SOME COMMUTATIVITY PROPERTIES FOR RINGS. II

HISAO TOMINAGA and ADIL YAQUB

This is a natural sequel to the previous paper [7]. As for notations and terminologies used in this paper without mention, we follow [7]. A ring R is called *left* (resp. *right*) *s-unital* if $x \in Rx$ (resp. $x \in xR$) for each x in R, and R is called *s-unital* if R is both left and right *s-unital*.

Let A be a non-empty subset of the ring R with center C: let N denote the set of nilpotent elements of R, D the commutator ideal of R, and $V_R(A)$ the centralizer of A in R. Let q be a fixed integer greater than 1. We consider the following properties:

- (I-A) For each $x \in R$, there exists a polynomial $f(\lambda)$ in $Z[\lambda]$ such that $x-x^2f(x) \in A$.
- (1'-A) For each $x \in R$, either $x \in C$ or there exists a polynomial $f(\lambda)$ in $Z[\lambda]$ such that $x x^2 f(x) \in A$.
- $(II-A)_q$ If $x, y \in R$ and $x-y \in A$, then either $x^q = y^q$ or x and y both belong to $V_R(A)$.
- (III-A) For every $a \in A$ and $x \in R$, $[a,x]_2 = [[a,x],x] = 0$.
- (III'-A) For every $a \in A$ and $x \in R$, there exists a positive integer k = k(a,x) such that $[a,x]_k = [[a,x]_{k-1},x] = 0$.
 - (V) For every $x,y \in R$, there exists a positive integer n = n(x,y) such that $[x.(xy)^n (yx)^n] = 0 = [x.(xy)^{n+1} (yx)^{n+1}]$.
 - (VI) For every x, y, $z \in R$, there exists a positive integer n = n(x, y, z) such that $[x.(xyz)^n y^nz^nx^n] = 0 = [x.(xyz)^{n+1} y^{n+1}z^{n+1}x^{n+1}]$.
 - (VII) For every $x, y \in R$, there exist integers $n = n(x,y) \ge 1$ and m = m(x,y) > 1 such that $[x,x^ny y^mx] = 0$.
 - (VII*) For each $y \in R$ there exists an integer m = m(y) > 1 such that $[x,x^ny-y^mx]=0=[x,x^ny^m-y^{m^2}x]$ for all $x \in R$, where n is a fixed positive integer.
 - $(A)_q$ If $a, a' \in A$ and q[na',a]=0 for some positive integer n, then [na',a]=0.

The major purpose of this paper is to enlarge the list of equivalent conditions in [7, Theorem 1] by adding six new conditions stated in the following theorem.

Theorem 1. The following statements are equivalent:

- 1) R is commutative.
- 2)' There exists a commutative subset A for which R satisfies (I-A), $(II-A)_q$ and (III'-A).
- 5)' There exists a commutative subset A of N for which R satisfies (I'-A) and (II'-A).
- 7) R satisfies (V) and there exists a commutative subset A of N for which R satisfies (I'-A).
- 8) R satisfies (VI) and there exists a commutative subset A of N for which R satisfies (I'-A).
- 9) R satisfies (VII) and there exists a commutative subset A of N for which R satisfies (1'-A).
- 9)* R satisfies (VII*) and there exists a commutative subset A of N for which R satisfies (I'-A).

We also reprove [6, Corollary 1] which improves the final theorem of Bell [2], and also give a generalization of the main theorem of Psomopoulos [5]. These results are included in the following

Theorem 2. Let R be a left (or right) s-unital ring. Then the following statements are equivalent:

- 1) R is commutative.
- 2) There exists a subset A for which R satisfies $(I \cdot A)$ and $(II \cdot A)_2$.
- 3) There exists a subset A for which R satisfies (I-A), (Π -A)_q and (Π -A)_{q'}, where q' is an integer greater than 1 with (q, q')=1.
- 4) R satisfies (VII) and there exists a subset A of N for which R satisfies (I'-A).
 - 5) R satisfies (VII*).

In preparation for proving our theorems, we state the following two lemmas.

- **Lemma 1.** (1) Let ψ be a ring homomorphism of R onto R^* . If R satisfies (I-A), (I'-A), (II-A), or (II'-A), then R^* satisfies (I- ψ (A)), (I'- ψ (A)), (II- ψ (A)), or (III'- ψ (A)), respectively.
 - (2) If R satisfies $(\mathbb{I} \cdot A)_q$, then $[a,x^q]=0$ for all $a \in A$ and $x \in R$.
- (3) If R satisfies (I'-A) and (Π -A)_q (resp. (I'-A) and (Π '-A)), then R is normal in the sense that all the idempotents of R are central,
- (4) If A is commutative and R satisfies (I'-A), then N is a commutative nil ideal of R containing D and is contained in $V_R(A)$; in particular, $N^2 \subseteq C$.

- (5) Let R be a normal, subdirectly irreducible ring. If A is a commutative subset of N not contained in C for which R satisfies (I'-A), then R is of characteristic p^a , where p is a prime and a > 0. When this is the case, $\bar{b} = b + N (\subseteq R/N)$ is algebraic over GF(p) provided $b \subseteq R \setminus V_R(A)$ (see (4)).
- (6) Let R be an s-unital ring. If R satisfies $(\Pi A)_q$ and $(A)_q$, then A is commutative.

Proof. (1) Straightforward.

- (2) This is [7, Lemma 1 (3)].
- (3) See the proof of [7, Lemma 1 (4)].
- (4) This is [7, Lemma 1 (5)].
- (5) See the proof of [7, Lemma 2].
- (6) Suppose $[a,b]\neq 0$ for some $a,b\in A$. As is well known, there exists $e\in R$ such that ae=ea=a. Then, by $(\mathbb{I}\cdot A)_q$, $(a+e)^q=e^q$ and hence $qa\in a\langle a\rangle$. Also, by $(\mathbb{I}\cdot A)_q$, $a^q=0$ and hence $q^{q-1}a\in a\langle a\rangle^{q-1}=0$. Hence, there exists a positive integer m such that $[q^ma,b]=0$ and $[q^{m-1}a,b]\neq 0$. But, this is impossible by $(A)_q$.

Lemma 2. (1) If R satisfies (V) (resp. (VII)), then R is normal.

- (2) If R satisfies (VI), then R is normal.
- (3) Let R be a left (or right) s-unital ring. If R satisfies (VII), then $N \subseteq C$.
- *Proof.* (1) Given an idempotent e and an element x in R, there exists an integer $n=n(e,e+ex(1-e))\geq 1$ (resp. $n=n(e,e+ex(1-e))\geq 1$ and $m=m(e,e+ex(1-e))\geq 1$) such that

$$ex(1-e) = [e, \{e(e+ex(1-e))\}^n - \{(e+ex(1-e))e\}^n] = 0$$
(resp. $ex(1-e) = [e, e^n(e+ex(1-e)) - (e+ex(1-e))^m e] = 0$).

Hence, ex = exe, and similarly xe = exe.

(2) Given an idempotent e and an element x in R, there exists a positive integer n = n(e, e, e + ex(1-e)) such that

$$ex(1-e)=[e,\{e\cdot e(e+ex(1-e))\}^n-e^n(e+ex(1-e))^ne^n]=0.$$

Hence, ex = exe, and similarly xe = exe.

(3) Let $a \in N$ and $x \in R$. By hypothesis, there exist integers $n_1 = n(x,a) \ge 1$ and $m_1 = m(x,a) > 1$ such that $x^{n_1}[x,a] = [x,a^{m_1}]x$. Next, choose $n_2 = n(x,a^{m_1}) \ge 1$ and $m_2 = m(x,a^{m_1}) > 1$ such that $x^{n_2}[x,a^{m_1}] = [x,a^{m_1m_2}]x$, and so on. Then, for any positive integer t we have

$$x^{n_1+n_2+\cdots+n_t}[x,a] = [x,a^{m_1m_2\cdots m_t}]x^t.$$

Since a is nilpotent, $x^{n_1+n_2+\cdots+n_l}[x,a]=0$ for sufficiently large t. Then, if R contains 1, the usual argument of replacing x by x+1, etc. shows that [x,a]=0.

We claim here that R is s-unital. Let $a \in N$. Since R is left s-unital, choose $e \in R$ with ea = a. Then, by the above, we can easily see that $a - ae = e^{\nu}[e,a] = 0$ with some ν . Now, let x be an arbitrary element of R, and choose $e' \in R$ with e'x = x. Then, as is well known, there exists $e'' \in R$ such that e''x = x and e''e' = e'. Since $(x - xe'')^2 = 0$ and e'(x - xe'') = x - xe'', the fact just claimed above implies that x - xe'' = (x - xe'')e' = 0, which proves that R is s-unital. Thus, in view of [4, Proposition 1], we may assume that R has 1, and therefore $N \subseteq C$.

Proof of Theorem 1. Obviously, 1) implies 2)' -9)*, and 9)* does 9). 2)' \Rightarrow 1). In view of Lemma 1 (1), we may, and shall, assume that R is subdirectly irreducible. According to [3, Theorem 19] and (I-A), it suffices to show that $A \subseteq C$. Suppose, to the contrary, that there exist $a \in A$ and $b \in R$ such that $[a,b]_1 = [a,b] \neq 0$. Then, by (\mathbb{II} '-A), $[a,b]_{k-1} \neq 0$ and $[a,b]_k = 0$ for some k > 1. By the proof 2) \Rightarrow 1) of [7, Theorem 1], we see that R contains 1, $p^a[a,b] = 0$ and $[a,b^{tr}] = 0$, where $p^a[a,b]_{k-1} = 0$, where $p^a[a,b]_{k-1} = 0$ and $p^a[a,b]_{k-1} = 0$. Since $p^a[a,b]_{k-1} = 0$ and $p^a[a,b]_{k-1} = 0$ and $p^a[a,b]_{k-1} = 0$.

 $5)'\Rightarrow 1$). Again, in view of Lemma 1 (1), we may assume that R is subdirectly irreducible. According to [3, Theorem 19] and (1'-A), it suffices to show that $A\subseteq C$. Suppose, to the contrary, that there exist $a\subseteq A$ and $b\subseteq R$ such that $[a,b]_{k-1}\neq 0$ and $[a,b]_k=0$ for some k>1. Then, by Lemma 1 (3),(4) and (5), R is of characteristic p^a (p a prime and a>0), and $\overline{b}=b+N$ is algebraic over GF(p). Furthermore, noting that every non-zero idempotent of R/N coincides with 1 (Lemma 1 (3)), we can easily see that $\langle \overline{b} \rangle = GF(p^a)$ with some $\beta>0$, and therefore $b^{pr}-b\subseteq N$ for some $\gamma\geq a$. Hence, $[[a,b]_{k-2},b^{pr}-b]=0$ by Lemma 1 (4), and $[[a,b]_{k-2},b^{pr}]=p^rb^{pr-1}[a,b]_{k-1}=0$ by $[a,b]_k=0$. From these we get

$$[a,b]_{k-1} = [[a,b]_{k-2},b^{pr}] - [[a,b]_{k-2},b^{pr}-b] = 0.$$

This contradiction proves that R is commutative.

7) (resp. 8)) \Rightarrow 1). Again, in view of Lemma 1 (1), we may assume that R is subdirectly irreducible. Let x be an arbitrary element in $R \setminus C$.

By (I'-A), there exists $y \in \langle x \rangle$ such that $x^m = x^{m+1}y$ with some positive integer m. Obviously, $e = x^m y^m$ is a central idempotent with $x^m = x^m e$ (Lemma 2 (1)) (resp. (2)), and e is either 0 or 1. If e = 0 then x is in the commutative ideal N, and so [[a,x],x]=0 for all $a \in A$ (Lemma 1 (4)). On the other hand, if e = 1 then x is a unit. Now, let u be an arbitrary unit in R. For any $a \in A$, there exists a positive integer $n = n(u^{-1}, u(1+a))$ (resp. $n = n(u, 1+a, u^{-1})$) such that

$$[u^{-1},(1+a)^n - u(1+a)^n u^{-1}] = [u^{-1},(u^{-1}u(1+a))^n - (u(1+a)u^{-1})^n] = 0$$
(resp. $[u,[u,(1+a)^n]]u^{-1} = [u,(u(1+a)u^{-1})^n - (1+a)^n u^{-n}u^n] = 0$).

Noting here that $a^k \in C$ for all $k \ge 2$ (Lemma 1 (4)), we get

$$nu^{-1}[[a,u],u]u^{-2}=n[u^{-1},a-uau^{-1}]=0$$
 (resp. $n[u,[u,a]]u^{-1}=0$),

and therefore n[[a,u],u]=0. Similarly, we have (n+1)[[a,u],u]=0. From these, we obtain [[a,u],u]=0. If x is in C, then [[a,x],x]=0 trivially. We have thus seen that R satisfies (III-A). Hence R is commutative by 5)'.

 $9)\Rightarrow 1$). Careful scrutiny of the preceding proof shows that it remains only to prove that if R is a subdirectly irreducible ring with 1 then [[a,x],x]=0 for all $a\in A$ and $x\in R$. However, in Lemma 2 (3), we have seen that $A\subseteq C$.

Theorem 1 includes obviously the main theorem of [1], and the next is an easy combination of Lemma 1 (6) and Theorem 1 2).

Corollary 1. Let R be an s-unital ring. If there exists a subset A for which R satisfies (I - A), (II - A)q, (III' - A) and (A)q, then R is commutative.

Proof of Theorem 2. Obviously, 1) implies 2)—5).

 $2)\Rightarrow 1$). We claim first that if R has 1 then R is commutative. Suppose $[b,c]\neq 0$ for some $b,c\in A$. Then, by $(\Pi\cdot A)_2$, we have $(b+c)^2=b^2=0=c^2$ and $2b=(b+1)^2-1=0$. Hence, [b,c]=bc+cb=0. This contradiction shows that A is commutative. Now, suppose that $[a,x]\neq 0$ for some $a\in A$ and $x\in R$. Since $(x+a)^2=x^2$ and $(x+1+a)^2=(x+1)^2$ by $(\Pi\cdot A)_2$, we have

$$2a = \{x^2 + 2(x+a) + 1\} - (x+1)^2 = (x+1+a)^2 - (x+1)^2 = 0$$

and therefore $[[a,x],x]=[a,x^2]+2x^2a-2xax=0$ by Lemma 1 (2). We have thus seen that R satisfies (III-A), and R is commutative by Theorem 1 2).

We now proceed to prove the general case. In view of Lemma 1 (1), we may assume that $R(\neq 0)$ is subdirectly irreeucible. If there exists a non-nilpotent element not contained in $V_R(A)$, (I-A) and (Π -A)₂ together

with Lemma 1 (3) show that the subdirectly irreducible ring R has 1, and therefore R is commutative by the above claim. We assume henceforth that $R \setminus N \subseteq V_R(A)$. Suppose $[b,c] \neq 0$ for some $b,c \in A$, and choose $e \in R$ with eb = b. Since e is not nilpotent, there holds be = eb = b and ce = ec. Then, the argument employed in the proof of the above claim applies to see that [b,c]=0. This contradiction shows that A is commutative, and therefore $N \subseteq V_R(A)$ by Lemma 1 (4). This together with $R \setminus N \subseteq V_R(A)$ implies $R = V_R(A)$, i.e., $A \subseteq C$. Hence, R is commutative by [3, Theorem 19].

 $3)\Rightarrow 1$). In view of Lemma 1 (1), we may assume that R is subdirectly irreducible.

We claim first that if R has 1 then R is commutative. Suppose $[b, c] \neq 0$ for some $b, c \in A$. Then, by $(\Pi - A)_q$ and $(\Pi - A)_{q'}$, we have $q^{q-1}b = 0 = q'^{q'-1}b$ (see the proof of Lemma 1 (6)). Hence, (q, q') = 1 yieds b = 0. This contradiction shows that A is commutative, and therefore $N \subseteq V_R(A)$ by Lemma 1 (4). Now, suppose that $[x,a] \neq 0$ for some $x \in R \setminus N$ and $a \in A$. Then, by $(I - A), x - x^2y \in A$ for some $y \in \langle x \rangle$. And so, $x^q = x^{2q}y^q$ by $(\Pi - A)_q$. As is easily seen, x^qy^q is a non-zero central idempotent (Lemma 1 (3)), i.e., $x^qy^q = 1$, which shows that x is a unit of R. Now, by $(\Pi - A)_q$ and $(\Pi - A)_{q'}$, we have $(x + a)^q = x^q$ and $(x + a)^{q'} = x^{q'}$. Since x and x + a are units in x and x + a and x + a are units in x and x + a are un

We can now apply the argument used in the latter part of the proof of $2)\Rightarrow 1$) to get the conclusion.

- 4)⇒1). Since $A \subseteq C$ by Lemma 2 (3), R is commutative by [3, Theorem 19] and (I'-A).
- 5) \Rightarrow 1). As was claimed in the proof of Lemma 2 (3), R is s-unital. So, in view of [4, Proposition 1], we may assume that R has 1. By hypothesis, we have
- (*) $x^n[x,y] = [x,y^m]x$ and $x^n[x,y^m] = [x,y^{m^2}]x$, where m = m(y).

We claim here that $D \subseteq N$. By (*), we see that

$$(x+1)^n[x,y]x = [x,y^m](x+1)x = x^n[x,y](x+1)$$
 for all $x, y \in R$.

But, $x=E_{22}$ and $y=E_{21}+E_{22}$ fails to satisfy $(x+1)^n[x,y]x-x^n[x,y](x+1)=0$ in $(GF(p))_2$ (p a prime). Hence, $D\subseteq N$ by [4, Proposition 2]. Combining this with Lemma 2 (3), we get $D\subseteq C$.

If n=1, we obtain

$$[x,y-y^m] = \{(x+1)[x,y] - [x,y^m](x+1)\} - \{x[x,y] - [x,y^m]x\} = 0$$

for all $x \in R$. Thus, R is commutative by [3, Theorem 19]. So we assume henceforth that n > 1. We set $j = 2^{n+1} - 2^2$ (>0). Then, by (*), $jx^n[x,y] = (2x)^n[2x,y] - [2x,y^m]2x = 0$, and so the usual argument of replacing x by x+1, etc. shows that j[x,y]=0. We obtain therefore, by $D \subseteq C$, $[x^j,y]=jx^{j-1}[x,y]=0$, i.e., $x^j \in C$ for all $x \in R$. Furthermore, using (*) and $D \subseteq C$ several times, we see that

$$(1-y^{(m-1)^2})[x,y]x^{2n-1} = [x,y^m]x^n - y^{(m-1)^2}[x,y^m]x^n$$

$$= [x,y^m]x^n - my^{m(m-1)}[x,y^m]x$$

$$= [x,y^m]x^n - [x,y^{m^2}]x = 0.$$

Thus, $(1-y^{(m-1)^2})[x,y]x^{2n-1}=0$. Again, the usual argument of replacing x by x+1, etc. in the last identity shows that $(1-y^{(m-1)^2})[x,y]=0$. Hence, since $y^j \in C$, we get

$$[x,y-y^{j(m-1)^2+1}]=(1-y^{j(m-1)^2})[x,y]=0.$$

This proves that $y-y^{j(m-1)^2+1} \in C$ for m=m(y), and therefore R is commutative by [3, Theorem 19].

REFERENCES

- [1] H. ABU-KHUZAM and A. YAQUB: Commutativity and structure of rings with commuting nilpotents, Internat. J. Math. & Math. Sci. 6 (1983), 119—124.
- [2] H.E. Bell: On two commutativity properties for rings, II, Math. Japonica 27 (1982), 319-325.
- [3] I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953),
- [4] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7—13.
- [5] E. PSOMOPOULOS: A commutativity theorem for rings, to appear in Math. Japonica.
- [6] H. TOMINAGA: Note on two commutativity properties for rings, Math. Japonica 28 (1983), to appear.
- [7] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings, Math. J. Okayama Univ. 25 (1983), 81—86.

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN UNIVERSITY OF CALIFORNIA, SANTA BARBARA, U.S.A.

(Received March 31, 1983)