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ON CONNECTEDNESS OF p-GALOIS
EXTENSIONS OF RINGS

MiGUEL FERRERO and Kazuo KISHIMOTO

Let A be an algebra over a prime field GF(p) of prime characteristic
p with an identity 1 and G a finite p-group. A ring is said to be connected
if the center contains no nontrivial idempotents.

In this paper, we study the connectedness of G-Galois extensions over
a connected ring A. The study contains the extensions of several results
cited in [7], [ 8] and [11] to the non-commutative case.

Our study starts with the preliminary section §1. which is devoted to
notations and some general remarks about a skew polynomial ring of
derivation type and abelian extensions of rings which have been noted in
[5] and [6].

In §2, G is assumed to be cyclic and we will give necessary and suffi-
cient conditions for A to have a connected G-Galois extension B for the
case |G|=p. Further, if B is a G-Galois extension for G=(¢) with |g|=7p¢,
we can prove that B is connected if and only if 7T=B%" the fixed subring
of B under ¢” is connected. In §§3 and 4, we shall extend the results of
§2 to the case in which G is a noncyclic abelian group and to the case in
which G is a non abelian group.

1. Preliminaries. Let A be a ring with an identity 1 which has deri-
vations {D;:i=1.+n} and a family #={a;;: ij=1,-*-.n} of elements in A
such that

(1) au+ai=ai=0,

(2) [D:D;1=D:D;—D;D;=1,,, an inner derivation (@s)r—{(as).

(3) Diasu)+ Dilai)+Diar)=0
for all i,j =1, n.

The set of all polynomials

{2 XIyIXZDZ i X,l'/n ablb’z'"b‘n B aUll/z"'Un S A}
becomes an associative ring by the rules

aX;ZXia+D,-(a) for all e € A and X,~X,~=X,-X,~+ai,~.

The first named author was supported by a fellowship awarded by Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico (CNPq), Brazil.

103



104 M. FERRERO and K. KISHIMOTO

This ring is denoted by R,=A[X),**. Xn; D1,>** . Dn, #] or Rn=A[X\.*. Xn:
D\, -.Dpf{ai;; i.j=1,+ n}] and is called a skew polynomial ring of derivation
type (see [5]). Moreover, by Rn(0< m < #n), we denote the skew poly-
nomial ring A[X1,"**, Xm; D1.*,.Dmlai;; .j=1,--,m}] which is a subring of
R, where Ro=A. In particular, if =1, we denote it by

R=A[X.D]={(2 Xia;;a;: € A)

and its multiplication is given by aX=Xa+ D(a) for a € A.
Further, by D3, we denote the derivation of R,- defined by D%(h)=
hXn—Xmh(hE€ Rn_)), wherel £ m < n. Clearly DE| A= Dy, and DE(Xz)

=anrm.

Remark 1.0. For a permutation 7 of m letters 1., m (m < n), we
have an A-ring isomorphism

Rn = Al Xy, Xnm ; Drcvy = Daom @nwne s 1.7=1,,m}]
which maps X; to Xnn (i=1,--,m). Moreover, there holds
Rn = Rui[Xn:; D] (1€ m< n).

Definition 1.1. Let g be a monic polynomial in Ru_i[Xn: DE]=Rnm
where 1 £ m < n. g is called a generator in R, if gR,=R,g. Moreover,
a generator g in A[ X;D) is called weakly irreducible (abbreviate w-irreducible)
if g has no proper monic factors of degree 2 1 which is a generator.

Remark 1.2. The notion of w-irreducibility of g in A[X] coincides
with irreducibility of g in C(A) [X] where C(A) is the center of A since
each generator in A[X] is contained in C(A) [X].

Remark 1.3. Let Ry=Rn-1[Xn;D5](1<m=n). Then, there exists
a generator g=Xn—f (f € Rp-1) in Ry if and only if there exists an
element Y € R, such that Rpy=Rn_1[Y] (i.e., Rm is a free Rn-1—module
with the basis {1, ¥, Y? +--} such that 2Y=Y% for all 4 € Rn-1).

For, if g=Xm—f (f E Rn-1) is a generator in Rp=Rn-1[Xn; D%]
then Dj; is the inner derivation Ir of Rn-: effected by f(that is, DE(h)=
I{h)=hf—jh for all A € Rpu-1), which implies Rn=Rmn-1[g]. Conversely,
if Ru=RmalY)and Xn=> Yif; (fs€ Rn-1) then, for 1 € Ry_1, DE(R)=
hXm— Xnh=2 Y?(hf;—fsh), and whence D%(h)=hfo— foh, which implies
that X;»—fo is a generator in Ry.



ON CONNECTEDNESS OF p-GALOIS EXTENSIONS OF RINGS 105

Definition 1.4. Let B be a ring extension of A with the common
identity 1 and G a finite group of automorphisms of B. Then B is said to
be a G-Galois extension of A if A=B%(={b& B ; r(b)=5 for all tE G}),
A, is a direct summand of B and there exist elements »;, s; (1 <7 < k)
such that 24, »:;7(s;)=81.r for all € G (cf. [10]). Moreover, a G-Galois
extension B/A is called a p®-cyclic extension if G is a cyclic group of
order p°.

Remark 1.5. Let G=(01)X(02)X +** X(6,) be an elementary abelian
group of order p”. Then, A has a G-Galois extension B if and only if
there exist derivations {D;:i=1,-.n} of A, a family « of elements in A
which satisfy conditions (1) —(3) and there exist elements a.*.a» of
A such that XP—a:=XP— X;—a; is a generator in R,=A[X\, " Xn: D,
Dy, A] for i=1,--.n. Moreover, if this is the case, B is isomorphic to
the factor ring R./M, M=(X;—a ., Xn—an) and o:{x;)=x,;+ 8 where
x5 is the coset of X, and d.; is the Kronecker's delta (see [4, Corollary 2.1]).
Hence we may write

B=2® (x{'x¥*--x4)A (0= v; < p—1)

with ax;=x;a+DJa) for a € A, x:ix;=x;x;+a;; and x¥=a; € A.
Moreover, in this paper, we shall use the following conventions:

An=Alx12xm; D1 Dnfas:12ij<sm}] 1€ m<n)

which is a subring of B (as in Remark 1.5) generated by elements xi,**,xn
over A.

An=Alx1,"* Xn-1.Xm+1," *Xn : D" D1, D1 Do fais ; 1,7+ m}).
In case a=0 (1< i j < m), abbreviate
An=Alx1%m; D1,>*.D ),
and further
Rn=A[X1* Xm: Dr,".Dn).

Remark 1.6. Let R,=A[X, . Xn; D1 -*.Ds]. Then, XF—a(a<€ A)
is a generator in R, if and only if ¢ € Ao=MN}1 A and 1,=D{=D¥F- D,
where A?={a€ A; D;(a)=0} ([5, Theorem 2.1]).

Now, the rest of this section is devoted to generalize some results in
[7] to the non-commutative case. These results are not only useful in
our study, but also, interesting of themselves.
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Definition 1.7. Let H be a group and N a normal subgroup of H.
Then, we say that N is a small subgroup (abbreviate an s-subgroup) of H
if NH'#H for any proper subgroup H  of H.

If H=(06,)X(062) X - X{0,) is an abelian group with |o;|=p® (p is prime
and e; 2 1), then N={(of) X (68) X-+- X (68) is an s-subgroup of H. Moreover,
if H is a finite p-group then the Frattini subgroup @(H) of H is an s-subgroup
of H.

The following Lemma and Theorem are proved in [ 7] when the rings
considered are commutative. But the validity of them can be shown by
the same way for the non-commutative case. For the convenience of
readers, we will prove them here again.

Lemma 1.8. Letf A be connected and let B/A be an H-Galois extension
for a finite group H. If B is disconnected, then therve exists a nontrivial
idempotent e € C(B) such that er(e)=0 or t(e)=e for every r € H.

Proof. Let f be a nontrivial idempotent of C(B). Then H-norm N(f)
is either 1 or 0. If N(f)=1, then f is invertible and this leads to a contra-
diction f/=1. Thus N{(f)=0. Let e be a product n(f)n(f) - (/) of
maximal length such that e=#0, and such that z(f)'s are distinct. For an
element 7 of H. assume er(e)*0. Then each 7(z:(f)) appears among the
7{f)’s and so r(e)=e.

Theorem 1.9. Let A be connected and let B/A be an H-Galois extension
for a finite group H. If BY is connected for an s-subgroup N of H, then B
is connected.

Proof. Suppose B is disconnected. For any idempotent e as in Lemma
1.8, we set H'=(r € H;r(e)=e}. Choose 7i,",7s to be the right coset
representatives in NH'/H'. Then all ‘z(e)’s are distinct. Hence, for each
pair i+j. we have z7'r,(e)=rx(e)*e for some %, and whence er;!z;(e)=0
(Lemma 1.8). which implies r;{e)r;(e)=0. Therefore, e’ =r(e)+ -+ +zs(e)
is an idempotent which is fixed by N. and hence, ¢" is 1 or 0. If ¢'=0,
then all r:(e)’s are zero, a contradiction. Hence e'=1. It follows that
{r:{e):i=1,--,s} is the full H-orbit of e. Since ¢: H/H — NH'/H’ such
that ¢(cH')=r;H’ for o(e)=ri(e) is a bijection, this means that ' N=H.
Since N is an s-subgroup of H, we have H'=H, which is a contradiction.

2. Connected cyclic extensions. The purpose of this section is to give
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a necessary and sufficient condition for a connected ring A to have a
connected p-cyclic extension and some related results.

The map ' defined in R=A[X:D] by g'(X)=2%, iX"'a; for all
g(X)=2%0 X'a,. satisfies (D*(g(X))'=D*(g'(X)) and so is a derivation
in R, where D*=1y.

Let f(X) be a generator in . Then f(X) is contained in the commu-
tative ring C(A?) [X] (cf. [1. Lemma 1.6]). Hence. if f(X) is separable in
C(A®) [X], then f'(x) is invertible in C(A?) [x] = C(A?) [X]/(f(X)) ([7.
Theorem 1]). Under these remarks we can prove the following

Lemma 2.1. Let A(X)=X%0 (XP)a; be a generator in R=A[X; D],
and assume that R/(f(X)) is connected. Then

(1) A is connected.

(ii) If f(X) is separable in C(AP) [X]. then f(X) is w-irreducible.

Proof. (i) We set B=A[x:D]=R/(f(X)). Now let e be an idem-
potent of C(A). Then ea=ae for all a€ A. Hence ¢ € C(B) if and
only if D(e)=ex—xe=0. D(e)=D(e?)=2eD(e) implies (2e—1)D(e)=0.
Multiplying by e, we have eD(e)=0 and so D(e)=0.

(ii) [If A(X) is separable in C(A?) [X] then f{x)=uq is invertible in
C(AP). Assume f(X) is not w-irreducible. Then AX)=g(X)h(X) for
some proper monic factors g(X) and %#(X) which are generators. Hence
av=f(X)=g(X)h(X)+ g(X)h'(X) shows that (g(X))+(#(X))=R. Since
g(X) and #(X) are central polynomials, (g(X))(#(X))=(X))g(X)) and
hence (AX)=(g(XN(X)=(g(X) N (A(X)). Thus R/(f(X) = R/(g(X))
@ R/(f(X)) is disconnected.

As is noted in Remark 1.5, a polynomial X} — a; which is a generator
in Rn=A[X\.*Xn:;Di1.--.Dn. A] plays a key role to construct an abelian
extension of A. In the following we shall give an important property of
X'—a.

Theorem 2.2. Let A be connected. Then a generator f(X)=X"—a
in R=A[X;D) is either w-irveducible or a product of generators of degree 1.

Proof. Suppose f(X) is not w-irreducible. Then there exists a proper
factor g(X) of f(X) which is a generator. Let g(X)=X"+3%¢ X'a,.
Then n < p and ag(X)=g(X)a for a € A implies #nD(a)=an_1a— atn-:
([1, Lemma 1.6]) and so D is inner. Hence we may assume that R=A[X]
and X*—ae € C(R)=C(A) [X]. Hence X°—ea is reducible in C(A) [X]



108 M. FERRERO and K. KISHIMOTO

and it is a product of linear factors which are generators by [7, Lemma 2.1].

Corollary 2.3. Let R=A[X;D]. If D is outer then a generator X°—a
is w-irreducible.

Now, in the rest of this section, B/A will mean a p-cyclic extension
(cf. Definition 1.4). Then, by Remark 1.5, B is obtained by A[X;D]/(X"—a)
for some derivation D of A and a generator X*—«a in R=A[X:D]. Hence,
we may write

B=A[x;D]=A[x;D/al=3%4 D x'A
where x=X+(X"—a).

Lemma 24. Let B=A[x;D] and =30 x'a: be an element of
Vs(A), the centralizer of A in B, where 1 £ s < p—1 and as+0. Then

(i) as€ C(A), and sD(a)as=as-1a—aas-, for all a € A.

(ii) If as is invertible in A then D is inner.

(i) If f€ C(B) then D(a;)=0 for all 1.

Proof. For any a € A, we have
0=af — fa=x%(aas— asa)+ x5 (sD(a)as+ aas-, — as-,a)+ 3=¢ x'c;

where c; € A, i=1,--,s—2. Thisimplies (i). The other assertions will be
be easily seen.

Now, let Ao(D)={a &€ Ao ; I,=D} where Ay=AP. Then Ao(D)=C(Ao)
(D), and X—c is a generator in R=A[X;D] if and only if ¢ € Ay«(D)
(Remark 1.3). Moreover, let A(D*)={a € Ao; I,=D"}. Then AyD") =
C(Ao) (D°), and X°—c is a generator in R if and only if ¢ &€ A(D")
(Remark 1.6). Further, we shall write Ao(D)*={a"; a € A«D)}.

Next, we shall prove the following theorem which is one of our main
results.

Theorem 2.5. Let A be connected. Then, for B=A[x;D/al, the
Jollowing conditions are equivalent.

(1) B is connected.

(2) X°—a is w-irreducible in R.

(3) a€ AD\Ao(D)".

Proof. (1)=(2) is clear from Lemma 2.1(ii), and (2)<(3) is clear
from Theorem 2.2.
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(2)=(1). Let e=2%_0 x‘a; be an idempotent of C(B), and assume
that 1 < s < p—1 and as#0. Then e is a nontrivial idempotent in C(B).
Now, by Lemma 2.4, we have

(a) D{a;)=0 for all i,

(b) as < C(A)D.

(¢) sD(@)as=as-1a—aas-, (a € A).

From (a), we see that

e?=31 (xP)af=2io(x+ ) af=e=21-0 xla.
This implies a2=as. Since X" is separable in C(A) [X]([9, Lemma 2.1])
and a2=as € C(A) (connected) by (b), it follows that as € GF(p) and is
invertible. Hence D is inner by (¢). Thus we may assume that R=A[X]
and C(B) _l_“'C(A) [X]/(X°—a). Since X*—ea is irreducible in C(A4) [X]

(Remark 1.2), C(B) is connected by (8, Theorem 1.6], a contradiction.
Therefore, we obtain e=a, € C(A).

As a consequence of Theorem 2.5, we have

Corollary 2.6. Let A be connected. Then A has a connected p-cyclic
extension if and only if one of the following conditions (a) and (b) is
satisfied.

(a) p=Z(C(A): CAP), the index of the subgroup C(A)° in the additive
group (C(A), +).

(b) A has an outer derivation D such that C(Ap) (D")* .

Proof. First, we assume that A has a connected p-cyclic extension B.
Then, there exists a derivation D of A and an element @ € A such that
X*—ais a w-irreducible generator in R=A[X;D] (Remark 1.5 and Theorem
2.5). In this case, there holds a & Ay(D")=C(Ao) (D*) and a & Al(D)".
If it is possible to choose D as inner, we may assume D=0 and so A,(D")
C(A) and ¢ € C(A\C(A). Since va+ C(A)*, v=0,1,+--,p—1, are distinct
cosets in C(A)/C(A), (C(A): ClA)*) = p. Conversely, if (a) is satisfied,
then C(A) has a connected commutative p-cyclic extension C ([8, Lemma
1.2 and Theorem 1.6]) and B=A® caC is a requested one. If (b) is
satisfied, Ao(D)=®, and so X°—a is w-irreducible for any a € As(D?)
(Theorem 2.5).

A p-cyclic extension B/A is said to be inner (resp. oufer) if its Galois
group can be choosen as an inner automorphism group (resp. an outer
automorphism group). In [5, Corollary 1.3], it is proved that if B=A[x;D]
is a p-cyclic extesnion of A, then B/A is inner if and only if there exists
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an elemet ¢ € U= U(C(A)), the group of invertible elements in C(A), such
that D(c)=c. Further, if C(A) is a field and B/A is inner, then each A-
automorphism of B is inner and Va(A)=C(A) 2 C(B) ([6, Theorem 1]).
On the other hand, if C(A) is a field and B/A is outer, then each A-auto-
morphism of B is outer and Vz(A)=C(B) ([6. Theorem 2]). Combining
this with Corollary 2.6, we have the following

Corollary 2.7. (1) Let A be connected. Then A has a connected
inner p-cyclic extension if and only if there exists a devivation D of A such
that

(i) AdD")=0,

(ii) DIUYN U+, where U=U(C(A)).

(II) Let C(A) be a field and B=Alx;:D)] a connected p-cyclic extension.
Then C(B) is a field and further,

(i) B/A is outer if and only if D(C(A))=0,

(ii) B/A is inner if and only if D(C(A))=+0.

Proof (1) Assume that A has a derivation D which satisfies (i)
and (ii). Then D is outer by (ii). Hence, by Corollary 2.6, A has a
connected p-cyclic extension B=A[x;D]. Further, by (ii), there exists an
element ¢c€ U such that D{(c)€ U. Then c(xD(c)'c)c'=(cxc™).
D(c)te=xD(c)'c+1. Put y=xD(c)'c. Then B=A[y;D(c)'cD]
shows that B is an inner p-cyclic extension with a Galois group (&), a cyclic
group generated by an inner' automorphism ¢é(=c;cr'). The converse is
clear by [5, Corollary 1.3].

(II) If D is inner, then we may assume that C(B)=C(A) [x] and so
C(B) is a field. On the other hand, if D is outer, then C(B) € Vs(A) N A=
C(A) (by Lemma 2.4). which implies C(B)=C(A)? € C(A). Finally, if
B/A is outer, C(B) 2 C(A) and then D(C(A))=1(C(A))=0. If B/A is
inner then C(A) 2 C(B) and hence D{(C(A)=1(C(A))*0. This completes
the proof of (II).

Let J(A) be Jacobson radical of A. We say that A is a quasi local
ring (resp. a primary ring (see [2, p.56]) if A/J(A) is a two sided simple
ring (resp. a simple artinian ring).

Let A be a two sided simple ring. Then each proper ideal of R=
A[X:D] is generated by a generator in R and an ideal of R is maximal if
and only if it is generated by a w-irreducible polynomial (see [4, p. 76]).

Corollary 2.8. (1) If A is a two sided simple ring (resp. a simple
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artinian ving) then, for B=Al[x:D/a)., the following conditions are equivalent.

(1) B is a two sided simple ving (vesp. a simple artinian ring).

(2) B is connected.

(3) XP—a is w-irreducible in R.

() If A is a quasi local ving (vesp. a primary ring) with D(J(A)) &
J(A) then, for B=Alx;D/a), the following conditions are equivalent.

(1) B is a quasi local ring (vesp. a primary ring).

(2) B/J(B) is connected.

(3) X*—a is w-irreducible in A/J(A) [X:D) where @ is the coset of
@ modulo J(A) and D is a derivation of A/J(A) defined by D(a)=D(a).

Proof. (1) is clear from the above remark and Theorem 2.5.

(o) If DUJ(A) s J(A) then J(A) [x:D]={2%d x'a;; a;€J(A)} is an
ideal of B. Hence J(B)=J(A) [x;D] by [10, Proposition 7.8] and B/J(B)
is a p-cyclic extension of A/J(/) by [10, Theorem 5.6] The rest is clear
from (1).

Corollary 2.9. Let A be a finite dimensional central simple algebra and
B=A[x;D] a connected p-cyclic extension of A. Then B/A is inner if and
only if D is outer.

Proof. 1If B/A is inner then D is outer by Corollary 2.7. Conversely,
if D is outer then D(C(A))+0. For, if D(C(A))=0 then D is an inner
derivation of A ([2, Theorem 6.13.2]), a contradiction. Thus B/A is inner
by Corollary 2.7.

Lemma 2.10. Let B=A[x;D] be a p-cyclic extension with a Galois
group (0). Then To(y)=284 oi(y)=1 for yE B if and only if y=—x""}
+f(x) for f(x)=220F xa. '

Proof. Te(xia)=(x'+(x+1)'+ -+ +(x+p—1))a

Z[p"'+(iil) (&1 1+ -+ (p=1)+ -
R L e L S
Since {1,-:-,p—1)} is a cyclic group generated by some element ¢, we see
that, if 1 £ s £ p—2, then
gl o=k (o= 34 (P =(1—(c*)P) (1—c*) =0,

0if i=p—2

Hence Ta(xla)={_a £ imp—1.
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This shows that 7s(y)=1 if and only if y=—x""'+32%¢ x%a;.

Let B be a p¢-cyclic extension of A for a cyclic group (o). If we put
=0 (i £ e) and B;=B" then B;,/B: is a p-cyclic extension with a
cyclic group (z; | Bi+1) such that B; is a B;-direct summand of B:+;. Hence
Bir1=Bi[x:+1; 9;] for some derivation d; of B; and an element x;41 € Biy
such that z;(x;+1)=x:;s1+1. A pé-cyclic extension B of A is said to be a
trivail extension if B is obtained by C® cwA for some commutative p°-
cyclic extension C of C(A). Hence Bi-1/B: is a trivial extension if and
only if 0: is inner. Then we have the following

Corollary 2.11. Let A be connected.

(i) B is connected if and only if B, is connected.

(ii) B/A is a trivial extension if and only if Biv\/B: is a trivial
extension for every i.

Proof. (i) Since Bi=B" and (n) is an s-subgroup of (o), the con-
nectedness of B; implies that of B by Theorem 1.9. The converse is also
clear by Lemma 2.1.

(ii) It is clear that B/A is a trivial extension if each B:.1/B: is a
trivial extension. To prove the converse, it is enough to prove that if o;
is inner, then d:;-; is also inner. Now, we assume that o0; is inner. Then
0:=Ic for some c € B;, We write y=x;1—¢, X;=x, ;=1 and r;-1=p.
Then r(y)=y+1 and B:y1=B:[y] (that is, y € C(Bi+1)). Let t=p(y)—y.
Then ¢t € B; since (p(y)—y)=p(y+1)—(y+1)=p(y)—y=1, and further,
To()=284 0/()=284 o'(o(y)—y)=1(y)—y=1. Hence t=—x""'+
N4 x'd; (d; € Bi—1) by Lemma 2.10 and o(y)—y=¢E C(Bi+1) N B;=
Va(Bi+1) € Vs(B;i-1). Hence, by Lemma 2.4, 0;-, is the inner derivation
effected by —dp-a2.

As a direct consequence of Corollary 2.8 and Corollary 2.11, we obtain
the following

Corollary 2.12. When A is a two sided simple ring (resp. a simple
artinian ring), B is a two sided simple ring (resp. a simple artinian ring)
if and only if so is B.

3. Connected Abelian extensions. Let G=(0,)X(g2) X+ X{0x) be an
elementary abelian group of order p”. In this section, we assume that Bisa
G-Galois extension. Hence B=A[x1,"**,%n; D1,>**,Dn, 4] =2 D (xt' x¥>-x4m A
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with xf=e; € A, ax;=x;a+D{a) for a€ A and xix;=x;%:+a:;. Unless
otherwise stated, B means one which is obtained by the free A-basis
{xP' a2+ x4 ;0 < v; < p—1}, and as to notations A, etc., we follow Remark
1.5 and others.

The following lemma is easy to obtain by induction, using Lemma 2.1
and Corollary 2.7(2).

Lemma 3.1. If B s connected then Ay is connected, and if C(A) is
a field then C(Aw) is a field for 0 k< n.

It is clear that the converse of Lemma 3.1 is not true. For this reason,
the main interest of this section is to study sufficient conditions for B to
be connected.

In virtue of Theorem 2.5, we can easily see that if X7 —a; is w-irre-
ducible in Aj[X;: D¥] for i=1,-,n, then B is connected. Now we shall
study some types of intermediate subrings of B/A which depend on properties
of derivations D;’s.

Let S, be the set of all permutations of {1.:-*,#} and for 7€ S,, let
Anx be a subring of B generated by elements xn(),**, Xz over A. Then,
there exists an element 7 € S, and m = 0 such that D¥; is inner (resp.
outer) in Ar-1) for each 7 < m, and for each v € S,, DX, is not inner
(resp. outer) in Ay;-1) for some 1 <j < m+1 (cf. Remark 1.0 and Remark
1.5).

For the inner (resp. outer) case, we set

jz{Dn(l)y'".-Dn(m)} (reSD- Oz{Dﬂ(l)y."lDﬂ(m)})'

Then, ¥ (resp. ©) will be called a maximal inner (resp. outer) subset of
{D,,*,Dy} over A. Moreover, we denote Anwm by A(¥) (resp. A(O)).
Clearly, ¢ (resp. O) might be @, or not @, and it seems that ¥ (resp. O)
does not determine uniquely. As to our study, we shall distiguish two cases.

Case 1. D; is inner for some 1.

In this case, there is a maximal inner subset %, of {D, *+,D,} over A
which is not empty. Next, let O; be a maximal outer subset of {Dy,***,D.}\ &1
over A(#). Clearly ##{D,,-,Dy} if and only if O,+®. We shall now
write

A(S1,01)=A(F) (O1).
If ¢, U 6G,+{Dy,+,D,} then we can see
B=A(41,01) (#2,02)*(F:,0%)
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for some % by repetition of this procedure, where $.+ @.

Case 2. Each D; is outer.,

In this case, there is a maximal outer subset O} of {Dy, **,D,} over A
which is not empty. Next, let #{ be a maximal inner subset of {Di,"**.D-\O}
over A(O}), and we write

A(0.91)=A(01) (£).
If 01U ¥{#+{D\,--.Dy} then we can see
B=A(0.%) (02.93)(On.%n)

for some % by repetition of this procedure, where O, @.

Now, in the rest of this section, we shall write as folows:

In Case 1, y1={Dl"".Dm.}' 01={Dm,+l"'-Dm1+n|}""-

InCase 2. O1={D\,**,Dn,}, $1=(Dm=1."Dmyen},=".
If m < n then, it is obvious that in Case 1 (resp. in Case 2), D¥ is outer
(resp. inner) in An, for j=nu+1,,n and Aq=A(%,0,) (resp. Aq =
A(01.%) for gi=mi+n..

Lemma 3.2. Let D\ be inner.

(i) If D¥ is inner A, then D; is inner.

(ii) In case Di=0, D¥ is inner in A, if and only if D; is inner and
X X1=X1X;.

Proof Let Dy=I.. Then, for y=x1—c, we have Ai=A[y]. Now, we
assume that D¥ is inner in A;. Then, there exists an element f=2%4 v'a;
(a; € A) in A, such that D¥(g)=gf—fg for all g€ A,. Since y is central
in A, it follows that A 2 D;(a)=D¥(a)=aao— ava for all a€ A. Clearly
D¥(x1)=Dj(c). Hence, if, in particular, c=0 (that is D;=0) then x;x =
x1x;.  The rest of the assertions will be easily seen.

Lemma 3.3. (i) Let Aq=A(5,0)). Then we may assume D;=0,
@ € CA) for i=1,m and Aqa=Alx1," Xm Xm+1,"Xmens; Dmarr,
Dm;+nn{ai.i}] where ax;=x:a, X:iX;=2X;Xi f07’ i.j = m, axj=xja+D,-(a) and
XiX;=x;X;+ai; for 7 > ma.

(ii) Let Aq,=A(0,%1). Then we may assume D¥=0 in Ai- for
i=m+1m+n and AQ:=A[xlv"',xm.-ym|+l,"',ym.+n1 1Dy, '.Dml,{d,-j}]
where ax;=x:a+ Dia), x;x;=x;x:+ ais for i,j < my, y;=%;—1f; for ;€ Am,
such that v; € C(Aq,) and v € C(An).

Proof (i) Am=A[x1,"xm] is clear from Lemma 3.2 and the rest
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can be easily seen.
(ii) Replace A by Am,=A(0C). Then we can see the assertion by
the same reason as in (i).

In what follows, let Ag, be as follows:
1) If Aq=A(F%.,01) then

Aq, :A[xl.'".xm,.xm,+1,"',xm1+n, ; Dm;+1,"'-Dm,+m.{aij}]'

where x?=a; € C(A), i=1m,.
ii) If Aq,=A(01,%1) then

AQ;-:A[;Ylu“'vxmnymrflv'"vyml*'ﬂx ) Dlv'"vD”lu{ai.i}]u

where v;=x;—f; € C(Aq,) for f; E An, and yvi=a;,—f5 € C(Am,).
Moreover, a derivation D of A is said to be completely outer if cD is outer
for all nonzero ¢ € C(A). If C(A) is a field then any outer derivation of
A is completely outer.

Lemma 3.4. If B=A[x1,>"xn; D1,,Dn] and each outer derivation
among {Dy,+*.Dn} is completely outer, then B is either A(S1,0:) or A(OY).
Move precisely, 9, is the set of all inner derivations and O, is the set of all
outer derivations among {Dy,++,Dy}.

Proof. Since 4 ={0}, # is the set of all inner derivations in {Di,**,Dn}
by Lemma 3.2. Suppose that there exists D; such that D; & %, U 0,. Then
Dj; is outer and D¥ is inner in Aq,. Hence D¥=I,for f=2 x§ - x{"Quq .0,
Then AD Dfa)=af—rfa implies ap_1p-1nE C(A) and (p—1)Dg(a)
AP-1)(P-1) = A p-2) (P D(P-1NE — AA(p-2)(p-1)-(p-1- OSiNCe D¥ is outer in Aum,
Dg, is outer. Further since Dq, is completely outer, @p—1yp-1)-(p-1) must
be 0 and hence awp-_2yp-1-(p-1 € C(A). Then, by the same way, we have
(p—2)Da,(a)* ao-2)0-1)-(p-1=Aip-3)(5-Dp-1)@—AA(p-3)p-11-(p-1). Repeating
this, we can see Vg,=Vq,-1="""=Vm+1=0. Consequently, f € Am, and D}
is inner in Am,, a contradiction. Thus O is the set of all outer derivations
in {Dy,-, D).

Lemma 3.5. (i) Let Aq=A(F,01). If Aq is connected then
(CAR> NA/C(AY is an m -dimensional GF(p)-space with a basis
{a:;+ C(A)P ; i=1,,m1)}.

(ii) Let Aq=A(01, %). If Aq, is connected then (C(Aq ) N An,)/
C(An)® is an ni-dimensional GF(p)-space with a basis {a;—f2+ C(An)";
i=m1+1,~-,m1+n1}.
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Proof. (i) Let f€ C(An,) and fE A. First, we shall prove that
=272 xs:+c¢ for some u; € GF(p) and ¢ € C(A).

Now, we set m,=7 and assume that f=27-1 xia; where a; € A,_,. as*+0
and 2=<s< p—1. Then a; € C(A,_,) for i=0, 1, -, s and

. s .
P=000 (xr+a,)ia? — X0 xia..

Hence we obtain a5=0 and sarai=(—as-1)*. Since Agq, is connected, A,
is connected by Lemma 3.1. Then, noting ¢5=0, we have as € GF(p), and
whence ar=(—as_157'as')*. This implies that XF—ea, is reducible in
C(A,;_))[X,]. a contradiction. Hence, it follows that f=xra1+ao. Clearly
a=0 and so, a1=p#, € GF(p). Moreover f*—(x,u,)’=a5 € AN C(Ar_1)"
Therefore, by induction methods, we obtain f=217 x;u:+ ¢ for 1; € GF(p)
and ¢ € C(A). Now, noting xf=a;, we have f =27 a;u;+c". Clearly
C(An)* D C(A)® and they are GF(p)-modules. Since a; € C(Am,)" N A,
it follows that

(C(Am)" N A)/CAF=201 (a:+ C(AY)GF(p).

If ;=avni+ ... i 1Vici+ir1Viar + oo +amVm+ (v, €EGF(p) and ¢ €
C(A)®) then XP—a; has a factor X;—(xiv14 -+ + 251 Vim1 FXee1Vie1 +  +
XmVm+c) which is a generator in A[x.--.%i-1,%i+1,°".xm J[X:]. But this
is a contradiction since A, is connected by Lemma 3.1.

(ii) Since Aa=Am[ym+1,""".Ym+n), we can see the validity of the
assertion by the same way as in (i) by replacing A to Am,.

Theorem 3.6. Let A be connected.

(1) If B=A(S1.0)), then the following conditions are equivalent.

(1) B is connected.

(2) {&+CAP; =1, m} is linearly independent over GF(p) in
C(A)/C(A)".

(II) If B=A(01,%1), then the following conditions are equivalent.

(1) B is connected.

(2) {a:—+CAR)"; i=m+1,m+mnm} 5 lnearly z’ndependént
over GF(p) in C(An)/ C(An)".

Proof. (1) (1)=(2). Since C(An )" N AC C(A), this is clear from
Lemma 3.5(1). .

(2)=(1). Let Ax_, be connected for & < m;. If XE— ax is reducible
in C(Ax-1)[ Xx], then there exists f € C(Ax-1)'such that ff=ax (€ A), and
S0 f=x1 1+ ... + Xe—1ttr—1+ ¢ by making use of the same methods as in the
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proof of Lemma 3.5 (i), where ;€ GF(p) and ¢ € C(A). Hence F=an=
a1+ ... + o pr-1+ ¢° and this contradicts to the linear independence of
{a;+ C(AY: i=1,+m}. Thus A, is connected. By inductive argument,
we can see that Ay, is connected. Since A [Xm1: Dis1]/Am, is a (6:11)-
cyclic extension and Dy, is outer in Am, Ams1=Am[xm-1: D] is
connected by Corollary 2.3. Repeating this we can see the connectedness
of B.
(II) This can be prove by the similar way as in (I).

Lemma 3.7. If C(A) is a field and B is connected then B is either
A(%Ol) or A(@ﬁ)

Proof. If D¥ is inner in A, then D; is inner. For, if D, is inner, it
follows from Lemma 3.2. On the other hand, if D, is outer, it is a conse-
quence of the fact that D is completely outer. Since C(Ay) is a field by
Lemma 3.1, continuing this way, we can see that .%; is the set of all inner
derivations and O, is the set of all outer derivations in {Dy,--,D.}{cf. the
proof of Lemma 3.4).

Combining Theorem 3.6 with Lemma 3.7, we have the following

Corollary 3.8. Let C(A) be a field. Then A has a connected G-Galois
extension B such that 4 =1{0} if and only if one the following conditions (a)
and (b) is satisfied.

(a) There exist outer derivations Dy, **.Dmasn, of A and elements
@€ A (i=1,n) such that

(1) [D:.D;]=0.

(2) anam € C(A) and {a;+C(A)Y; i=1,mu) is linearly inde-
pendent over GF(p) in C(A)/C(A)",

(3) a, = AP(DY) for j > m.

(b) There exist outer derivations DD, and elements a:€ A
(i=1,n) such that

( 1) [Di,DJ’]:O'

(2) o€ AP(DY) for all ij=1, n.

Proof. If B is a connected G-Galois extension such that #={0}, then
B=A(%..0,) or A(®}) by Lemma 3.4. Thus we can easily see that A
satisfies conditions (a) or (b) by Theorem 3.6. Conversely, if A satisfies
(b), then B=A[X\, " Xn; D1, ".Dp] /(XP—a1,- Xh—an) is a G-Galois
extension of A and XT—a: is w-irreducible in A;. While, if A satisfies
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(a), then B=A[X\, X, Xme1, Xn; D1 D) (XP— a1, X5 — an) is
a G-Galois extension of A such that A, is connected by Theorem 3.6.
Since Df is outer in A;-; by Lemma 3.4, this means that B is connected.

Corollary 3.9. Let A be a two sided simple ving (resp. a simple artinian
ving) and B a G-Galois extension of A. Then B is a two sided simple ring
(vesp. a simple artinian ving) if and only if B is connected, and if this is the
case, B is either A(%,01) or A(DR).

Proof. By Corollary 2.8, B is a two sided simple ring (resp. a simple
artinian ring) if and only if B is connected. The rest is clear from Lemma
3.7.

Corollary 3.10. Let H=(1r1) X ()X - (zn) be an abelain group such
that |t|=p% (e; =2 1), B/A an H-Galois extension and T=B¢ for G'=
(zf) X (2§) X +«+ X (h).

(i) Let A be connected. Then B is connected if and only if so is T.

(ii) Let A be a two sided simple ring (vesp. a simple artinian ring).
Then B is a two sided simple ring (resp. a simple artinian ring)if and only
if sois T.

Proof. Since G’ is an s-subgroup of H, these are direct consequences
of Theorem 1.9 and Corollary 3.9.

4. Connected p-extensions. In this section, we will deal with the
connectedness of a G-Galois extension over a connected ring A when G is
a nonabelian p-group of order p¢. Thus we assume here B/A is a G-Galois
extension and 7=B®%® where @(G) is the Frattini subgroup of G which
is an s-subgroup of G (cf. Definition 1.7). Then we can readily see the
following

Theorem 4.1. (i) Let A be connected. Then B is connected if and
only if so is T.

(ii) Let A be a two sided simple ring (resp. a simple artinian ring).
Then B is a two sided simple ring (resp. a simple artinian ring) if and only
ifsois T,

Proof. By Theorem 1.9, B is connected if sois 7. Conversely, assume
B is connected, @(G)=Go R G1 2+ 2 G;={1} is a composition series of
@(G) and B;=B¢%. Then B;/B;.; is a p-cyclic extension and so the
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connectedness of B=B, implies that of T=By, by Lemma 3.1. This
completes the proof of (i).

Since H=G/®(G) is an elementary abelian group and 7/A is a con-
nected H-Galojs extension, 7 is two sided simple:if so is B by Corollary
3.9. The converse is an immediate conseqeunce of Corollary 2.8.

Let C be a central subgroup of order p of G which is contained in
@(G) and let P be a p-group which is isomorphic to G/C. If all rings
considered are supposed commutative, then a P-Galois extension M/A can
be embedded into a G-Galois extension B/A ([7] and [11]). In the following
we shall give a necessry and sufficient condition for M/A can be embedded
into B/A in general case.

Let C=(0). Then as same as in [11], we choose representatives u«(r)
€ G for r€ P. Define the group cohomology of 2-cocycles g(z,0) by

u(t)u(p)=g(z.0)u(zp).

u(t)o=o0u(r) is clear for r € P since C is central.

Let x: C—GF(p) be the homomorphism defined by x(¢?)=i x(g(z.0))
is a 2-cocycle of P into GF(p).

For a derivation D of M. we put do(e)=1 and A{u)=D(d;-1(2))+
dii(2)u for u € M.

Under these notations. we have the following

Theorem 4.2. Let M/A be a P-Galois extension. Then M/A can be
embedded into a G-Galois extension B/A if and only if there exist a derivation
D of M, elements t EMP and t.€ M (r € P) such that

(1) D°=I,

(2) [tD]=1. 7.

(3) tet(te)=tw+ x(g(z.0)).

(4) T(t)=25" ti(t:)=x(g) where g € C such that u(r)"'=g,

(5) (r=1) ()=du(t;)—t: for tE P,

Proof Let B/A be a G-Galois extension. Then B=M. Since B
possessess an element y € B such that T¢(y)=1 (since Ba@> A4), we
can see that 7c(Te(y))=1. Hence B/M is a C-Galois extension with
Bu@®> My. Therefore there is an element x € B such that {1,x -, x”"!}
is a free M-basis for B, x*=t € M and o(x)=x+ x(0).

Let ¢ be an arbitrary element of M. Then o(lx(c))=0(cx—xc)=
co(x)—o(x)c=1I(c) shows that D=IM is a derivation of M satisfying
(1).
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Let #(z)(x)=3 xicir for cir € M. Since ou(r)=u(r)o, T(x+1)ic:s
=ou(r)(x)=u(r)o(x) = xici+1=u(r)(x)+1=w(c)(x)—x+o(x), and
whence, u(r)(x)=x+ ¢, for some ¢ € M.

[t,D] (¢)=r{cx —xc)—(r(c)x—xr(c))=u(r) (cx—xc)— (z(c)x —xt(c))
=r(c) (x+t)—(x+t)r(c)—(r(c)x = xz(c))
=r(c)t:—t.rlc)+ 1, .1c).

Since u(r)u(p)=g(z.0)u(ro), x+ t:+t(te)=ul(r) (x+to)=u()ulp) (x)
=g(1.0)u(10) (x)=g(1.0) (x + tro)=x + tro+ x(g(z.0)) and x + T(t-)=1(2)'*(x)
=g(x)=x+x(g) shows that -+ r(to)=twe+ x(g(z.0)) and T:(¢.)=x(g) for
g=u(r)",

Noting that (x+ £:)°=x"+ dp(£:)X[5, p. 163)). t + do(t:) — tr=x"+ du(t:)
—te=xP+Ap(t:)—(x+ tr)=ulr) (x*)=1r(f) means that (r—1) (¢)=dp(¢;)
— ..

Conversely, assume that there exist a derivation D, elements ¢ and ¢:
(r € P) which satisfy the conditions (1)—(5).

By (1). X*—t is a generator in R=M[X:D]. Let B=R/(X"—1t) and
let x be the coset of X. We define the action of ¢ on B by

o2 xic)=% (x+x(0)ici (c: € M).

Then o(x®)=(2"+ x(0)?)=x"=t=0(¢t) and o(cx)=0c(xc+ D(c))=xc+ x(0o)c
+D(c)=c(x+x(c)=0(c)o(x). This shows that ¢ acts on B as an M-
automorphism of order ».

Next we extend #(r) (r € P) to an automorphism of B by

w(r): 2 xiri— 2 (x+t)ielry) (i € M),

Then u(r) (x*)=x"+ Ap{t:)—te=t + do(t:)—t-=u(r) (1) by (5) and «(r) (+x)
=u(r) (xrr+D(r)=(x+t.) (¥ )+ D(r)=xt(r )+ (» ) t,+ De(#)=1(r) (x+t:)=
7(#)z(x) by (2). Thus r is a ring homomorphism of B. Moreover u(zr)'"
(x)=x+ T(t:)=x+x(g) by (4), and whence g”°(x)=x. Thus «(r) acts as
an automorphism on B and u(r)|M=r. ou(r)=u(r)o is clear and
u(r)ulo) (xr)=(x+ tr+(to)) 1o(7)=(x +tro+ x(g(z.0)) ro(7)=g(z.0) u(0)(x7)
show that #(r)u(p)=g(r.0)u(r0). Now it is clear that AE€ B°<c M¢¢c
MFP=A.

Let {yi.z;:i=1,,n} and {u:,v;;i=1,+-,m} be a (0)-Galois coordinate
system for B/M and a P-Galois coordinate system for M/A respectively.
Then X; (X wsro*(v;))r6*(2:)= 010+ for all ro* € G=LEJz'(0). where 7

runs over all the elements of a complete representatives of G modulo (o).

Noting that C is an s-subgroup of G, we have the following
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Corollary 4.3. Let A be connected and B/A a G-Galois extension.

Then the following conditions are equivalent.

—r—
o0 =
[ —

(0]

(11]

(1) B is connected.
(2) M is connected.
(3) T is connected.
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