ON A CERTAIN CLASS OF CONNECTED SYMMETRIC TRIVALENT GRAPHS

NOBORU ITO

1. Introduction. A finite group G is called a T-group if (1) G is generated by an element a of order two and an element h of order three, and (2) the order of G is larger than six. If a T-group G is given, then a connected symmetric trivalent graph Γ is constructed as follows. The vertices of Γ are the cosets of G with respect to a subgroup $H = \langle h \rangle$. A vertex Hx ($x \in G$) is joined to Hax, Hahx and Hah^2x . Then clearly G acts as an automorphism group of Γ by right multiplication. The conditions (1) and (2) guarantee that Γ is connected, and that Hax, Hahx and Hah^2x are distinct. So Γ is a connected symmetric trivalent graph. For simplicity we call a graph Γ thus constructed a T-graph. For group-theoretical construction of more general connected symmetric trivalent graphs see [5].

Now it seems to the author that T-groups are intrinsically related to non-Abelian simple groups. Namely if S is a non-Abelian simple group, then consider the wreath product $G = \langle h \rangle$ ($S \times S \times S$) of S with a cyclic group $\langle h \rangle$ of order three. G is a T-group if and only if S satisfies the following condition (!):

(!) S is generated by three elements b, c and d such that there is no automorphism of S permuting b, c and d cyclically.

If S possesses an automorphism ρ permuting b, c and d cyclically, then the holomorph of S with respect to $\langle \rho \rangle, \langle \rho \rangle S$, is a T-group. For a proof see §2.

The purpose of this note is (i) to prove some basic propositions on graphs Γ constructed from the wreath product G of the above type and (ii) to determine the automorphism group of Γ . Here the author would like to mention that wide classes of non-Abelian simple groups satisfy (!), though not every non-Abelian simple group satisfies (!) ([6], [9]). Some of our arguments are based on the classification of simple groups of finite orders.

Notation. Let X be a finite group. |X| denotes the order of X. Let x_1, x_2, \dots, x_k be elements of X. $\langle x_1, x_2, \dots, x_k \rangle$ is a subgroup of X generated by x_1, x_2, \dots, x_k . For $x \in X$ $|x| = |\langle x \rangle|$.

2. Basic propositions.

Proposition 1. Let S be a non-Abelian simple group and G the wreath product of S with respect to a cyclic group $H = \langle h \rangle$ of order three. Then G is a T-group if and only if S satisfies (!). If S is generated by three elements b, c and d of order two and if there exists an automorphism h of S permuting b, c and d cyclically, then the holomorph G^* of G with respect to a cyclic group $\langle h \rangle$ is a T-group.

Proof. We suffix 1, 2 and 3 to $S \times S \times S$ so that the mapping $x\rho_i = x_i$ ($x \in S$, $x_i \in S_i$) is an isomorphism between S and S_i (i = 1, 2, 3). Then the action of h on $S_1 \times S_2 \times S_3$ can be described as $h^{-1}x_1h = x_2$, $h^{-1}x_2h = x_3$ and $h^{-1}x_3h = x_1$.

Now we assume that G is a T-group. Then the element of order three of a generating system may be assumed of the form hu ($u \in S_1 \times S_2 \times S_3$). First we show that there exists an element v in $S_1 \times S_2 \times S_3$ such that hu = $v^{-1}hv$. Namely let $u=x_1y_2z_3$, $x_1 \in S_1$, $y_2 \in S_2$ and $z_3 \in S_3$. Then since $1 = huhuhu = h^2 z_1 x_2 y_3 uhu = y_1 z_2 x_3 z_1 x_2 y_3 x_1 y_2 z_3 = y_1 z_1 x_1 z_2 x_2 y_2 x_3 y_3 z_3$, we have that $y_1z_1x_1=z_2x_2y_2=x_3y_3z_3=1$. So if we let $v=y_2x_3^{-1}$, then $v^{-1}hv=$ $x_3y_2^{-1}hy_2x_3^{-1} = hx_1y_3^{-1}y_2x_3^{-1} = hx_1y_2y_3^{-1}x_3^{-1} = hx_1y_2z_3$ as required. Thus taking $v^{-1}w_iv$ instead of w_i ($w_i \in S_i$; i=1,2,3), without loss of generality we may assume that u=1. Next let the element a of order two which generates G together with h be of the form $a=b_1c_2d_3$, where $b_1 \in S_1$, $c_2 \in S_2$ and $d_3 \in S_3$. Then $h^{-1}ah = d_1b_2c_3$ and $hah^{-1} = c_1d_2b_3$. Since a, $h^{-1}ah$ and hah^{-1} generate $S_1 \times S_2 \times S_3$, we obtain that $S = \langle b, c, d \rangle$, which implies that the orders of b, c and d equal two. Now let W(X, Y, Z) be any element of a free group on free generators X, Y and Z. Then the mappings $W(b_1, d_1, c_1)\gamma_1 =$ $W(c_2, b_2, d_2)$ from S_1 to S_2 , $W(c_2, b_2, d_2)\gamma_2 = W(d_3, c_3, b_3)$ from S_2 to S_3 , and $W(d_3, c_3, b_3)\gamma_3 = W(b_1, d_1, c_1)$ from S_3 to S_1 are product preserving. If there exists an automorphism of S permuting b, c and d cyclically, then γ_i is an isomorphism (i=1, 2, 3). But then a, $h^{-1}ah$ and hah^{-1} cannot generate $S_1 \times S_2 \times S_3$.

Conversely if S satisfies (!), then h and $a=b_1c_2d_3$ generate G. In fact, in the above notation, γ_i cannot be an isomorphism, and hence γ_i is not one-to-one (i=1, 2, 3). Then since S is simple, the kernel of γ_i is the whole group (i=1, 2, 3). So $\langle a, h \rangle$ contains elements of the form b_1x_2 and c_1y_3 , where $x_2 \in S_2$ and $y_3 \in S_3$. Then the commutator of these two elements is a non-trivial element w_1 of S_1 . Now taking the conjugates of w_1 successively by a, $h^{-1}ah$ and hah^{-1} , we see that all conjugates of w_1 belong to $\langle a, h \rangle$. Since S_1 is simple, S_1 is contained in $\langle a, h \rangle$. Similarly S_2 and S_3 are contained in $\langle a, h \rangle$.

If there is an automorphism of S permuting b, c and d cyclically, then a, $h^{-1}ah$ and hah^{-1} generate a subgroup of $S_1 \times S_2 \times S_3$ isomorphic with S. This completes the proof of Proposition 1.

Remark 1. Let a non-Abelian simple group S be generated by three elements b, c and d of order two. Then bc and db generate S.

Proof. Since S is simple, it suffices to show that $\langle bc, db \rangle$ is normalized by b, c and d. Now bc and db are inverted by b and c, and by d and b respectively. Since dbbc = dc, we have that $cdbc = (dbbc)^{-1}bc$ and $abcd = db(dbbc)^{-1}$. So c and d normalize $\langle bc, db \rangle$.

From now on we assume that S is a non-Abelian simple group satisfying the condition (!), and that G is the wreath product of S with respect to a cyclic group $H = \langle h \rangle$ of order three. Then, for simplicity, we call G a TW-group and the T-graph Γ corresponding to G a TW-graph.

Proposition 2. A TW-graph Γ is not bipartite.

Proof. Assume that Γ is bipartite. Let E(H) be the set of vertices Hx such that the distance $\partial(H, Hx)$ is even and O(H) the set of vertices Hy such that $\partial(H, Hy)$ is odd. Now if z is an element of G such that $E(H)z \cap E(H) \neq \emptyset$, then E(H)z = E(H). In fact, otherwise, there exist vertices Hu and Hv such that $\partial(H, Hu) = \partial(H, Hv) = \partial(Hz, Hu) \equiv 0 \pmod{2}$ and $\partial(Hz, Hv) \equiv 1 \pmod{2}$. So we have a closed walk of odd length initiating and terminating at H and passing through Hu, Hz and Hv. But a closed walk of odd length contains a circuit of odd length. This contradicts the fact that Γ is bipartite ([1], p. 50). Since $\partial(H, Hx) = \partial(Ha, Hxa)$ and $\partial(H, Ha) = 1$, E(H)a = O(H). So E(H) is a set of imprimitivity for G of length two. Thus G contains a normal subgroup of index two. This is a contradiction.

The girth and diameter of Γ are intimately related with the word problem in G with a and h alphabets. Any word W(a, h) which is not equal to 1, a^2 or h^3 such that HW(a, h) = H corresponds to a closed walk in Γ . Clearly we may assume that $W(a, h) = ah^{e(1)} \cdots ah^{e(r)}$, where e(i) = 1 or $2 (1 \le i \le r)$. Then the length of the corresponding closed walk is equal to r. Let g be the girth of Γ . Then we have the following inequality

$$g \leq |ah|$$
.

For TW-graphs we might have the equality here. But this is not always true for general T-graphs.

Example. Let p be an odd prime such that $p \equiv 2 \pmod{3}$. Then the following relations define a group G^* of order $6p^2$:

$$b^2 = c^3 = 1$$
, $bcb = c^{-1}$, $d_1^P = d_2^P = 1$, $d_1d_2 = d_2d_1$, $bd_1b = d_2$, $bd_2b = d_1$, $c^{-1}d_1c = d_2$, and $c^{-1}d_2c = d_1^{-1}d_2^{-1}$.

 $G^* \text{ is a T-group. In fact, let } a = d_1 d_2^{-1} b \text{ and } h = c. \text{ Then } a^2 = 1 \text{ and } aha = d_1 d_2^{-1} b c d_1 d_2^{-1} = d_1 d_2^{-1} b c d_2 d_1^{-1} = d_1 d_2^{-1} c^{-1} d_2 d_1^{-1} = c^{-1} d_1^{-1} d_2^{-1} d_1^{-1} d_2 d_1^{-1} = c^{-1} d_1^{-3}.$ Thus $\langle a, h \rangle$ contains d_1 and hence d_2 . Furthermore, $ahah = d_1 d_2^{-1} b c d_1 d_2^{-1} b c = d_1 d_2^{-1} c^{-1} d_2 d_1^{-1} = d_1 d_2^{-1} d_1^{-1} d_2^{-1} d_2^{-1} = d_2^{-3}.$ Thus the order of ah is equal to 2p. On the other hand, $ahah^2 = d_1 d_2^{-1} b c d_1 d_2^{-1} b c^{-1} = d_1 d_2^{-1} c^{-1} d_2 d_1^{-1} c^{-1} = d_1 d_2^{-1} d_1^{-1} d_2^{-1} d_2^{-1} c = d_2^{-3} c \text{ and } d_2^{-3} c d_2^{-3} c d_2^{-3} c = d_2^{-3} d_1^{-3} d_1^3 d_2^3 = 1.$ Thus we have that $g \leq 6$.

Proposition 3. If Γ is a TW-graph, then $g \ge 6$.

Proof. If g=3, then we have a relation in G of the form $ah^{e_1}ah^{e_2}ah^{e_3}=1$, where $e_i=1$ or 2 (i=1, 2, 3). Since a belongs to $S_1 \times S_2 \times S_3$, we have that $e_1+e_2+e_3\equiv 0 \pmod{3}$. So we have that either $e_1=e_2=e_3=1$ or $e_1=e_2=e_3=2$. In the first case, $aha=h^{-1}ah^{-1}$. So, $hah^{-1}ahah^{-1}a=hah^{-1}h^{-1}ah^{-1}a=1$. Thus hah^{-1} and a commute. Conjugating by h and h^{-1} , we see that $\langle a, hah^{-1}, h^{-1}ah \rangle$ is an Abelian normal subgroup of G. This is a contradiction. Taking h^{-1} instead of h, the second case can be similarly treated as the first case.

If g=4, then we have a relation in G of the form $ah^{e_1}ah^{e_2}ah^{e_3}ah^{e_4}=1$, where $e_i=1$ or 2 (i=1, 2, 3, 4). Since a belongs to $S_1\times S_2\times S_3$, we have that $e_1+e_2+e_3+e_4\equiv 0\pmod{3}$. So we may assume that either $ahah^{-1}ahah^{-1}=1$ or $ahah^{-1}ah^{-1}ah=1$. In the first case, a and hah^{-1} commute. So we get the similar contradiction as in the case of g=3. In the second case, $aha=h^{-1}ahah$. So $\langle aha,h\rangle$ is an Abelian normal subgroup of G. This is a contradiction.

If g=5, then we have a relation in G of the form $ah^{e_1}ah^{e_2}ah^{e_3}ah^{e_4}ah^{e_5}=1$, where $e_i=1$ or 2 (i=1, 2, 3, 4, 5). Since a belongs to $S_1 \times S_2 \times S_3$, we have that $e_1+e_2+e_3+e_4+e_5\equiv 0 \pmod{3}$. So we may assume that either $ahah^2ah^2ah^2ah^2=1$ or $ahahahahah^2=1$. In the first case, $\langle ah^2 \rangle$ contains ah and hence h. This is a contradiction. The second case is similar to the first case.

Proposition 4. For $b \in S_1 \times S_2 \times S_3$ Hbh=Hb if and only if b commutes with h. If $b \neq 1$ commutes with h, then we have a circuit of even length with H and Hb as initial and terminal vertices.

Proof. Hbh=Hb if and only if $bhb^{-1} \in H$. Since $bhb^{-1}=bhb^{-1}h^{-1}h$ and $bhb^{-1}h^{-1} \in S_1 \times S_2 \times S_3$, Hbh=Hb if and only if $bhb^{-1}h^{-1}=1$.

Assume that $\partial(Hb, Hx)=1$, where $x \in S_1 \times S_2 \times S_3$. If $\partial(H, Hx)=\partial(H, Hb)=1$, then Hxh=Hx. So x commutes with h. Since Hx=Hab, Hahb or Hah^2b , this implies that a commutes with h. This is a contradiction.

Remark 2. It is difficult for the author to evaluate $\partial(H, Hb)$.

3. Automorphism groups of TW-graphs.

Proposition 5. Let G^* be a T-group and Γ the corresponding T-graph. Let \mathfrak{G} be the automorphism group of Γ and \mathfrak{G} the stabilizer of the vertex H in \mathfrak{G} . Then the order of \mathfrak{F} equals 2^m3 , where m is a non-negative integer, and so $\langle h \rangle$ is a Sylow 3-subgroup of \mathfrak{F} .

Proof. If σ is an element of \mathfrak{H} , then $H\sigma = H$ and $(Ha)\sigma \in \{Ha, Hah, Hah^2\}$. Therefore if the order of σ equals a prime larger than three, σ leaves Ha, Hah and Hah^2 invariant. So, using the recurrence argument with respect to the distance from H, we obtain that $\sigma = 1$, a contradiction.

Now let σ be an element of a Sylow 3-subgroup of $\mathfrak S$ containing h. Since we can replace σ by σh or σh^2 , if need be, we may assume that $(Ha)\sigma = Ha$. Then we have that $(Hah)\sigma = Hah$ and $(Hah^2)\sigma = Hah^2$. So, as above, we obtain that $\sigma = 1$.

Proposition 6. Let σ be an automorphism of a T-group G^* . Then σ is an automorphism of the corresponding T-graph Γ if and only if $H\sigma = H$ and $\{Ha, Hah, Hah^2\}\sigma = \{Ha, Hah, Hah^2\}$.

Proof. If σ satisfies the stated condition, then, for any $b \in G^*$, $(Hb)\sigma = H(b\sigma)$ and $(Hah^ib)\sigma = Hah^j(b\sigma)$ (i, j=0, 1, 2). So σ preserves the adjacency of Γ .

If σ is an automorphism of Γ , then $H\sigma = Hb$ for some $b \in G^*$. Since $H\sigma$ is a subgroup of G^* , $H\sigma = H$. Hence $\{Ha, Hah, Hah^2\}\sigma = \{Ha, Hah, Hah^2\}$.

Now let G be a TW-group, Γ the corresponding TW-graph and \mathfrak{G} the automorphism group of Γ . Then, by Proposition 5, $[\mathfrak{G}:G]=2^e$. It seems, however, not easy to give an effective bound on e. Our proof to the following proposition is based on the classification of non-Abelian simple groups of finite orders.

Proposition 7. In the notation above, $e \le 1$. e=1 if and only if, in the notation of Proposition 1, there exists an automorphism τ of S such that τ fixes one of three generating elements b, c and d of S of order two and interchanges the remaining two.

Remark 3. If τ fixes b and interchanges c and d, then |bc|=|bd|. Therefore, if |bc|, |cd| and |db| are distinct, then e=0, namely $\mathfrak{G}=G$.

Proof of Proposition 7. The main point of the proof is to show that \mathfrak{G} is not simple. First we notice that for any prime p such that (1) p divides the order of \mathfrak{G} and (2) p is larger than three a Sylow p-subgroup of \mathfrak{G} is, by Proposition 5, isomorphic to a direct product of three Sylow p-subgroups of S.

Now we assume that S is simple.

In fact, for any sporadic simple group the largest prime divisor of the order occurs only to the first power.

5 is not isomorphic to any one of alternating groups of degree $n \geq 5$. In fact, by Bertrand's postulate ([7], p. 189) there exists a prime $p \geq 5$ such that $n \geq p$ and 2p > n. Then a Sylow p-subgroup is cyclic of order p.

Hence & must be isomorphic to one of simple groups of Lie type.

(i) \otimes is not isomorphic to $A_l(q)$. In fact, if l=1, then all Sylow subgroups whose orders are odd and prime to q are cyclic. If only Sylow 3-subgroups appear among them, then we have that either i) $\frac{1}{2}(q+1)=2^m$

and $\frac{1}{2}(q-1)=3^n$ or ii) $\frac{1}{2}(q+1)=3^m$ and $\frac{1}{2}(q-1)=2^n$. Easily we get q=7 for case i) and q=5 or 17 for case ii). Then a Sylow q-subgroup is cyclic. So we may assume that l>1. Now $A_l(q)$ contains a cyclic subgroup of order $(q^{l+1}-1)/(q-1)d$, where d is the greatest common divisor of l+1 and q-1. Then by a theorem of K. Zsigmondy [10], unless q=2 and l=5, there exists a prime divisor $s \ge 5$ of $(q^{l+1}-1)/(q-1)d$ such that the order of q with respect to s equals l+1. Then a Sylow s-subgroup is cyclic. If q=2 and l=5, then a Sylow 31-subgroup is of order 31.

- (ii) \mathfrak{G} is not isomorphic to ${}^2A_l(q)$, $l \geq 2$. In fact, ${}^2A_l(q)$ contains a cyclic subgroup of order $(q^{l+1}+(-1)^l)/(q+1)d$, where d is the greatest common divisor of l+1 and q+1 ([8], p. 190). So we can argue as in (i).
- (iii) \mathfrak{G} is not isomorphic to $B_l(q)$, $l \geq 2$. In fact, $B_l(q)$ involves $A_{l-1}(q)$. Unless q=2 and l=6, by (i), $A_{l-1}(q)$ contains a cyclic Sylow s-subgroup S where the order of q with respect to s equals l. Then a Sylow

s-subgroup of $B_l(q)$ has order $|S|^2$. If q=2 and l=6, then a Sylow 31-subgroup is of order 31.

Now the remaining cases can be treated as in (iii). Hence we only list involvolvement pairs. For this see [2] and [4]. (v) $C_l(q)$ involves $A_{l-1}(q)$, $l \ge 3$. (vi) $D_l(q)$ involves $A_{l-1}(q)$, $l \ge 4$. (vii) ${}^2D_l(q)$ involves $B_{l-1}(q)$, $l \ge 4$. (viii) ${}^3D_4(q)$ involves $G_2(q)$. (ix) $E_6(q)$ involves $A_5(q)$. (x) $E_7(q)$ involves $A_7(q)$. (xi) $E_8(q)$ involves $A_8(q)$. (xii) ${}^2E_6(q)$ involves $B_4(q)$. (xiii) $F_4(q)$ involves $B_4(q)$. (xiv) ${}^2F_4(q)$ involves $A_2(q)$. (xv) $G_2(q)$ involves $G_2(q)$. (xvi) $G_2(q)$ involves $G_2(q)$.

Thus we have a contradiction. Therefore $\mathfrak G$ is not simple. Let N be a maximal normal subgroup of $\mathfrak G$. If $N\cap (S_1\times S_2\times S_3)=1$, then $\mathfrak G/N$ is simple and $\mathfrak G/N$ contains a subgroup $N(S_1\times S_2\times S_3)/N$ isomorphic to $S_1\times S_2\times S_3$. So by repeating the above argument we get a contradiction. Therefore we have that $N\cap (S_1\times S_2\times S_3)\neq 1$. Since S is non-Abelian simple, it implies that N contains $S_1\times S_2\times S_3$. If $N\neq S_1\times S_2\times S_3$, then we can apply the same argument to N instead of $\mathfrak G$. Thus we obtain that $S_1\times S_2\times S_3$ is normal in $\mathfrak G$.

 $\mathfrak B$ acts on $\{Ha, Hah, Hah^2\}$. The stabilizer K of Ha in $\mathfrak B$ is a Sylow 2-subgroup of $\mathfrak B$. K acts on $\{Hah, Hah^2\}$. Let L be the kernel of this representation. Then the index of L in K equals 1 or 2, and L is normal in $\mathfrak B$. We consider the subgroup $HL(S_1 \times S_2 \times S_3)$. Since HaLa = Haa = H, we have that aLa = L. Since $h^{-1}Lh = L$ and $G = \langle a, h \rangle$, L is normal in $\mathfrak B$. It implies that L = 1. This completes the proof of the first half of Proposition 7.

Now we assume that e=1. Let t be an element of order two of \mathfrak{F} . Then by the argument in the last paragraph we have that $tht=h^2$. By Proposition 6 we may assume that Hat=Ha. Then we have that ata=t, $h^{-1}th$ or hth^{-1} . If $ata=h^{-1}th=ht$, then t=ahaht, which implies that ahah=1. This is a contradiction. Similarly we can show that $ata \neq hth^{-1}$. Thus we obtain that ata=t. Since $tht=h^2$, we may assume that t leaves S_1 invariant and interchanges S_2 and S_3 . Recalling $a=b_1c_2d_3$ we have that $tb_1t=b_1$, $tc_2t=d_3$ and $td_3t=c_2$. Moreover, $th^{-1}aht=td_1b_2c_3t=htath^{-1}=hah^{-1}=c_1d_2b_3$. Thus we obtain that $td_1t=c_1$, $tc_3t=d_2$ and $tb_2t=b_3$. Therefore S possesses an automorphism fixing b and interchanging c and d.

Conversely we assume that S possesses an automorphism fixing b and interchanging c and d. Then the relations $tb_1t = b_1$, $tc_1t = d_1$, $td_1t = c_1$, $tb_2t = b_3$, $tc_2t = d_3$, $td_2t = c_3$, $tb_3t = b_2$, $tc_3t = d_2$ and $td_3t = c_2$ define an automor-

phism of $S_1 \times S_2 \times S_3$. We can check easily that $tht = h^{-1}$ and tat = a. Therefore, by Proposition 6, t is an automorphism of the TW-graph Γ .

REFERENCES

- [1] N. Biggs: Algebraic Graph Theory, Cambridge Univ. Press, London, 1974.
- [2] C.W. CURTIS, W.M. KANTOR and G.M. SEITZ: The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1—59.
- [3] B. HUPPERT: Endliche Gruppen I, Springer, Berlin, 1967.
- [4] W.M. KANTOR: Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc. 248 (1979), 347—380.
- [5] P. LORIMER; Vertex-transitive graphs of valency 3, to appear.
- [6] A.G. BERTA MAURI and M.C. TAMBURINI BELLANI: Alcune classi di gruppi generati da tre involuzioni, to appear in Istit. Lombardo Accad. Sci. Lett. Rend. A.
- [7] I. NIVEN and H.S. ZUCKERMAN: An Introduction to the Theory of Numbers, Wiley, New York, 1966.
- [8] T.A. SPRINGER and R. STEINBERG: Conjugacy Classes, Lecture Notes in Math. 131, Springer, Berlin, 1970.
- [9] A. WAGNER: The minimal number of involutions generating some finite three-dimensional groups, Boll. Un. Mat. Ital. A (5) 15 (1978), 431—439.
- [10] K. ZSIGMONDY: Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.

DEPARTMENT OF APPLIED MATHEMATICS
KONAN UNIVERSITY
KOBE, 658 JAPAN

(Received June 30, 1983)

ERRATA

ON A CERTAIN CLASS OF CONNECTED SYMMETRIC TRIVALENT GRAPHS

(This Journal, Vol. 25, pp. 145-152)

Noboru ITO

Page 145, line 21. For "(!) ...b, c and d such that..." read "(!) ...b, c and d of order two such that...".