A SIMPLE PROOF OF A THEOREM ON ABELIAN REGULAR RIGHT IDEALS

YASUYUKI HIRANO

We give a simple proof of a theorem of A.V. Andrunakievič and V.A. Andrunakievič [1] which states that every abelian regular right ideal is a (two-sided) ideal, whose proof makes use of modular maximal right ideals and is somewhat roundabout.

A right ideal P of a ring R is called *abelian regular*, if for every $a \in R$ there exists $e \in aR$ such that $a-ea \in P$ and $ex-xe \in P$ for all $x \in R$. In this case, there holds that $e-e^2 \in P$ and $eP \subseteq P$. If $a \notin P$ then $ae = a-(a-ea)-(ea-ae) \notin P$ shows that $a^2 \notin P$. Needless to say, every right ideal containing an abelian regular right ideal is also abelian regular. These facts will be used freely in our proof.

Theorem. Every abelian regular right ideal P of a ring R is an ideal.

Proof. It suffices to prove that given $a \in R \setminus P$, there exists an ideal $T \supseteq P$ excluding a. Choose $e \in aR$ such that $a-ea \in P$ and $ex-xe \in P$ for all $x \in R$. Obviously, $Q = \{x \in R \mid ex \in P\}$ is a right ideal of R containing P but excluding e and $x-ex \in Q$ for all $x \in R$. Given a right ideal $I \supseteq Q$, it is easy to see that if e is in I then I = R. Now, by Zorn's lemma, there exists a right ideal $T \supseteq Q$ which is maximal with respect to excluding e (or a). We prove that T is an ideal. Suppose, to the contrary, that there exist $t \in T$ and $b \in R$ such that $bt \notin T$. Then e = btb' + t' with some $b' \in R$ and $t' \in T$, and $b = (b - tb'b^2)b'' + t''$ with some $b'' \in R$ and $t'' \in T$. But, $b - t'' \notin T$ and

$$(b-t'')^2 = b(b-tb'b^2)b'' - t''(b-t'') = \{t'b^2 + (b^2-eb^2)\}b'' - t''(b-t'') \in T$$

This contradiction shows that T is an ideal.

REFERENCES

[1] A.V. ANDRUNAKIEVIČ and V.A. ANDRUNAKIEVIČ: Abelian regular ideals of a ring, Soviet Math. Dokl. 25 (1982), 462—465.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received May 31, 1983)