ℵ₀-CONTINUOUS DIRECTLY FINITE PPOJECTIVE MODULES OVER REGULAR RINGS

Dedicated to Prof. Kentaro Murata on his 60th birthday

MAMORU KUTAMI

We have defined, in [5], the notions of quasi- \aleph_0 - and \aleph_0 -continuous modules which can be regarded as generalized notions of right \aleph_0 -continuous regular rings (see [2], [3]). In this paper, we study the properties of quasi- \aleph_0 -continuous directly finite projective modules over a regular ring.

Let R be a regular ring. For a quasi- \aleph_0 -continuous directly finite projective R-module M and essentially \aleph_0 -generated submodules A and B of M with $A \cong B$, it is shown that $A^* \cong B^*$, where A^* and B^* are direct summands of M with $A \leq_e A^*$ and $B \leq_e B^*$, respectively (Theorem 5). This is a generalization of [2, Corollary 14.26]. Using this theorem, we show that if M and N are quasi- \aleph_0 -continuous directly finite projective R-modules then $M \oplus N$ is directly finite (Theorem 8). Finally, we shall give examples of quasi- \aleph_0 -continuous directly finite projective modules over regular rings which are not finitely generated.

Throughout this paper, R is a ring with identity and R-modules are unitary right R-modules. If M and N are R-modules, then the notation $N \leq M$ means that N is isomorphic to a submodule of M. For a submodule N of an R-module M, $N \leq_{e} M$ means that N is essential in M, while $N \in M$ means that N is a direct summand of M.

Let M be an R-module and let $\mathcal{A}(M)$ be the family of all submodule A of M such that A contains a countably generated essential submodule. Given such an $\mathcal{A}(M)$, we consider the following conditions:

- (C₁) For any $A \in \mathcal{A}(M)$ there exists a submodule A^* of M such that $A \leq_{e} A^*$ and $A^* < \bigoplus M$.
- (C₂) For any $A \subseteq \mathcal{A}(M)$ with $A < \bigoplus M$, any exact sequence $0 \rightarrow A \rightarrow M$ splits.
- (C₃) For any $A \in \mathcal{A}(M)$ with $A < \oplus M$, if $N < \oplus M$ and $A \cap N = 0$ then $A \oplus N < \oplus M$.

We say that M is $quasi-\aleph_0$ -continuous (resp. \aleph_0 -continuous) if M satisfies the conditions (C_1) and (C_3) (resp. (C_1) and (C_2)). According to [8], every quasi-injective module is \aleph_0 -continuous, every \aleph_0 -continuous module is quasi- \aleph_0 -continuous and M is quasi- \aleph_0 -continuous if and only if M satisfies (C_1) and the condition

(*) For any $A \in \mathcal{A}(M)$ and a direct summand N of M with $A \cap N = 0$,

158 M. KUTAMI

every homomorphism from A to N can be extended to a homomorphism from M to N.

Let M be an R-module. A submodule B of M is said to be \mathcal{S} -closed if M/B is nonsingular. For any submodule A of M there exists the smallest \mathcal{S} -closed submodule C of M containing A, which is called the \mathcal{S} -closure of A in M.

Now, we recall the following

Lemma 1 ([5, Lemma 1]). Let M be an R-module, and let A and B be submodules of M such that $A \leq_e B$. Then B is contained in the \mathcal{S} -closure of A in M. If, in addition, M is nonsingular and $B < \bigoplus M$, then B coincides with the \mathcal{S} -closure of A in M.

We note that if M is a nonsingular module satisfying (C_1) then, for any $A \subseteq \mathcal{A}(M)$, there exists a unique A^* such that $A \leq_e A^*$ and $A^* < \bigoplus M$. Moreover, if M is nonsingular and quasi- \aleph_0 -continuous (resp. \aleph_0 -continuous), then so is every direct summand of M (Lemma 1).

Lemma 2. Let M be a quasi- \aleph_0 -continuous R-module, and let A, B $\in \mathcal{A}(M)$. If $A \cap B = 0$ and $A \cong B$, then $A^* \cong B^*$.

Proof. Let $f:A\to B$ be an isomorphism. Since $A\cap B^*=0$, in view of (*), f can be extended to a homomorphism $f^*:A^*\to B^*$, which is a monomorphism, because $A\leq_e A^*$. Since $A^*\cong f^*(A^*)\subseteq \mathcal{A}(M)$, $f^*(A^*)\leq_e B^*$ and $A^*\cap f^*(A^*)=0$, again by (*), $(f^*)^{-1}:f^*(A^*)\to A^*$ can be extended to a monomorphism $h:B^*\to A^*$. Then h is an isomorphism, and thus $f^*=h^{-1}$ is an isomorphism with $f^*\mid_A=f$.

An R-module M is *directly finite* provided that M is not isomorphic to any proper direct summand of itself. We can use Lemma 2 to get the following generalization of [5, Theorem 2]. The proof is quite similar to the \aleph_0 -continuous case.

Proposition 3. If M is a nonsingular quasi- \aleph_0 -continuous R-module, then the following are equivalent:

- a) M is directly finite.
- b) M contains no infinite direct sums of nonzero pairwise isomorphic submodules.
 - c) Any submodule of M is directly finite.

An R-module M is said to have the finite exchange property if, for any

direct decomposition $G = M' \oplus C = \bigoplus_{i \in I} D_i$ with $M' \cong M$ and the index set I finite, there are submodules $D'_i \leq D_i$ such that $G = M' \oplus (\bigoplus_{i \in I} D'_i)$.

Lemma 4 ([7, Corollary 4]). Every projective module over a regular ring has the finite exchange property.

We are now in a position to prove the main theorem, which generalizes [2, Corollary 14.26] (cf. [6, Theorem 4] for quasi-continuous modules).

Theorem 5. Let M be a quasi- \aleph_0 -continuous directly finite projective module over a regular ring R, and let A, $B \in \mathcal{A}(M)$.

- (a) If $A \cong B$ then $A^* \cong B^*$.
- (b) If $A \lesssim B$ then $A^* \lesssim B^*$.

Proof. (a) Put $D=A\cap B$ and let $f:A\to B$ be an isomorphism. In view of [2, Lemma 14.10 (a)], we see that $D\in\mathcal{A}(M)$, and so there exists D^* such that $D^*<\bigoplus A^*$ and $D^*<\bigoplus B^*$ (Lemma 1). Put $A^*=D^*\oplus X$ and $B^*=D^*\oplus Y$ with some X and Y. We claim the following facts:

- (1) If $L \in \mathcal{A}(M)$ and $N < \oplus L$, then $N \in \mathcal{A}(M)$, and therefore both X and Y are in $\mathcal{A}(M)$.
 - (2) $A^* \cap B^* = D^*$ and $X \cap Y = X \cap B^* = A^* \cap Y = 0$.

Proof of (1). Put $L=N \oplus K$ with some K, and let $\pi: L \to N$ be the projection map. There exists a countably generated submodule L' such that $L' \leq_e L$. Then $\pi(L')$ is countably generated and $L' \cap N \leq \pi(L') \leq N$. Hence $\pi(L') \leq_e N$.

Proof of (2). Obviously, $D^* \le A^* \cap B^*$. On the other hand, $D = A \cap B \le_e A^* \cap B^*$ and $A^* \cap B^* \le D^*$ by Lemma 1. Hence $A^* \cap B^* = D^*$, and therefore $X \cap Y \le X \cap B^* = X \cap A^* \cap B^* = X \cap D^* = 0$. Similarly, $A^* \cap Y = 0$.

We claim further that there exist decompositions

$$X = X'_1 \oplus X''_1, \quad X''_n = X'_{n+1} \oplus X''_{n+1},$$

 $Y = Y'_1 \oplus Y''_1, \quad Y''_n = Y'_{n+1} \oplus Y''_{n+1},$
 $D^* = D'_1 \oplus D''_1, \quad D''_n = D'_{n+1} \oplus D''_{n+1}$

such that

$$X'_n \cong Y'_n, \ D'_{2n-1} \cong X''_{2n-1}, \ D'_{2n} \cong Y''_{2n} \quad (n=1, 2, \cdots).$$

Since $f(A \cap X)$ and f(D) are in $\mathcal{A}(M)$ and $f(A \cap X) \oplus f(D) \leq_e f(A) = B$, we have $B^* = (f(A \cap X))^* \oplus f(D)^*$ by Lemma 1 and (C_3) . According to Lemma 4, there exist decompositions $Y = Y_1' \oplus Y_1''$ and $D^* = D_1' \oplus D_1''$

160 M. KUTAMI

such that $Y \oplus D^* = B^* = (f(A \cap X))^* \oplus Y_1'' \oplus D_1''$. Then we have an isomorphism $g: Y_1'' \oplus D_1'' \to (f(D))^*$. Noting that $A \cap X \leq_e X$ and $(A \cap X) \cap f(A \cap X) \leq X \cap B^* = 0$, we see that $X \cong (f(A \cap X))^* \cong Y_1' \oplus D_1'$ by Lemma 2, and so there exists a decomposition $X = X_1' \oplus X_1''$ with $X_1' \cong Y_1'$ and $h: D_1' \cong X_1''$. Putting here $E = g^{-1}f(D)$ and $k = (h \oplus the identity map on <math>D_1'')f^{-1}g|_E: E \to X_1'' \oplus D_1''$. Since $k(Y_1'' \cap E) \oplus k(D_1'' \cap E) \leq_e X_1'' \oplus D_1''$, we have

$$X_1'' \oplus D_1'' = X_1'' \oplus (D_1'' \cap E)^* = (k(Y_1'' \cap E))^* \oplus (k(D_1'' \cap E))^*,$$

where $Y_1'' \cong (k(Y_1'' \cap E))^*$. Then, by the above discussion, there exist decompositions

$$X_1'' = X_2' \oplus X_2''$$
, $Y_1'' = Y_2' \oplus Y_2''$ and $D_1'' = (D_1'' \cap E)^* = D_2' \oplus D_2''$

with $X_1'' \oplus D_1'' = (k(Y_1'' \cap E))^* \oplus X_2'' \oplus D_2''$ and isomorphisms $g_1: X_2'' \oplus D_2''$ $\cong (k(D_1'' \cap E))^*$, $X_2' \cong Y_2'$ and $h_1: D_2' \cong Y_2''$. Repeating this procedure successively, we obtain the desired decompositions.

Next, we claim that $\bigoplus_{n=1}^{\infty} X_n' \leq_e X$ and $\bigoplus_{n=1}^{\infty} Y_n' \leq_e Y$ (cf. the proof of [3, Theorem 1.4]). Suppose that $C \cap (\bigoplus_{n=1}^{\infty} X_n') = 0$ for a cyclic submodule C of X. Obviously, $C \subseteq \mathcal{A}(M)$, $C \subset \mathcal{A}(M) = 0$ and $X_1' \oplus \cdots \oplus X_{2n-1}' \oplus X_{2n-1}' = X \subset \mathcal{A}(M)$. Since $C \oplus (X_1' \oplus \cdots \oplus X_{2n-1}') \subset \mathcal{A}(M)$ by $C \subseteq \mathcal{A}(M)$, we see that $C \leq X_{2n-1}' \cong D_{2n-1}'$, and so $C \oplus C \oplus \cdots \leq D_1' \oplus D_3' \oplus \cdots \leq D^* \subset \mathcal{A}(M)$. Thus, $C \subseteq 0$ by Proposition 3. Similarly, we can show that $\bigoplus_{n=1}^{\infty} Y_n' \leq_e Y$.

Now, noting that $(\bigoplus_{n=1}^{\infty} X'_n) \cap (\bigoplus_{n=1}^{\infty} Y'_n) \leq X \cap Y = 0$ by (2) and that $\bigoplus_{n=1}^{\infty} X'_n \cong \bigoplus_{n=1}^{\infty} Y'_n \in \mathcal{A}(M)$ by (1), we see that $X \cong Y$ by Lemma 2, and so $A^* = D^* \oplus X \cong D^* \oplus Y = B^*$.

(b) If $f: A \to B$ is a monomorphism, then $A \cong f(A) \in \mathcal{A}(M)$ and $f(A) \leq B$. Hence $A^* \cong (f(A))^* \leq B^*$ by (a) and Lemma 1.

Corollary. Let M be a quasi- \aleph_0 -continuous directly finite projective module over a regular ring R such that $M \subseteq \mathcal{A}(M)$. Then the following are equivalent:

- a) M is \aleph_0 -continuous.
- b) Every injective endomorphism of M is an automorphism.

An R-module M is said to have the *cancellation property* if $M \oplus H \cong M \oplus K$ implies always $H \cong K$, or equivalently if $M \oplus H = N \oplus K$ with $M \cong N$ implies $H \cong K$ (cf. [1]).

From the proof of [1, Theorem 2], we see the next

Lemma 6. Let M be an R-module with the finite exchange property.

Then M has the cancellation property if and only if isomorphic direct summands of M have isomorphic complements.

Theorem 7. Let M be a quasi- \aleph_0 -continuous directly finite projective module over a regular ring R. If $M \in \mathcal{A}(M)$, then M has the cancellation property.

Proof. Let $M = A \oplus C = B \oplus D$ with $C \cong D$ for some R-modules A, B, C and D. Since $M \in \mathcal{A}(M)$, A, B, C and D are also in $\mathcal{A}(M)$ by the statement (1) in the proof of Theorem 5. Then $A \cong B$ by Proposition 3, Lemma 4, Theorem 5 and the proof of [3, Lemmas 1.2, 1.3 and Theorem 1.4]. Hence, by Lemmas 4 and 6, M has the cancellation property.

Theorem 8. Let R be a regular ring. If M and N are quasi- \aleph_0 -continuous directly finite projective R-modules, then $M \oplus N$ is directly finite.

Proof. Let $M \oplus N = X \oplus Y$ for some submodules X and Y with an isomorphism $f: M \oplus N \to X$. Take a cyclic submodule yR of Y. Then $\{yR, f(yR), f^2(yR), \cdots\}$ is an infinite independent sequence of pairwise isomorphic cyclic submodules of $M \oplus N$. Noting that $yR < \oplus M \oplus N$, we have decompositions $M = M_1' \oplus M_1''$ and $N = N_1' \oplus N_1''$ such that $M \oplus N = yR \oplus M_1'' \oplus N_1''$ and $yR \cong M_1' \oplus N_1'$ (Lemma 4). Next, noting that $yR \oplus f(yR) < \oplus yR \oplus M_1'' \oplus N_1''$, again by Lemma 4 we have decompositions $M_1'' = M_2' \oplus M_2''$ and $M_1'' = M_2' \oplus M_2'' \oplus N_2''$ such that $M \oplus N = yR \oplus f(yR) \oplus M_2'' \oplus N_2''$ and $f(yR) \cong M_2' \oplus N_2''$. Continuing this procedure, we have decompositions

$$M = M'_1 \oplus M''_1, \ M''_n = M'_{n+1} \oplus M''_{n+1},$$

 $N = N'_1 \oplus N''_1, \ N''_n = N'_{n+1} \oplus N''_{n+1}$

such that $yR \cong M'_1 \oplus N'_1$ and $f^n(yR) \cong M'_{n+1} \oplus N'_{n+1}$ $(n=1, 2, \cdots)$, where M'_n and N'_n are cyclic R-modules.

Put $A=M_1'\oplus M_2'\oplus \cdots$, $B=N_1'\oplus N_2'\oplus \cdots$, $C=M_2'\oplus M_3'\oplus \cdots$, and $D=N_2'\oplus N_3'\oplus \cdots$. Then $A=M_1'\oplus C$, $B=N_1'\oplus D$, and there exists an isomorphism $g:A\oplus B\to C\oplus D$. Since g(A) is projective, there exist decompositions $C=C'\oplus C''$ and $D=D'\oplus D''$ such that $C\oplus D=g(A)\oplus C''\oplus D''$ (Lemma 4). Then $A\cong g(A)\cong C'\oplus D'$ and $B\cong g(B)\cong C''\oplus D''$, and so there exist decompositions $A=A'\oplus A''$ and $B=B'\oplus B''$ with $A'\cong C'$, $m:A''\cong D'$, $l:B'\cong C''$ and $B''\cong D''$. Noting that $A'\oplus A''=M_1'\oplus C'\oplus C''$ and $A'\cong C'$, by Theorem 5 (a) we see that $A'^*\oplus A''^*=M_1'\oplus C'^*\oplus C''^*$ and $A'^*\cong C'^*$ in M. Since A'^* is a quasi- \aleph_0 -continuous directly finite projective module belonging to $\mathscr{A}(A'^*)$, we have an isomorphism $h:A''^*\cong A''^*$

 $M_1' \oplus C''^*$ by Theorem 7. Similarly, we get an isomorphism $k: B'^* \cong N_1' \oplus D'^*$. Now, we put $E = l(k^{-1}(k(B') \cap D'))$. Then $m^{-1}(k(B') \cap D') \cong E \leq C''$ and $m^{-1}(k(B') \cap D') (\in \mathcal{A}(M))$ is an essential submodule of A'', and so $A''^* \cong E^* < \oplus C''^*$ in M by Theorem 5 (a), and $A''^* = h^{-1}(M_1') \oplus h^{-1}(C''^*) \oplus > h^{-1}(M_1') \oplus h^{-1}(E^*)$. Since A''^* is directly finite, we have $h^{-1}(M_1') = 0$, and so $M_1' = 0$; likewise $N_1' = 0$ Hence $yR \cong M_1' \oplus N_1' = 0$, and so Y = 0, which means that $M \oplus N$ is directly finite.

A regular ring R is said to satisfy the *comparability axiom* provided that, for any x, $y \in R$, either $xR \leq yR$ or $yR \leq xR$ ([2, p. 80]). It is known that if R is a regular ring satisfying the comparability axiom then, for any finitely generated projective R-modules A and B, either $A \leq B$ or $B \leq A$ ([2, Proposition 8.2]).

Theorem 9. Let R be a regular ring satisfying the comparability axiom. Then every quasi- \aleph_0 -continuous directly finite projective R-module P is finitely generated, and hence \aleph_0 -continuous.

Proof. Suppose, to the contrary, that P is not finitely generated. Then, by [4], $P=\bigoplus_{i\in I}x_iR$ for some infinite index set I. Given $j\in I$, we set $N_j=\{i\in I\mid x_jR\leq x_iR\}$. Then, N_j is a finite set by Proposition 3. We can therefore find an infinite sequence $\{i_1,\ i_2,\ \cdots\}$ in I and (non-isomorphic) monomorphisms $f_{i_{n+1}}:x_{i_{n+1}}R\to x_{i_n}R(n=1,\ 2,\ \cdots)$. Then there exist nonzero $a_{i_n}R$ such that $x_{i_n}R=f_{i_{n+1}}(x_{i_{n+1}}R)\oplus a_{i_n}R$. Since $\bigoplus_{n=1}^\infty x_{i_n}R=(\bigoplus_{n=1}^\infty f_{i_{n+1}}(x_{i_{n+1}}R))\oplus (\bigoplus_{n=1}^\infty a_{i_n}R)$ and $\bigoplus_{n=2}^\infty x_{i_n}R$ are quasi- \aleph_0 -continuous directly finite countably generated projective R-modules, Theorem 7 shows that $x_{i_1}R\cong \bigoplus_{n=1}^\infty a_{i_n}R$, which is a contradiction.

A regular ring is called *abelian* if all idempotents in R are central ([2, p, 25]). As the following examples show, the assumtion "the comparability axiom" cannot be deleted in Theorem 9.

Example 1. Let R be an abelian right \aleph_0 -continuous regular ring. Then, it is easy to see that every right ideal of R is an \aleph_0 -continuous directly finite R-module.

Example 2. Let I be an index set. For each $i \in I$, consider a ring R_i and an R_i -module M_i . Put $R = \prod_{i \in I} R_i$ and $M = \bigoplus_{i \in I} M_i$.

(a) If every R_i -module M_i is quasi- \aleph_0 -continuous (resp. \aleph_0 -continuous), then so is the R-module M.

- (b) If every R_i -module M_i is directly finite, then so is the R-module M.
- (c) In particular, if every R_i is a right \aleph_0 -continuous directly finite regular ring, then the right R-module R is \aleph_0 -continuous and directly finite.

Acknowledgement. Corollary to Theorem 5 was pointed out by the referee. The author wishes to thank Prof. Y. Kurata and the referee for their comments and suggestions concerning this paper.

REFERENCES

- [1] L. FUCHS: The cancellation property for modules, Lecture Notes in Math. 246, Springer-Verlag, Berlin, 1972, 191—212.
- [2] K.R. GOODEARL: Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979.
- [3] K.R. GOODEAR: Directly finite aleph-nought-continuous regular rings, Pacific J. Math. 100 (1982), 105—122.
- [4] I. KAPLANSKY: Projective modules, Ann. Math. 68 (1958), 372-377.
- [5] M. KUTAMI: X0-continuous modules, to appear in Osaka J. Math.
- [6] B.J. MÜLLER and S.T. RIZVI: On injective and quasi-continuous modules, J. Pure Appl. Algebra 28 (1983), 197—210.
- [7] K. OSHIRO: Projective modules over von Neumann regular rings have the finite exchange property, to appear in Osaka J. Math.
- [8] K. OSHIRO: Continuous modules and quasi-continuous modules, to appear in Osaka J. Math.

DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY
YAMAGUCHI, 753 JAPAN

(Received June 14, 1983)