NOTE ON THE MAXIMAL RIGHT %₀-QUOTIENT RING OF A REGULAR RING

JIRO KADO

Throughout, R will represent a ring with unity, and $\mathfrak{U}(R)$ (resp. $\mathfrak{B}(R)$) the set of all countably generated right ideals (resp. all countably generated, essential right ideals) of R. If a right R-module M is essential in N, we write $M \subset_e N$.

The present objective is to prove that the maximal right \aleph_0 -quotient ring of a regular ring R is a right \aleph_0 -continuous, regular ring if and only if R satisfies the \aleph_0 -complement property, i.e., every countably generated right ideal has a countably generated complement (Theorem 4). We also show that the \aleph_0 -complement property is Morita invariant. As for terminologies and fundamental results used in this note, we refer to Goodearl [1].

We begin with the following

Lemma 1 ([1, Prop. 14.11]). Let R be a regular ring, and Q the maximal right quotient ring of R. Let $S = \{x \in Q : xJ \subset R \text{ for some } J \in \mathfrak{B}(R)\}$. Then there holds the following:

- (1) S is a subring of Q, and is the maximal right \aleph_0 -quotient ring of R.
 - (2) For any $K \in \mathfrak{B}(R)$, every map in $Hom_s(K,S_s)$ extends to S.

We say that R satisfies the $\operatorname{right} \aleph_0$ -complement property if for any $I \in \mathfrak{A}(R)$ there exists some $J \in \mathfrak{A}(R)$ such that $I \cap J = 0$ and $I \oplus J \in \mathfrak{B}(R)$. Obviously, every regular ring having no uncountable direct sums of non-zero right ideals satisfies the \aleph_0 -complement property, and also every right \aleph_0 -continuous regular ring satisfies the same ([1, Lemma 14.8]). We shall give an example of a regular ring satisfying the \aleph_0 -complement property which is not right \aleph_0 -continuous and has an uncountable direct sum of non-zero right ideals.

Example (cf. [1, Example 13.8]). Let F be a field having a proper subfield K. Let I be an uncountable well-ordered set, and set $F_{\alpha} = F$, $K_{\alpha} = K$ ($\alpha \in I$). Let $Q = \prod_{\alpha \in I} F_{\alpha}$ and $R = \{x \in Q : x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely many } x_{\alpha} \in K_{\alpha} \text{ for all but finitely } x_{\alpha$

 α). Observing that R contains all the idempotents of Q, we see that R is

154 J. KADO

a continuous regular ring. Now, by Proposition 5 below, $T = M_2(R)$ satisfies the \aleph_0 -complement property. We identify T with the subring $\{A \in \prod_{\alpha \in I} M_2(F_\alpha) : A_\alpha \in M_2(K_\alpha) \text{ for all but finitely many } \alpha\}$. Evidently, T has an uncountable direct sum of non-zero right ideals. Since the lattice of principal right ideals of T is not \aleph_0 -complete by [1. Example 13.8], T is not right \aleph_0 -continuous.

Lemma 2. Let R be a regular ring satisfying the right \aleph_0 -complement property, and S the maximal right \aleph_0 -quotient ring of R. Then, for any $I \in \mathfrak{A}(R)$ and any R-homomorphism $f: I \longrightarrow R$, there exists an element s in S such that f(a) = sa for all $a \in I$.

Proof. Choose $J \in \mathfrak{A}(R)$ with $I \oplus J \subset_e R$, and extend f to a homomorphism $I \oplus J \longrightarrow R$ by setting f(J) = 0. As is easily seen, $IS \oplus JS \subset_e S_s$. Then, noting that $K \otimes_R S \cong KS$ for any right ideal K of R ([1, Cor. 1.13]), we can define an S-homomorphism $f^* : IS \oplus JS \longrightarrow S$ by setting $f^*(\sum_i a_i x_i + \sum_j b_j y_j) = \sum_i f(a_i) x_i$ ($a_i \in I$, $b_j \in J$, x_i , $y_j \in S$). Since $IS \oplus JS \subset_e S_s$. [1, Th. 14.11] shows that there exists $s \in S$ such that $f^*(x) = sx$ for all $x \in IS \oplus IS$, completing the proof.

Lemma 3. If a regular ring R satisfies the right \aleph_0 -complement property, then so does the maximal right \aleph_0 -quotient ring S of R, and conversely.

Proof. Let $K = \sum_{n} x_n S \in \mathfrak{A}(S)$. By definition, there exists $J_n \in \mathfrak{B}(R)$ such that $x_n J_n \subset R$ $(n=1, 2, \cdots)$. Then, $I = \sum_{n} x_n J_n \in \mathfrak{A}(R)$. Consider the natural epimorphism $\bigoplus_{n} S/J_n \longrightarrow K/I$. Inasmuch as $J_n \subset_e R \subset_e S_R$ for all n, we see that $(K/I)_R$ is singular, and therefore $I \subset_e K_R$. Then we have $I \subset_e K_S$. Choose $J \in \mathfrak{A}(R)$ such that $I \oplus J \subset_e R_R$. Then we have $IS \oplus JS \subset_e S_S$, and hence $K \oplus JS \subset_e S_S$.

Conversely, suppose that S has the right \aleph_0 -complement property. Given $C \in \mathfrak{A}(R)$, there exists $K = \sum_n x_n S \in \mathfrak{A}(S)$ such that $CS \oplus K \in \mathfrak{B}(S)$. By definition, we then have $CS \oplus K \subset_e S_R$. By making use of the above argument, we can find $I \in \mathfrak{A}(R)$ such that $I \subset_e K_R$. Now, combining this with $C \subset_e CS_R$, we get $C \oplus I \subset_e S_R$, and therefore $C \oplus I \in \mathfrak{B}(R)$.

We are now in a position to state our main theorem.

Theorem 4. Let R be a regular ring, and S the maximal right \aleph_0 -quo-

tient ring of R. Then the following conditions are equivalent:

- 1) R satisfies the right \aleph_0 -complement property.
- 2) S is a right \aleph_0 -continuous regular ring.

Proof. 1) \Rightarrow 2). In view of Lemma 2, we can prove that S is regular, in the same way as in the proof of [1, Th. 14.12]. Now, let $K \in \mathfrak{A}(S)$. Then $K \oplus J \subset_e S_S$ with some $J \in \mathfrak{A}(S)$. According to Lemma 1 (2), the natural projection map $K \oplus J \longrightarrow K$ is given by the left multiplication of an element p in S. Obviously, p is an idempotent and $K \subset pS$. Since $(pS/K)_S$ is singular as the homomorphic image of the singular module $(S/(K \oplus J))_S$, we see that $K \subset_e pS_S$, and hence S is right \aleph_0 -continuous by [1, Cor. 14.4].

2) \Rightarrow 1). Obviously, S satisfies the right \aleph_0 -complement property. Hence, by Lemma 3, R satisfies the same property.

In general, the \aleph_0 -continuity of a regular ring is not Morita invariant. However, we shall show that the \aleph_0 -complement property of a regular ring is Morita invariant. We can prove the next in the same way as in the proof of [1, Lemma 14.18].

Lemma 5. Let R be a regular ring with \aleph_0 -complement property, and P a finitely generated projective right R-module. If A is a countably generated submodule of P, then $A \oplus B \subseteq_e P$ with some countably generated submodule B of P.

Proposition 6. Let P be a finitely generated projective right module over a regular ring R. If R satisfies the \aleph_0 -complement property, then $\operatorname{End}_R(P)$ does the same property.

Proof. Put $T = \operatorname{End}_R(P)$, and $M \in \mathfrak{A}(T)$. Then, by $[1, \operatorname{Prop. } 2.14]$, there exist orthogonal idempotents f_1, f_2, \cdots in T such that $M = \bigoplus_n f_n T$. We put $A = \bigoplus_n f_n(P)$, and choose a countably generated submodule B of P such that $A \oplus B \subset_e P$ (Lemma 5). In view of $[1, \operatorname{Prop. } 2.13]$, there exist countable idempotents g_1, g_2, \cdots in T such that $g_{n+1}g_n = g_n \ (n=1, 2, \cdots)$ and $B = \bigcup_n g_n(P)$. Put $N = \bigcup_n g_n T \in \mathfrak{A}(T)$. It is easy to see that $M \cap N = 0$. Now, we shall show that $M \oplus N \subset_e T_T$. Let e be an arbitrary non-zero idempotent of T. Since $A \oplus B \subset_e P$ implies $(A \oplus B) \cap e(P) \neq 0$, we can find $x \neq 0$ in $(A \oplus B) \cap e(P)$. If α is a projection of P on the direct summand xR (see [1, Th. 1.11]), we can easily see that $\alpha \in (M+N) \cap eT$. We have thus completed the proof.

156 J. KADO

REFERENCE

[1] K.R. GOODEARL: Von Neumann Regular Rings, Pitman, London, 1979.

DEPARTMENT OF MATHEMATICS OSAKA CITY UNIVERSITY OSAKA 558, JAPAN

(Received, June 30, 1983)