0}{2}$ yields the eigenvalue (3n+1)/4. Here the bound for n is 29.

(ii) The case $n \equiv 3 \pmod{4}$.

We may proceed as in the case $n \equiv 1 \pmod{4}$. Bounds for n in this case are 7, 7, 11 and 7 instead of 9, 5, 9 and 9. We get three gaps again. They are (n+1)/4, (n+1)/2 and (3n-1)/4.

 $\binom{(n+13)/4}{(n+13)/4} \binom{(n-27)/4}{(n-23)/4} \binom{0}{3}$ yields the eigenvalue (n+1)/4. Here the bound for n is 39.

 $\binom{(n+25)/4}{(n+25)/4}$ $\binom{(n-47)/4}{(n-39)/4}$ 0 yields the eigenvalue (n+1)/2. Here the bound for n is 67.

Let $n \equiv 3 \pmod{8}$. Then $\binom{(3n-25)/8}{(3n-9)/8} \binom{(n-3)/8}{(n-3)/8} \binom{0}{2}$ yields the eigenvalue (3n-1)/4. Here the bound for n is 27.

Let $n \equiv 7 \pmod{8}$. Then $\begin{pmatrix} (3n-13)/8 & (n-7)/8 & 0 \\ (3n+3)/8 & (n-7)/8 & 0 \end{pmatrix}$ yields the eigenvalue (3n-1)/4. Here the bound for n is 15.

(iii) The case $n \equiv 0 \pmod{4}$.

 $\begin{pmatrix} x & y & 0 \\ x & y+1 & 0 \end{pmatrix}$ yields the eigenvalue i=y+1. Since 2x+2y=n-4, $1 \le y$ and $y+2 \le x$, we get all values i such that $2 \le i \le (n-4)/4$. Here the bound for n is 12.

 $\begin{pmatrix} x & y & 0 \\ x+1 & y & 0 \end{pmatrix}$ yields the eigenvalue i=x+1=(n-2)/2-y. Since 2x+2y=n-4, $1 \le y$ and $y+1 \le x$, we get all values i such that $(n+4)/4 \le i \le (n-4)/2$. Here the bound for n is 12.

 $\begin{pmatrix} x & y & 0 \\ x+1 & y+2 & 0 \end{pmatrix}$ yields the eigenvalue i = x+2y+4 = (n+2)/2+y.

Since 2x+2y=n-6, $1 \le y$ and $y+2 \le x$, we get all values i such that $(n+4)/2 \le i \le (3n-8)/4$. Here the bound for n is 16.

 $\begin{pmatrix} x & y & 0 \\ x+2 & y+1 & 0 \end{pmatrix}$ yields the eigenvalue i=2x+y+4=n-2-y.

Since 2x+2y=n-6, $1 \le y$ and $y+1 \le x$, we get all values i such that $(3n)/4 \le i \le n-3$. Here the bound for n is 12.

So there are ten gaps, namely 0, 1, n/4, (n-2)/2, n/2, (n+2)/2, (3n-4)/4, n-2, n-1 and n.

 $\binom{(n-2)/2}{(n-2)/2} \binom{0}{0}$ yields the eigenvalue 0. Here the bound for n is 4. $\binom{(n-8)/2}{(n-8)/2} \binom{2}{2} \binom{0}{1}$ yields the eigenvalue 1. Here the bound for n is 16.

Let $n \equiv 0 \pmod 8$. Then $\binom{(3n-8)/8}{3n/8} \binom{n/8}{(n-8)/8}$ yields the eigenvalue n/4. Here the bound for n is 8. Let $n \equiv 4 \pmod 8$. Then $\binom{(3n-4)/8}{(3n-4)/8} \binom{(n-12)/8}{(n+4)/8}$ yields the eigenvalue n/4. Here the bound for n is 12.

We may proceed as in the case $n=0\pmod 4$. Bounds for n in this case are 14, 10, 14 and 14 instead of 12, 12, 16 and 12. We get ten gaps again. They are 0, 1, (n-2)/4, (n-2)/2, n/2, (n+2)/2, (3n-2)/4, n-2, n-1 and n. Moreover, for i=0, 1, n/2 and n-1 we may proceed as in the case $n\equiv 0\pmod 4$. For i=0, 1 and n-1 bounds for n in this case are 6, 14 and 6 instead of 4, 16 and 8.

(iv) The case $n \equiv 2 \pmod{4}$.

yields the eigenvalue (n-2)/2. Here the bound for n is 18. Let $n \equiv 6 \pmod 8$. Then $\binom{(3n-2)/8}{(3n-2)/8} \binom{(n-22)/8}{(n+10)/8}$ yields the eigenvalue (n-2)/2. Here the bound for n is 22. Let $n \equiv 2 \pmod 8$. Then $\binom{(3n-6)/8}{(3n-6)/8} \binom{(n-18)/8}{(n+14)/8}$ yields the eigenvalue (n+2)/2. Here the bound for n is 18. Let $n \equiv 6 \pmod 8$. Then $\binom{(3n-10)/8}{(3n+6)/8} \binom{(n+2)/8}{(n-14)/8}$ yields the eigenvalue (n+2)/2. Here the bound for n is 14. Let $n \equiv 2 \pmod 8$. Then $\binom{(3n-38)/8}{(3n-22)/8} \binom{(n+6)/8}{(n+6)/8} \binom{(3n-22)/8}{(n+6)/8}$ yields the eigenvalue $\binom{(3n-38)/8}{(3n-22)/8} \binom{(n+6)/8}{(n-6)/8} \binom{(3n-22)/8}{(n-6)/8}$ yields the eigenvalue $\binom{(3n-18)/8}{(3n-2)/8} \binom{(n-6)/8}{(n-6)/8} \binom{(n-6)/8}{(n-6)/8} \binom{(n-6)/4}{(n-6)/4}$ yields the eigenvalue $\binom{(n-2)/4}{(n+6)/4} \binom{(n-10)/4}{(n-2)/4}$ yields the eigenvalue $\binom{(n-2)/4}{(n+6)/4} \binom{(n-2)/4}{(n-2)/4}$ yields the eigenvalue $\binom{(n-2)/4}{(n+6)/4} \binom{(n-2)/4}{(n-2)/4}$

We add a proposition which states a well known fact on G in a graph theoretical terminology.

Proposition 4. Let x be an element of G whose cycle structure consists of cycles of lengths $n_1, n_2, \ldots, n_{\tau}$, where $n = n_1 + n_2 + \cdots + n_{\tau}$. Then the distance d(e,x) from e to x in $\Gamma(n)$ equals $n-\tau$.

Proof. Assume that there exists an x such that x is a product of m transpositions where m is less than n-r. Then choose x so that m is the least. Let $x=(a_1b_1)\cdots(a_mb_m)$. Then we may assume that either the first cycle of the cycle structure of x is of the form $(a_1 \ldots b_1 \ldots)$ or the first and second cycles are of the form $(a_1 \ldots)(b_1 \ldots)$. Consider $(a_1b_1)x$. Then it is a product of m-1 transpositions. On the other hand, the cycle structure of $(a_1b_1)x$ consists of cycles of lengths either $n_{11}, n_{12}, n_2, \ldots, n_r$, where $n_1=n_{11}+n_{12}$, or n_1+n_2 , n_3 , ..., n_r . In both cases it contradicts the least property of m.

In particular, the diameter of $\Gamma(n)$ equals n-1.

4. Remarks. Let $\Gamma = \dot{\Gamma}(G, C)$ is a conjugacy class graph, and $\operatorname{Aut}\Gamma$ the automorphism group of Γ . Clearly $\operatorname{Aut}\Gamma$ contains G which acts on $V(\Gamma)$

as the right multiplication. Furthermore, $\operatorname{Aut}\Gamma$ contains G/Z(G), where Z(G) denotes the center of G. In this case G acts on $V(\Gamma)$ as the conjugation and so Z(G) is the kernel of the action. Hence Γ is symmetric. Now we notice the following.

Proposition 5. The mapping σ on $V(\Gamma)$ defined by $x\sigma = x^{-1}$, $x \in G$, belongs to $\operatorname{Aut}\Gamma$.

Proof. If y=cx, $c\in C$, $x,y\in G$, then $y^{-1}=x^{-1}c^{-1}=x^{-1}c^{-1}xx^{-1}$. If $G=\langle C\rangle$, $C\neq C^{-1}$ and $\Gamma=\Gamma(G,\ C\cup C^{-1})$, then Proposition 5 shows that Γ is also symmetric. It may be interesting to determine $\operatorname{Aut}\Gamma$.

Proposition 6. The girth of $\Gamma = \Gamma(G, C)$ is at most four.

Proof. Let x and y be distinct elements of C. Then the sequence 1, x, $xy = xyx^{-1} \cdot x$, y forms a cycle.

A conjugacy class C of a finite group G is called rational, if an element c of C has order r and if s is relatively prime to r, then c^s belongs to C. So any class of involutions is rational.

Proposition 7. A conjugacy class graph $\Gamma = \Gamma(G, C)$ is integral if and only if C is rational.

Proof. It is well known that $h\chi(c)/\chi(e)$ is an algebraic integer for every irreducible character χ of G([2]). Now let C be rational. $\chi(c)$ is a sum of some r-th roots of unity and any algebraic conjugate of $\chi(c)$ equals to $\chi(c^s)$ for some integer s prime to r. Since $\chi(c) = \chi(c^s)$ by the definition of C, $\chi(c)$ is a rational integer. Thus $h\chi(c)/\chi(e)$ is a rational integer, and hence Γ is integral. Conversely if $h\chi(c)/\chi(e)$ is a rational integer for every irreducible character χ , then $\chi(c)$ is rational for every irreducible character χ . If s is relatively prime to r, then $\chi(c)$ and $\chi(c^s)$ are algebraically conjugate. So $\chi(c) = \chi(c^s)$ for every irreducible character χ . By the orthogonality relation of group characters this implies that c and c^s are conjugate.

For integral graphs see ([5]).

REFERENCES

[1] N. BIGGS: Algebraic graph theory, Cambridge 1974.

- [2] W. FEIT: Characters of finite groups, Benjamin 1967.
- [3a] G. FROBENIUS: Ueber die Charaktere der symmetrischen Gruppe, Berliner Sitzungsberichte 1900, 516-534.
- [3b] G. Frobenius: Ueber die Charaktere der mehrfach transitiven Gruppen, Berliner Sitzungsberichte 1904, 528-571.
- [4] D.R. FULKERSON: Studies in graph theory [], MAA 1975.
- [5] F. HARARY and A.J. SCHWENK: Which graphs have integral spectra?, LNM 406, Springer 1974, 45-51.

Department of Applied Mathematics Konan University Kobe. 658

(Received April 1, 1984)