Math. J. Okayama Univ. 25 (1983), 173—179

SOME COMMUTATIVITY PROPERTIES
FOR RINGS. I

Hisao TOMINAGA and ApIiL YAQUB

This is a natural sequel to the previous paper [7]. As for notations
and terminologies used in this paper without mention, we follow [7]. A
ring R is called left (resp. right) s-unital if x € Rx (resp. x € xR) for each
x in R, and R is called s-unital if R is both left and right s-unital.

Let A be a non-empty subset of the ring R with center C ; let NV denote
the set of nilpotent elements of R, D the commutator ideal of R, and Vz(A)
the centralizer of A in K. Let g be a fixed integer greater than 1. We
consider the following properties:

(1-A) For each x € R, there exists a polynomial f(A) in Z[4] such that
x—x%(x) € A.

(1'-A) For each x € R, either x € C or there exists a polynomial f(2)
in Z[A] such that x—x%f(x) € A.

(II-A)e If x, yE R and x—y € A, then either x?=y? or x and y both
belong to Vi(A).

(II-A) For every a€ A and x€ R, [a.x).=[[a.x]x]=0.

(II'-A) For every a € A and x € R, there exists a positive integer k=
#(a.x) such that [a.x].=[[a.x]r-1.x]=0.

(V) For every x.y € R, there exists a positive integer n=n(xy)

such that [x.(xy)?— () 1=0=[x(xy)?*' —(yx)"*!].

(VI) For every x. y, 2 € R, there exists a positive integer n=n(x,y,2)

such that [x.(xyz)"—y"2"x"|=0=[x,(xyz)"+ti — yn+lgn+ign+l]

(V) For every x, ¥y € R, there exist integers n= n(x,y) =1 and m=

m(x.y) > 1 such that [x.x"y—y™x]=0.

(VI*) For each y € R there exists an integer m=m(y) > 1 such that
[xx*y—ymx]=0=[xx"y"—y™x] for all xE R, where 7 is a
fixed positive integer.

(A)g If a, @ € A and ¢[na’,a]=0 for some positive integer #, then
[na’.a]=0.

The major purpose of this paper is to enlarge the list of equivalent

conditions in [7, Theorem 1] by adding six new conditions stated in the
following theorem.

Theorem 1. The following statements are equivalent :
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1) R is commutative.

2)  There exists a commutative subset A for which R satisfies (1-A),
(II-A)q and (II'-A).

5) There exists a commutative subset A of N for which R satisfies
(17-A) and (II"-A).

7) R satisfies (V) and theve exists a commutative subset A of N for
which R satisfies (1'-A).

8) R satisfies (V1) and there exists a commutative subset A of N for
which R satisfies (1'-A).

9) R satisfies (V) and there exists a commutative subset A of N for
which R satisfies (1°-A).

9)* R satisfies (VI*) and there exists a commutative subset A of N for
which R satisfies (1°-A).

We also reprove [6, Corollary 1] which improves the final theorem of
Bell [2], and also give a generalization of the main theorem of Psomopoulos
[5]. These results are included in the following

Theorem 2. Let R be a left (or right) s-unital ving. Then the following
statements are equivalent :

1) R is commutative.

2) There exists a subset A for which R satisfies (1-A) and (I1-A)..

3) There exists a subset A for which R satisfies (1-A), (II-A)q and
(O-A)e, where q' is an integer greater than 1 with (g, ¢')=1.

4) R satisfies (VII) and there exists a subset A.of N for which R satisfies
(1"-A).

5) R satisfies (VI*).

In preparation for proving our theorems, we state the following two
lemmas.

Lemma 1. (1) Let ¢ be a ring homomorphism of R onto R*. If
R satisfies (1-A), (1-A), (II-A)q or (I'-A), then R* satisfies (1-¢(A)),
(I-¢(A)), (I-¢(A))q or (I'-¢(A)), respectively.

(2) If R satisfies (I1-A)q, then [ax?]=0 for all a€ A and x € R.

(3) If R satisfies (1'-A) and (I1-A)g (resp. (1°-A) and (IU'-A)), then
R is normal in the sense that all the idempotents of R are central.

(4) If A is commutative and R satisfies (1°-A), then N is a commu-
tative nil ideal of R containing D and is contained in Vi(A); in particular,
N2c C.
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(5) Let R be a normal, subdivectly trveducible ring. If A is a com-
mutative subset of N not contained in C for which R satisfies (1'-A), then
R is of characteristic p°®, where p is a prime and a@ > 0. When this is the
case, b=b+N(E R/N) is algebraic over GF(p) provided bE R\Viz(A)
(see (4)).

(6) Let R be an s-unital ring. If R satisfies (I1-A)q and (A)aq, then
A is commutative.

Proof. (1) Straightforward.

(2) Thisis [7, Lemma 1 (3)].

(3) See the proof of [7, Lemma 1 (4)].

(4) Thisis [7, Lemma 1 (5)].

(5) See the proof of [7, Lemma 2].

(6) Suppose [a.b]#0 for some a,b € A. As is well known, there
exists e € R such that ae=ea=a. Then, by (I-A)q, (a+e)?=e? and
hence ga € ala>. Also, by (I-A)q, @a?°=0 and hence g% 'a € ala>?~'=0.
Hence, there exists a positive integer m such that [¢™a,6]=0 and [¢™'a,b]
+0. But, this is impossible by (A)a.

Lemma 2. (1) If R satisfies (V) (resp. (W), then R is normal.

(2) If R satisfies (V1), then R is normal.

(3) Let R be a left (or right) s-unital ring. If R satisfies (VI), then
NcC.

Proof (1) Given an idempotent ¢ and an element x in R, there
exists an integer n=n(e,e+ex(1—e)) 21 (resp. n=n(e,e+ex(1—¢) =1
and m=m(e,e+ex(1—e)) > 1) such that

ex(l—e)=[ele(e+ex(1—e))}"—{(e+ex(1—-e))e}"]=0
(resp. ex(1—e)=[e,e™e+ex(1—e))—(e+ex(1—e))™e]=0).

Hence, ex=-exe, and similarly xe=exe.
(2) Given an idempotent e and an element x in R, there exists a
positive integer n=n(e,e,e+ex(1—e))such that

ex(l1—e)=[e{e-e(e+ex(1—e)))"—e™(e+ex(1—e))"e™]=0.

Hence, ex=exe, and similarly xe=-exe.

(3) Let ¢€ N and x € R. By hypothesis, there exist integers 7=
n(x,a) =1 and m,=m(x,a) > 1 such that x™[x,a]=[x,a™]x. Next, choose
na=n(x,a™) = 1 and mo=m(x,a™) > 1 such that x"*[x,a™]=[x,a™™]x, and
so on. Then, for any positive integer ¢ we have
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yrnz +-«-+m[x d] — [x amlm2"'mt]',\:t.

Since a is nilpotent, x™*"++n[x g]=0 for sufficiently large f. Then, if
R contains 1, the usual argument of replacing x by x+1, etc. shows that
[x.a]l=0.

We claim here that R is s-unital. Let ¢ € N. Since R is left s-unital,
choose e € R with ea=a. Then, by the above, we can easily see that
a—ae=e"[e,al=0 with some v. Now, let x be an arbitrary element of R,
and choose e’ € R with e’x=x. Then, as is well known, there exists " E R
such that e"x=x and e”"e'=¢. Since (x—xe”)*=0 and ¢'(x —xe")=x—xe",
the fact just claimed above implies that x —xe”=(x —xe”)e’=0, which proves
that R is s-unital. Thus, in view of [4, Proposition 1], we may assume that
R has 1, and therefore N € C.

Proof of Theorem 1. Obviously, 1) implies 2 )’ —9)* and 9 )* does 9).

2Y=1). In view of Lemma 1 (1), we may, and shall, assume that R
is subdirectly irreducible. According to [3. Theorem 19] and (1-A), it
suffices to show that A< C. Suppose, to the contrary, that there exist
a€ A and b € R such that [a,6]1=[a,b]#0. Then, by (I-A), [@.b]x-1#0
and [a,0],=0 for some %#>1. By the proof 2)=1) of [7, Theorem 1],
we see that K contains 1, p%[a,6]=0 and [a,6”]=0. where 7, « >0 and
(p,t)=1. Hence, [[a,b)k-2.0].b]=[a,6].=0 yields 76"~ a,b]x-1=[[a.b]r-2,b']
=(, where [a,b]o=a. Then, the usual argument of replacing & by 5+1,
etc. shows that ¢7[a,b]k-1=0. Since p%(a,b],-1=0 and (p, ¢)=1, it follows
a contradiction [a,b]x-1=0.

5)=1). Again, in view of Lemma 1 (1), we may assume that R is
subdirectly irreducible. According to [3, Theorem 19] and (I -A), it suffices
to show that A € C. Suppose, to the contrary, that there exist « € A and
b€ R such that [@.b]k-1#0 and [@.0]x=0 for some % >1. Then, by
Lemma 1 (3),(4) and (5), R is of characteristic p* (p a prime and a > 0),
and b=b+N is algebraic over GF(p). Furthermore, noting that every
non-zero idempotent of £/N coincides with 1 (Lemma 1 (3)), we can easily
see that <6>=GF(p®) with some 8 > 0, and therefore " —b & N for some
y=>a Hence, [[a b]e-2.6""—b]=0 by Lemma 1 (4), and [[a,b]z-2.6"]=
p767 " a,b)x-1=0 by [a.6],=0. From these we get

[@.b)e-1=[[a,b]r-2,6""1—[[@,b)x-2,6" — b]=0.

This contradiction proves that R is commutative.
7) (resp. 8))=1). Again, in view of Lemma 1 (1), we may assume
that R is subdirectly irreducible. Let x be an arbitrary element in R\C.



SOME COMMUTATIVITY PROPERTIES FOR RINGS. II 177

By (I'-A), there exists y € {x> such that x™=x"*'y with some positive
integer m. Obviously, e=x"y™ is a central idempotent with x™=x"¢
(Lemma 2 (1)) (resp. (2)), and e is either 0 or 1. If e=0 then x is in
the commutative ideal N, and so [[a.x].x]=0 for all 2 € A (Lemma 1 (4)).
On the other hand, if e=1 then x is a unit. Now, let # be an arbitrary
unit in R. For any a € A, there exists a positive integer »=n(z"'.2(1+ a))
(resp. n=n(u,14+a,u~")) such that

[t (M+a) —u(l+a)u ' 1={e (e w1 +a)"—(u(l+a)u=")"]=0
(resp. [w.u.(1+a)*)]a =[u(u(l+a)u)"—(1+a) u"u"]=0).

Noting here that a* € C for all #>2 (Lemma 1 (4)), we get

-1

nu[au)ulu?=nlu"'a—uau")=0 (resp. n[u.[u,allu"'=0).

and therefore #[[a@.«),#]=0. Similarly, we have (#+1){[a,2],#]=0. From
these, we obtain [[a,u],#]=0. If xisin C, then [[a.x],x]=0 trivially. We
have thus seen that R satisfies (I-4). Hence R is commutative by 5).

9)=1). Careful scrutiny of the preceding proof shows that it remains
only to prove that if R is a subdirectly irreducible ring with 1 then [[a.x].x]
=0 for all € A and x € R. However, in Lemma 2 (3), we have seen
that A € C.

Theorem 1 includes obviously the main theorem of [ 1], and the next
is an easy combination of Lemma 1 (6) and Theorem 1 2)’.

Corollary 1. Let R be an s-unital ring. If there exists a subset A for
which R satisfies (1-A), (I-A)q, (II"-A) and (A)aq, then R is commutative.

Proof of Theorem 2. Obviously, 1) implies 2)—5).

2)=1). We claim first that if R has 1 then R is commutative.
Suppose [6,c]#0 for some b, ¢ € A. Then, by (II-A),, we have (b+c)?=
b?2=0=c? and 26=(b+1)2—1=0. Hence, [b,c]=bc+ cb=0. This contra-
diction shows that A is commutative. Now, suppose that [a,x]#0 for some
a€ A and x€ R. Since (x+a)*=x? and (x+1+a)?*=(x+1)? by (II-A),,
we have

2a={x*+2(x+a)+1}—(x+1)*=(x+1+a)*—(x+1)?=0,

and therefore [[a,x],x]=[a.x?]+2x%a—2xax=0 by Lemma 1 (2). We have
thus seen that R satisfies (II-A), and R is commutative by Theorem 1 2).

We now proceed to prove the general case. In view of Lemma 1 (1),
we may assume that R(#0) is subdirectly irreeucible. If there exists a
non-nilpotent element not contained in Vz(A), (I-A) and (II-A), together
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with Lemma 1 (3) show that the subdirectly irreducible ring R has 1, and
therefore R is commutative by the above claim. We assume henceforth
that R\N S Vz(A). Suppose [b,c]#0 for some &, ¢ € A, and choose e € R
with eb=b. Since e is not nilpotent, there holds be=eb=5 and ce=ec.
Then, the argument employed in the proof of the above claim applies to
see that [6,c]=0. This contradiction shows that A is commutative, and
therefore N € Vr(A) by Lemma 1 (4). This together with R\N S Vz(A)
implies R= Vz(A), i.e., AS C. Hence, R is commutative by [3, Theorem
19].

3)=1). Inview of Lemma 1 (1), we may assume that R is subdirectly
irreducible.

We claim first that if R has 1 then R is commutative. Suppose [4, ¢]
+0 for some b, c € A. Then, by (II-A)q and (II-A)e, we have g9 16=0
=q'7"'5 (see the proof of Lemma 1 (6)). Hence, (g, ¢)=1 yieds 5=0.
This contradiction shows that A is commutative, and therefore N S Vz(A)
by Lemma 1 (4). Now, suppose that [x,a]#0 for some x € R\N and
a€ A. Then, by (1-A), x—x?y € A for some y €E<x>. And so, x7=x29y7
by (I-A)qe. As is easily seen, x?y? is a non-zero central idempotent
(Lemma 1 (3)), i.e., x?y?=1, which shows that x is a unit of . Now, by
(0-A)e and (I-A)e, we have(x+a)?=x7 and (x+a)¥=x7. Since x and
x+a are units in R and (g, ¢')=1, this forces a contradiction x+a==x,
ie, a=0. We have thus seen that R\N S Vx(A). Combining this with
N <€ Vi(A), we get R=Vz(A), i.e, ASC. Hence, R is commutative by
(I-A) and [3, Theorem 19].

We can now apply the argument used in the latter part of the proof
of 2)=1) to get the conclusion.

4)=1). Since AS C by Lemma 2 (3), R is commutative by [3,
Theorem 19] and (I1’-A).

5)=1). As was claimed in the proof of Lemma 2 (3), R is s-unital.
So, in view of [4, Proposition 1], we may assume that R has 1. By
hypothesis, we have

*) x"[x,y]=[x,y™]x and x"[x,y™]=[x,y™]x, where m=m(y).
We claim here that DS N. By (*), we see that
(x+1D)*[xylx=[xy"(x+Dx=x"[x,y](x +1) for all x, y E R.

But, x=E; and y=E2 + E2; fails to satisfy (x+1)"*[x,y]x—x"[x,y](x+1)
=0in (GF(p))2 (p a prime). Hence, D € N by [4, Proposition 2]. Combining
this with Lemma 2 (3), we get D < C.
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If n=1, we obtain
lxy—y"]={(x+ Dlx.y] = [xy™Kx+ D} = {x[x.y] = [x.y™]x}=0

for all x€ R. Thus, R is commutative by [3, Theorem 19]. So we assume
henceforth that # > 1. We set j=2"*'—22 (> 0). Then, by (*), x*[x.y]=
22" 2x.v]—[2x,¥v™]2x=0, and so the usual argument of replacing x by
x+1. etc. shows that j[x,y]=0. We obtain therefore, by D € C, [x’,y]=
7 x,¥]=0, i.e., x’ € C for all x€ R. Furthermore, using (*) and D € C
several times, we see that

1=y ) yla? -t =[x ym]x" =y x y " 5"
=[ey™]x" = my™ ™= Vlx.y"]x
=[xy™]x"—[xy™]x=0.

Thus, (1—y™~V*)[x,y]x27"1=0. Again, the usual argument of replacing x
by x+1, etc. in the last identity shows that (1—y‘""V*)[x,y]=0. Hence,
since ¥’ € C. we get

[x‘y_y.i(m—l)2+l]=(l _y.i(m—-l)z)[x~y]:0.

This proves that y—y*m-V*1& C for m=m(y), and therefore R is com-
mutative by [3, Theorem 19].
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