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ON A CERTAIN CLASS OF CONNECTED
SYMMETRIC TRIVALENT GRAPHS

NoBORU ITO

1. Introduction. A finite group G is called a T-group if (1) G is
generated by an element ¢ of order two and an element % of order three,
and (2) the order of G is larger than six. If a T-group G is given, then
a connected symmetric trivalent graph I" is constructed as follows. The
vertices of I" are the cosets of G with respect to a subgroup H=<{h>. A
vertex Hx (x € G) is joined to Hax. Hahx and Hah?x. Then clearly G
acts as an automorphism group of I" by right multiplication. The conditions
(1) and (2) guarantee that I" is connected, and that Hax, Hahx and Hah*x
are distinct. So I’ is a connected symmetric trivalent graph. For simplicity
we call a graph I thus constructed a 7T-graph. For group-theoretical con-
struction of more general connected symmetric trivalent graphs see [5].

Now it seems to the author that 7-groups are intrinsically related to
non-Abelian simple groups. Namely if S is a non-Abelian simple group,
then consider the wreath product G=</> § (SXSXS) of S with a cyclic
group <A> of order three. G is a 7-group if and only if S satisfies the
following condition (!):

(1) S is generated by three elements &, ¢ and d such that there is no

automorphism of S permuting b, ¢ and & cyclically.
If S possesses an automorphism o permuting b, ¢ and 4 cyclically, then
the holomorph of S with respect to <e><{p>S, is a T-group. For a proof
see §2.

The purpose of this note is (1) to prove some basic propositions on
graphs I' constructed from the wreath product G of the above type and
(ii) to determine the automorphism group of I" Here the author would
like to mention that wide classes of non-Abelian simple groups satisfy (!),
though not every non-Abelian simple group satisfies (!) ((6], [9]). Some
of our arguments are based on the classification of simple groups of finite
orders.

Notation. Let X be a finite group. |X/| denotes the order of X. Let
X1, X2, ***, X be elements of X. <{xi, x2, ==, x&> is a subgroup of X generated
by x1, x2, ***, xx. For x € X |x|=[{x|.

2. Basic propositions.
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"Proposition 1. Let S be a non-Abelian simple group and G the wreath
product of S with respect to a cyclic group H=<h> of order three. Then G
is a T-group if and only if S satisfies (1). If S is generated by three elements
b, ¢ and d of order two and if there exists an automorphism h of S permuting
b, ¢ and d cyclically, then the holomorph G* of G with respect to a cyclic
group <h> s a T-group.

Proof. We suffix 1, 2 and 3 to SXSXS so that the mapping xpo:=
x: (x € S, x; € S,) is an isomorphism between S and S; (/=1, 2, 3). Then
the action of 2 on S1X S3X S3 can be described as 2 'xih=x2, A 'x2h=1x3
and A 'xh=x,.

Now we assume that G is a 7-group. Then the element of order three
of a generating system may be assumed of the form hu (2 € S; X S2 X S3).
First we show that there exists an element v in S; X S2X Sz such that hu=
v™thv. Namely let u=x1y223 x1E S1, 2 € S, and 23 E Ss.  Then since
1= huhuhu = h?z x:ysuhu = y122X321X2Y3X1 V223 = Y121 X122X2 V2 X3Y323, We have
that yizix1=22X2V2=x3y323=1. So if we let v=y,x3!, then v 'hv=
X3¥7 L hyox5 ' = hx1y3 ' yox3 ' = hx1y2y3 x5 = hx1y223 as required. Thus taking
v~ w;v instead of w; (w; € S;; =1, 2, 3), without loss of generality we may
assume that #=1. Next let the element a of order two which generates G
together with % be of the form a=b5,c.ds, where b1 € S1, c2€ Sz and d3 € Si.
Then A 'ah=d \bacs and hah™'=c1d2bs. Since a, h™'ah and hah™' generate
S1X 82X S3, we obtain that S=<b, ¢, &>, which implies that the orders of
b, ¢ and d equal two. Now let W(X, Y, Z) be any element of a free group
on free generators X, Y and Z Then the mappings W(bi, di, ci)n=
W(Cz, bz, dz) from Sl to Sz, W(Cz, bz, d2)¥2=W(d3, Cs, bs) from Sz to Sa,
and W(ds, c3, b3)ya=W(b1, di, c1) from S; to S; are product preserving.
If there exists an automorphism of S permuting b, ¢ and & cyclically, then
y; is an isomorphism (=1, 2, 3). But then a, 2 'ah and hah™' cannot
generate S;X S2X Ss.

Conversely if S satisfies (1), then % and a= bic.ds generate G. In fact,
in the above notation, y:; cannot be an isomorphism, and hence 7; is not
one-to-one (i=1, 2, 3). Then since S is simple, the kernel of y; is the whole
group (=1, 2, 3). So <a, k> contains elements of the form bix; and c1ys,
where %2 € S, and y; € S;. Then the commutator of these two elements
is a non-trivial element w; of Si. Now taking the conjugates of u, suc-
cessively by a, A~ 'ak and hah™!, we see that dll conjugates of w; belong to
{a, #>. Since S is simple, S; is contained in <e, #>. - Similarly S, and Ss
are contained in <a, A>.
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If there is an automorphism of S permuting b, ¢ and d cyclically, then
a, h~'ah and hah™! generate a subgroiup of S;X S2X S; isomorphic with S.
This completes the proof of Proposition 1.

Remark 1. Let a non-Abelian simple group S be generated by three
elements b, ¢ and d of order two. Then bc and db generate S.

Proof. Since S is simple, it suffices to show that <bc, db> is normalized
by b, ¢ and d. Now bc and db are inverted by b and ¢, and by 4 and b
respectively. Since dbbc=dc, we have that cdbc=(dbbc) 'bc and abcd =
db(dbbc)™!. So ¢ and d normalize <bc, db>.

From now on we assume that S is a non-Abelian simple group satisfying
the condition (!), and that G is the wreath product of S with respect to a
cyclic group H=<A> of order three. Then, for simplicity, we call G a
TW-group and the T-graph I' corresponding to G a TW-graph.

Proposition 2. A TW-graph I' is not bipartite.

Proof. Assume that I' is bipartite. Let E(H) be the set of vertices
Hx such that the distance d(H, Hx) is even and O(H) the set of vertices
Hy such that d(H, Hy) is odd. Now if z is an element of G such that
E(H)zN E(H)+ @, then E(H)z=E(H). In fact, otherwise, there exist
vertices Hu and Hv such that o(H, Hu)=0(H, Hv)=0(Hz, Hu)=0 (mod 2)
and d(Hz, Hv)=1(mod 2). So we have a closed walk of odd length initiating
and terminating at H and passing through Hu, Hz and Hv. But a closed
walk of odd length contains a circuit of odd length. This contradicts the
fact that I' is bipartite ([1], p. 50). Since (H, Hx)=3(Ha, Hxa) and
d0(H, Ha)=1, E(H)a=0O(H). So E(H) is a sét of imprimitivity for G of
length two. Thus G contains a normal subgroup of index two. This is a
contradiction.

The girth and diameter of I' are intimately related with the word
problem in G with a and % alphabets. Any word W(a, %) which is not
equal to 1, @® or A3 such that HW(a, h)=H corresponds to a closed walk
in I Clearly we may assume that W(a, h)=ah®V--- ah¢" where e(i)=1
or 2(1= 7= r). Then the length of the corresponding closed walk is equal
to 7. Let g be the girth of I" Then we have the following inequality

g < |ah|.

For TW-graphs we might have the equality here. But this is not always
true for general T-graphs.
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Example.  Let p be an odd prime such that p=2 (mod 3). Then the
following relations define a group G* of order 6p°:

b =c3=1, beZC_I, d]pzdzpzl, d1d2=dzd1, bd1b=dz,
bdob=d\, ¢ 'dic=d>, and ¢ 'doc=di'ds!.

G*is a T-group. In fact, let a=d\d5'b and k=c. Then ¢?*=1 and cha=
didi'bed\di'=d di ' bedodT '=didi L e dehdT ' =7V dT  di VAT Vb dT =0V AR
Thus €a, %> contains ¢, and hence d>. Furthermore, ahah=d\d: ' bcdids ' bc
=didi'c ldydr i =d\ds'dir'ds'ds'=ds3  Thus the order of ah is equal
to 2p. On the other hand, ahah?=d\ds'bcd\ds bc =didi'c  dodic™ =
dids'ditds'di'c=ds3¢c and dslcdsdcdsic=di3d3did3=1. Thus we have
that g =6.

Proposition 3. If I’ s a TW-graph, then g = 6.

Proof. 1f g=3, then we have a relation in G of the form ah® ah®ah®
=1, where e;=1or 2 (=1, 2, 3). Since @ belongs to S1 X S» X Ss, we have
that e1+e2+e3=0 (mod 3). So we have that either e;=e;=es=1 or e;=e;
=e3=2. Inthefirst case, aha=h"tah™. So, hahahah?a=hah*hah*h'a
=1. Thus kak™! and a commute. Conjugating by % and 47!, we see that
{a, hah™', h~'ah> is an Abelian normal subgroup of G. This is a contra-
diction. Taking /%7! instead of A, the second case can be similarly treated
as the first case. A

If g=4, then we have a relation in G of the form a%2® gh®*ah® ah® =1,
where e;=1 or 2 (i=1, 2, 3, 4). Since a belongs to S;X ;X S3, we have
that e, + ez +e3+ ;=0 (mod 3). So we may assume that either ahak™'ahah™!
=1 or ahah™'ah™'ah=1. In the first case, @ and kah™' commute. So we
get the similar contradiction as in the case of g=3. In the second case,
aha=h"'ahah. So {aha, k> is an Abelian normal subgroup of G. This is
a contradiction.

If g=5, then we have a relation in G of the form akh® ah®ah® ah® ah®
=1, where e;=1 or 2 (=1, 2, 3, 4, 5). Since a belongs to S;X S; X 53, we
have that e;+es+es+es+es=0 (mod 3). So we may assume that either
ahah?ah?ah*ah?=1 or ahahahahah®*=1. In the first case, <a#> contains
ah and hence A. This is a contradiction. The second case is similar to
the first case.

Proposition 4. For b& S1XS:XS; Hbh=Hb if and only if b
commutes with h. If b+1 commutes with h, then we have a circuit of even
length with H and Hb as initial and terminal vertices.
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Proof. Hbh=Hb if and only if bhb™' € H. Since bhb'=bhb'h~'h
ahd bhb~'h' € S, X S3 X Ss, Hbh=Hb if and only if bhb~ ' h~'=1.

Assume that J(Hb, Hx)=1, where x € S; X S2XSs. If o(H, Hx)=
o(H. Hb)=1, then Hxh=Hx. So x commutes with k. Since Hx= Hab.
Hahb or Hah?b, this implies that @ commutes with 2. This is a contradiction.

Remark 2. It is difficult for the author to evaluate o(H. Hb).
3. Automorphism groups of TW-graphs.

Proposition 5. Let G* be a T-group and I the corresponding T-graph.
Let & be the automorphism group of I' ahd D the stabilizer of the vertex H
in ®. Then the order of $ equals 2™3, wherve m is a non-negative integer,
and so <h> is a Sylow 3-subgroup of 9.

Proof If o is an element of 9, then Ho=H and (Ha)o € {Ha, Hah,
Hah?}. Therefore if the order of ¢ equals a prime larger than three, ¢
leaves Ha, Hah and Hah? invariant. So, using the recurrence argument
with respect to the distance from H, we obtain that 6=1, a contradiction.

Now let ¢ be an element of a Sylow 3-subgroup of $ containing #4.
Since we can replace ¢ by ok or oh?, if need be, we may assume that
(Ha)o=Ha. Then we have that (Hah)o=Hah and (Hah*)c= Hak®. So,
as above, we obtain that o=1.

Proposition 6. Let ¢ be an automorphism of a T-group G*. Then ¢
is an automorphism of the corresponding T-graph I' if and only if Ho=H
and {Ha, Hah, Hah*)o={Ha, Hah, Hah?}.

Proof. 1f o satisfies the stated condition, then, for any b € G*, (Hb)o
= H(bo) and (Hahib)o=Hah’(bo) (i, j=0, 1. 2). So ¢ preserves the adja-
cency of I.

If ¢ is an automorphism of I, then Ho=Hb for some b € G*. Since
Ho is a subgroup of G* Ho=H. Hence {Ha. Hah, Hah?*}o={Ha, Hah,
Hah?}.

Now let G be a TW-group, I' the corresponding 7 W-graph and & the
automorphism group of I. Then, by Proposition 5, [&: G]=2¢. It seems,
however, not easy to give an effective bound on e. Our proof to the fol-
lowing proposition is based on the classification of non-Abelian simple
groups of finite orders.
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Proposition 7. [n the notation above, e 1. e=1 if and only if, in
the notation of Proposition 1, there exists an automorphism v of S such that
T fixes one of three generating elements b, ¢ and d of S of order two and
interchanges the remaining two.

Remark 3. If r fixes b and interchanges ¢ and d, then |bc|=|bd].
Therefore, if |bc|, |cd| and |db| are distinct, then e=0, namely &=G.

Proof of Proposition 7. The main point of the proof is to show that
® is not simple. First we notice that for any prime p such that (1) p
divides the order of & and (2) p is larger than three a Sylow p-subgroup
of & is, by Proposition 5, isomorphic to a direct product of three Sylow
p-subgroups of S.

Now we assume that & is simple.

& is not isomorphic to any one of twenty-six sporadic simple groups.
In fact, for any sporadic simple group the largest prime divisor of the order
occurs only to the first power.

@ is not isomorphic to any one of alternating groups of degree » = 5.
In fact, by Bertrand’s postulate ([ 7 ], p. 189) there exists a prime p = 5 such
that # = p and 2p > n. Then a Sylow p-subgroup is cyclic of order p.

Hence ® must be isomorphic to one of simple groups of Lie type.

(i) ® is not isomorphic to Alg). In fact, if /=1, then all Sylow
subgroups whose orders are odd and prime to ¢ are cyclic. If only Sylow

3-subgroups appear among them, then we have that either i) %(q+1) =27

and %(q—1)=3" or ii) %(q+1)=3’” and %(q—l)=2". Easily we get

g=T for case i) and ¢g=>5 or 17 for case ii). Then a Sylow g-subgroup
is cyclic. So we may assume that / >1. Now A,;(g) contains a cyclic
subgroup of order (g**!—1)/(g—1)d, where d is the greatest common divisor
of /+1 and ¢—1. Then by a theorem of K. Zsigmondy [10], unless ¢=2
and /=5, there exists a prime divisor s = 5 of (¢g**!—1)/(¢—1)d such that
the order of g with respect to s equals /+1. Then a Sylow s-subgroup is
cyclic. If ¢=2 and /=5, then a Sylow 31l-subgroup is of order 31.

(ii) ® is not isomorphic to 2A(g), / = 2. In fact, 2A,(¢) contains a
cyclic subgroup of order (g**'+(—1)")/(g+1)d, where d is the greatest
common divisor of /+1 and ¢+1 ([8], p. 190). So we can argue as in( i).

(iii) ® is not isomorphic to Big), /=2. In fact, Big) involves
A;1(g). Unless ¢g=2 and /=6, by (i), Ai_1(g) contains a cyclic Sylow
s-subgroup S where the order of ¢ with respect to s equals /. Then a Sylow
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s-subgroup of Bi(g) has order |S[2. If g=2 and /=6. then a Sylow 31-sub-
group js of order 31.

(iv) @ is not isomorphic to 2B,(22™+1), since all Sylow subgroups of
odd orders of 2B,(22"*!) are cyclic.

Now the remaining cases can be treated as in (iii). Hence we only list
involvolvement pairs. Forthissee[2]and[4]. (v) Ciq) involves A,-1(q),
[ 23. (vi) D{q)involves A;-1(q), [ = 4. (vii) 2D/(q) involves B,_(q), [ 2 4.
(vii) 3D4(q) involves Ga(g). (ix) Es(q) involves As(g). (x) E:(g) involves
Aq(q). (xi) Es(q) involves As(q). (xii) 2Fs(g) involves Ba(q). (xii) Filq)
involves Bi(g). (xiv) 2Fy(gq) involves 2Ba(g). (xv) Ga(gq) involves Ax(g).
(xvi) 2Go(q) involves Ai(q).

Thus we have a contradiction. Therefore ® is not simple. Let N be
a maximal normal subgroup of & If N N (S;XS2XS3)=1, then ®/N is
simple and ®/N contains a subgroup N(S,X S»X S3)/N isomorphic to
S1X 82X 8;. So by repeating the above argument we get a contradiction.
Therefore we have that N N (51X 53X S3)+1. Since S is non-Abelian
simple, it implies that N contains S| X S2X S3. If N+=S5,X 52X S3, then we
can apply the same argument to N instead of . Thus we obtain that
S1X 82X 83 is normal in @.

$ acts on {Ha, Hah, Hah®}. The stabilizer K of Ha in  is a Sylow
2-subgroup of . K acts on {Hah, Hah?}. Let L be the kernel of this
representation. Then the index of L in K equals 1 or 2, and L is normal
in . We consider the subgroup HL(S| X S2%X S3). Since Hala=Haa=H,
we have that aLa=L. Since h''Lh=L and G=<a, k>, L is normal in &.
It implies that L=1. This completes the proof of the first half of Proposition
7.

Now we assume that e=1. Let ¢ be an element of order two of .
Then by the argument in the last paragraph we have that tht=#4% By
Proposition 6 we may assume that Hai=Ha. Then we have that ata=
t, h™'th or hth™'. If ata=h"'th=ht, then t=ahaht, which implies that
ahah=1. This is a contradiction. Similarly we can show that ata=+hth™!.
Thus we obtain that afe=t. Since tht="h? we may assume that ¢ leaves
Sy invariant and interchanges Sz and Ss. Recalling a=b,¢2d; we have that
thit=0b1, tcat=ds and tdst=c.. Moreover, th 'aht=td\bscst=htath =
hah™'=c1d2bs. Thus we obtain that tdit=c, test=d> and that=b;.
Therefore S possesses an automorphism fixing & and interchanging ¢ and <.

Conversely we assume that S possesses an automorphism fixing # and
interchanging ¢ and d. Then the relations thit=by, fcit=dy, tdit =, that
=bs, tcat =df3, tdat =c3, th3t =bs, tcst=d» and fdsf=c, define an automor-
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phism of S1XS2XS;. We can check easily that tht=h"' and tat=a.
Therefore, by Proposition 6, ¢ is an automorphism of the 7 W-graph [

r— p—
oo —
—

(8]
(9]

(10]
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ON A CERTAIN CLASS OF CONNECTED
SYMMETRIC TRIVALENT GRAPHS

(This Journal, Vol. 25, pp. 145—152)
NoBoRrU ITO
Page 145, line 21. For “(!) ...b,c and d such that...”

read “(!) ...b,c¢c and d of order two
such that...”.

219



