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ON A THEOREM OF MAYNE

Yasuyukl HIRANO, ARIF KAYA and Hisao TOMINAGA

Throughout, R will represent an (associative) ring with center C. Let
S be a subset of £. An (additive group) endomorphism 7 of R is said to
be centralizing (resp. skew-centralizing) on S if [sT.s]=sTs—ssT € C (resp.
(sTs)=sTs+ssTe€ C) for every sE S. More generally, T is defined to be
semicentralizing on S if [sT.s]€ C or (s7,s) € C for every s € S. In case
S=R, we say simply T is centralizing (resp. skew-centralizing) or semi-
centralizing according as so is T on R.

Recently, in [5]. by making use of his previous result in [4], J.H.
Mayne proved that if a'prime ring R has a nontrivial ring automorphism
7T and a nonzero ideal U such that T is centralizing on { and UT€ U
then R is commutative. However, his proof is based on an unjustifiable
assertion that 7 induces a ring automorphism on U. Incidentally, it should
be mentioned that the result of [ 4 ] itself was claimed (even for a nontrivial
surjective ring endomorphism) back in 1959 by M.F. Smiley [7, Remark 2].

In the present paper, we shall prove the following theorem which
greatly generalizes [5. Theorem] and includes [1, Lemma] and [3, Corollary],
as well.

Theorem 1. Let U be a nonzero ideal of a prime ring R.

(1) Let T be a nontrivial ving endomorphism of R (T=+1g). If T
is semicentralizing on U, U7 is an ideal of R and (U N UT)7 is nonzero,
then R is commutative.

(2) Let T be a nontrivial devivation of R (T+#0g). If T is central-
1zing (resp. skew-centralizing) on U, then R is commutative.

In preparation for proving our theorem, we state first several lemmas.

Lemma 1. Let R be a prime ring, and 1 a right ideal of R.

(1) If I is nonzero and commutative, then R is commutative.

(2) Let T be a ring endomorphism of R. If I is nonzero and T s
trivial on 1, then T is itself trivial.

(3) Let T be a derivation of R. If I is nonzero and T is trivial on
I, then T is itself trivial.

(4) Let T be a nontrivial derivation of R, and x an element of R.
If xRT=0 then x=0.
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(5) If there exists a positive integer n such that x"=0 for all x € I,
then I=0.

Proof. (2), (3) and (4) are respectively [5. Lemmas 3. 2] and [6,
Lemma 1] with routine proofs. (1) is [5, Lemma 4] and (5) is immediate
by [2, Lemma 1.1]. However, for the sake of self-containedness, we prove
(1) and (5).

(1) Given g, b€ and x, y €E R, we have ab[x,v]=abxy— bayx=
bxay —aybx=0, namely /?[x,y]=0. Hence, [x.¥]=0 for all x, vE R.

(5) We proceed by induction on n. First, we claim that a/=0 for
any a € [ with ¢*=0. Let A=al and S={x € A| xA=0}. As is easily
seen, S is a prime ideal of A. Furthermore, since (ay)*'al=(a+ay)"I]
=0 for any y € K, we see that x”'€ S for all x€ A. Hence, by induction
hypothesis, A/S=0, i.e., A>=0, whence it follows that a/=0. Now, let
W={x& I|xI=0}. Then W is a prime ideal of /. Since the above claim
tells us that x*~ ' & W for all x € /, our induction hypothesis shows /=W,
i.e., I2=0. Hence we have /=0,

Lemma 2. Let T:x—x' be an endomorphism of R, and U an
additive subgroup of R. Let (Ul=lue Ul|[w,ul€ C} and (U) =
{uec U|(u,u)e C.

(1) Let u, ve[U] (resp. (U)). Then u+ve[U] (resp. (U)) if
and only if u—v < (U] (vesp. (U)).

(2) Ifve(U), then [v.vi]=[v,v?]=0.

Proof. (1) follows from [z’ —v,u—v]=—[u+v u+v]+2((e’u]+[v,v])
(resp. ('— v u—v)=—('+ v, u+v)+2((«.u)+(2,v))), and (2) is obvious
by [xy2]=[(x,),5].

Lemma 3. Let T :x— x" be a ring endomorphism of a prime ving R
of charactevistic not 2 which is semicentralizing on a nonzero ideal U, and
let [U], (U) be as in Lemma 2.

(1) Ifve U\U), then v*v?=v?v*=0.

(2) If UT is a nonzero ideal of R and [Ul+ U, then there is no
positive integer n such that v'"=0 for all v<E U\[U).

Proof (1) By Lemma 2 (2), we have
[v2+ v 02+ v]=[v2—v 2 —v]=[v v] & C,

which means that v>+v & [U] and »>*—v & [U]. Then, by Lemma 2 (1),
(¥ +v)—(v?—v)=2v & [U] shows that 2v?=(*+v)+(v?*—v) € (U), and
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so v2€ (U). Hence, by Lemma 2 (2), 20 %20?=(2?v?) € C, ie, v?v?2€ C.
Furthermore, again by Lemma 2 (2),

0=ov"2[ 2+ v, (V2 + )] =2v"v" v’ ]=20v"v*v' V),
ie.. v2v?[v,v]=0. Since v*v?€ C and R is prime, [¢".2]#0 implies that
v2ut=p"%?=0,

(2) Suppose that v?=0 for all v€ U\[U]. We shall show v'=0,
which contradicts » & [U]. - In order to see this, it suffices to show that
v'"~1=0 (if » >1). Let « be an arbitrary element of U. If wv" ' & [U]
then (#’v'""')"=0 by assumption. Next, suppose that o™ ' € [U]. Since

(e '+ )+ (™' —v)=2uv" ' € [U]
and
(wo™ '+ v)—(up™ ' —v)=20 & [U],

we see that either wv™ '4+0v & [U] or wv™'—v & [U] (Lemma 2 (1)).
Hence, either

(u'v'n—l)n+1= u'v'n—l(u'v'n—l + v')n=0
or
(womHr =y v Yu'v ' —v)=0.

We have therefore seen that (z v 1)"*'=0 for all u € U and v € U\[U].
Since UTv'* ! is a nil left ideal of bounded index, we get v""~!=0 by
Lemma 1 (5).

Corollary 1 (cf. [3, Theorem]). Let T be a ring endomorphism of a
prime ring R which is semicentralizing on a nonzevo ideal U. If UT is a
nonzero ideal of R, then T is centralizing on U.

Proof. We keep the notations in Lemma 2. If R is of characteristic
2, then [x",x]=(x',x), and therefore T is centralizing on U. So, we assume
henceforth that R is of characteristic not 2. Suppose [{U/] # U, and choose
arbitrary v € U\[U]. Given u € U, by making use of Lemma 2 (1) we
can easily see that

uvu v+ v2u v = uv?+ v (v + v?) Jo 2 =(uv? + v2 (2ev? + v?))v'2
Hence,

’

uv?u’ v+ v’u'v = cv’® with some ¢, € C.

Similarly, considering #v?— v? instead of uv?+ v? we get
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uv?u’ vt —v?u’ v = cov"? with some ¢, € C.

From those above, we obtain 2¢%u’v"*=(c1—c2)v?, and hence 2v%u’v"* =0
again by Lemma 3 (1). This proves ¢*UTv*=0, whence it follows that
v"*=0. But, this is impossible by Lemma 3 (2). We have thus proved
that [U]=U.

Lemma 4. Let T :x — x' be a devivation of a prime ving R of char-
acteristic not 2 which is semicentralizing on a nonzevo ideal U, and let
(U], (U) be as in Lemma 2.

(1) IFes U\U]L then (¢*Y=0 and v*v'=v'v?*=0.

(2) IFCNU=0 and ve U\U), then v*=0 and v?+0.

(3) If CN U is nonzero, then T is centralizing on U.

Proof. (1) Since (v*)'=(v\v)€ C and [¢v"v?3]=0 by Lemma 2 (2),

we have
(v + o), 0+ v]=[(v*—v).v?—v]=[vv] & C,
which means that v?+v € [U] and v*~v & [U]. Then, by Lemma 2 (1),
(v*4+v)—(v®—v)=2v & [U] shows that 202=(v2+v)—(22—¢) € (U), and
so v?&€(U). Hence, 2(v?) v?*=((v2),v?) € C, ie., (v¥)v?E C. Furthermore,
by Lemma 2 (2),
0= [(V*+v).(*+v)?]=2(0%) [v" .’ ]=2(v?) v? v, 0],

e, (0¥ v?[v,v]=0. Since (»?)v*€ C and R is prime, [¢",v]#0 implies
(v®)v?=0. Recalling here that (¢?) € C, we get (v2)’=0. Since vi+v &
[U], we have also 0=((2240)2)'={(v2+v) .02+ v)=(" 2+ v)=20"0% and
so v'v?=p?y'=0 by Lemma 2 (2).

(2) Observe that vo'=—v"v and uw’'=*u'u for every u € U. We
prove first that v2#0. In fact, if v¥>=0 then for any x € R we have

vxv'v+xvxv’ v={(v +xv)v+xv) £(v+xv) (v+x0)}v=0.

Replace x by —x in the above to get —vxv’'v+xvxv’v=0. Hence vRv'v=0,
and therefore v’v=0. But this contradicts v & [U].

Next, we claim that #2?=0. Noting that v?v'=0 by (1), for any
x € K we have

—2x0v"? — v xov ? ={(v+ vxv) (v + vxv) £ (v + vxv) (v + vxv)} vr’ =0,

and similarly »?xov?—wvxv®x0v?=0. Hence v?Rvv'?=0, and therefore
v/2=0 by v?=*0.
Now, for any x € R we have
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vxv 4+ xvxv={(v+xv)(e+xv) (v +x0) (v+ x0)}0?=0,

and similarly —uxv®+xvxv*=0. Hence vRv*=0, and therefore v?*=0.

(3) Suppose U contains an element v not contained in [U]. Choose
an arbitrary nonzero ¢ € C N U. Because ¢’ € C. we have [v'+c¢",v+c]=
[o v] € C, and so v+c & [U]. Then, by (1),

0=[{(v+ ) wl=[2cv'+2c v+ (c?) v]=2c[v" 0],
ie, [¢v.v]=0. This contradiction proves that [U]=U.

Corollary 2. Let T:x— x" be a derivation of a prime ring R, and
U a nonzero ideal of R.

(1) If T is skew-centralizing on U, then it is centralizing on U.

(2) If T is semicentralizing on U and UT is a left (resp. right) ideal
of R, then T is centralizing on U.

Proof. -We may assume that 7+0z and R is of characteristic not 2.

(1) According to Lemma 4 (3), it suffices to show that CN U is
nonzero. Suppose, to the contrary, that CN U=0. Then, for any u € U
and x € R,

(x4 uxe) ={(2e+ ux)? —u? —(ux)?})'=0
and
(xu?+ uxu) ={(z+x1)?— 1%~ (xu)?}'=0.

From those above, we readily obtain [x.22]'=0. This means that D T=0,
where D is the inner derivation of R effected by #2. Now, suppose that
D is nontrivial. Let a, b and ¢ be arbitrary elements of R. Obviously,

(%) a’b?+ aPh’'=(ab)PT=0.
Noting that 62°¢’=(62¢)?T=0 and b°c’=—b'c®, we have
0=(ab®?) c?+(ab?)?c'=a’b®cP+aPbPc’'=(a’ b®? —a?b’)c?

namely (@' 6?—a?b’)R?=0. Hence, a'b’—a’b'=0 by Lemma 1 (4).
Combining this with (%), we get @’ R®=0. Again by Lemma 1 (4), «'=0
for all a€ R, i.e.,, T=0. This contradiction proves D=0, which tells us
that #2=0 for all # € U. But, this is impossible by Lemma 1 (5).

(2) Suppose, to the contrary, that U contains an element v not
contained in [U/]. In view of Lemma 4 (3), it suffices to consider the case
that C N U=0. Let « be an arbitrary element of U. If uv?€ [U] then
(u'v?)*=(uv?)®*=0 by Lemma 4. On the other hand, if #v? € [U] then it
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is easy to see that either v+ utv? & [U] or v—uv? & [U] (Lemma 2 (1)).
Hence, by Lemma 4,

(' o) = v V22 + v (o V2 + v v)) = u v (v + uv?)?=0
or

(w2 =(2’ V)2 v} — v (e’ )2+ v (' V) = ' v¥ (v — ur?)3=0.
Therefore (1'v?)*=0 for all « € U. Now, choose » € R such that »* +0.
Then, v'u=(u)—ru’'€ U’ for all u€ U. ie., »U S U’, and hence U’
contains a nonzero ideal R»'U. Since R¥'Uv? is a nil left ideal of bounded

index, we get v2=0 by Lemma 1 (5). But, this is impossible by Lemma
4 (2).

We are now ready to complete the proof of our theorem.

Proof of Theorem 1. For the convenience of notation, let us write
xT=x.

(1) Weput W=UN U". Obviously, U’ is a prime ring and W’ is a
nonzero ideal of U'. It is well known that C'S C. According to Corollary
1, T is centralizing on U. Now, by Jacobi's identity, we have [[%,2"], ]

={ for all # € U, and so

(o, N e =2t [0, 0 F 06,0 V0e” + 20,00 0t" 20']
=[[et,2¢"2” )+ [were’ 2, 0¢’]
=[[oe 4+ w2’ (st +uw’)],u’]=0.

Hence, [x,x']=0 for all x € U'. Linearizing [x,x']=0 gives [x,y']=[x"y]
for all x, y& U’, and then

(x—x)xy =[x,y 1= [xx'y1=x[x"y]-[x"xy]=0.

Hence, noting that 2'[x,y']1=[x,(zy)]—[x.2']y’, we see that (x—x)Wlx,y’]
=0 (x, yEW). Then, since U’ is a prime ring, we have W= Vy(W) U K,
where Vw(W’) is the centralizer of W in W and K={x€ W |x'=x}. In
view of Lemma 1 (2), W=+K, and so W= Vw(W’) (by Brauer's trick). In
particular, the nonzero ideal W N W' of U’ is commutative. Now, U’ is
commutative by Lemma 1 (1), and hence so is R by the same lemma.
(2) Inview of Corollary 2 (1), T is centralizing on /. We consider
the ring R1={<g z) | x, y € R} with center C1={(g i) | x, y € C}, where
R is regarded as a subring of R in an obvious way. As is easily seen, T

xx )of R into R\ and [u* ]

gives rise to a ring homomorphism x — x*=( 0 %
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€ C for all u € U. First, we claim that [«"2]=0, or equivalently [«*,u]
=0, for all u € U. If R is of characteristic 2, then

0=[[z+ zee’,(2e + 2e2’Y ) e =[[uze’ 00 1+ [0 (eeae’) ] 0t
=[u" 0P+ wlee,2”] 2¢].

Since [z, u”]=[u,u'] € C. the last shows that [ .2]*=0, and hence [’ ]
=0. On the other hand. if R is of characteristic not 2, then

4(0 1?2t 1]

0 0 )=2(2.¢*,u)[z.t*,u]=[(uz)*,u2] e C,

ie, u[u’ u) € C. Hence, 0=[u'u?[e,u]]=2[2"u]?u, and therefore [u",z]
=(.

Now, linearizing [2«*u]=0 gives [u.0*]=[u*¢] for all #, v € U, and
then

(u—u®)w,v¥=ulw.v*]—u, u*v*]=ulu* v]—[u* ur]=0.

Hence, noting that x*[z, v*]=[u.(xv)*]—[u.x*]0* (. v € U, x € R), we get
(2*— ) x*[e,0*]=0, which becomes #'x[x,v]=0, i.e., &' R[w.v]=0. Thus,
we get U= Vy(U) U K. where K={uc U | u'=0}. Since U+K by Lemma
1 (3), U coincides with its center, and therefore R is commutative by
Lemma 1 (1).

Corollary 3. Let U be a nonzero ideal of a prime ring R.

(1) Let T be a nontrivial ring endomorphism of R. If T induces a
semicentralizing endomorphism of U, UT is an ideal of U and UT*#0, then
R is commutative.

(2) Let T be a nontrivial derivation of R. If T induces a centralizing
(vesp. skew-centralizing) derivation of U, then R is commutative.

Proof. Uis a prime ring and T is nontrivial on U (Lemma 1 (2) and
(3)). Hence, U is commutative by Theorem 1, and therefore so is R by
Lemma 1 (1).
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Added in proof. After the submission of this paper, the authors re-
ceived from Prof. J.H. Mayne an erratum sheet that corrects the proofs of
[5. Theorem and Corollary] and a copy of his paper entitled “Centralizing
mappings of prime rings” (submitted to Canad. Math. Bull.), where he has
improved [5, Theorem].



