ON CONNECTEDNESS OF p-GALOIS EXTENSIONS OF RINGS

MIGUEL FERRERO and KAZUO KISHIMOTO

Let A be an algebra over a prime field GF(p) of prime characteristic p with an identity 1 and G a finite p-group. A ring is said to be *connected* if the center contains no nontrivial idempotents.

In this paper, we study the connectedness of G-Galois extensions over a connected ring A. The study contains the extensions of several results cited in [7], [8] and [11] to the non-commutative case.

Our study starts with the preliminary section §1, which is devoted to notations and some general remarks about a skew polynomial ring of derivation type and abelian extensions of rings which have been noted in [5] and [6].

In §2, G is assumed to be cyclic and we will give necessary and sufficient conditions for A to have a connected G-Galois extension B for the case |G|=p. Further, if B is a G-Galois extension for $G=(\sigma)$ with $|\sigma|=p^e$, we can prove that B is connected if and only if $T=B^{\sigma^p}$, the fixed subring of B under σ^p , is connected. In §§3 and 4, we shall extend the results of §2 to the case in which G is a noncyclic abelian group and to the case in which G is a non abelian group.

- 1. **Preliminaries.** Let A be a ring with an identity 1 which has derivations $\{D_i : i=1,\dots,n\}$ and a family $\mathcal{A} = \{a_{ij} : i,j=1,\dots,n\}$ of elements in A such that
 - $(1) \quad a_{ij} + a_{ji} = a_{ii} = 0.$
 - (2) $[D_i, D_j] = D_i D_j D_j D_i = I_{a_{ji}}$, an inner derivation $(a_{ji})_r (a_{ji})_l$,
 - (3) $D_i(a_{jk}) + D_k(a_{ij}) + D_j(a_{ki}) = 0$

for all $i,j,k=1,\cdots,n$.

The set of all polynomials

$$\{\sum X_1^{\nu_1} X_2^{\nu_2} \cdots X_n^{\nu_n} \ a_{\nu_1 \nu_2 \cdots \nu_n} : a_{\nu_1 \nu_2 \cdots \nu_n} \in A\}$$

becomes an associative ring by the rules

$$aX_i = X_i a + D_i(a)$$
 for all $a \in A$ and $X_i X_j = X_j X_i + a_{ij}$.

The first named author was supported by a fellowship awarded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

This ring is denoted by $R_n = A[X_1, \dots, X_n; D_1, \dots, D_n, \mathcal{A}]$ or $R_n = A[X_1, \dots, X_n; D_1, \dots, D_n, \{a_{ij}; i, j = 1, \dots, n\}]$ and is called a skew polynomial ring of derivation type (see [5]). Moreover, by $R_m(0 \le m \le n)$, we denote the skew polynomial ring $A[X_1, \dots, X_m; D_1, \dots, D_m, \{a_{ij}; i, j = 1, \dots, m\}]$ which is a subring of R_n , where $R_0 = A$. In particular, if n = 1, we denote it by

$$R = A[X;D] = \{ \sum X^i a_i ; a_i \in A \}$$

and its multiplication is given by aX = Xa + D(a) for $a \in A$.

Further, by D_m^* , we denote the derivation of R_{m-1} defined by $D_m^*(h) = hX_m - X_m h$ $(h \in R_{m-1})$, where $1 \le m \le n$. Clearly $D_m^* \mid A = D_m$, and $D_m^*(X_k) = a_{km}$.

Remark 1.0. For a permutation π of m letters $1, \dots, m$ ($m \le n$), we have an A-ring isomorphism

$$R_m \cong A[X_{\pi(1)}, \dots, X_{\pi(m)}; D_{\pi(1)}, \dots, D_{\pi(m)}, \{a_{\pi(i)\pi(j)}; i, j=1, \dots, m\}]$$

which maps X_i to $X_{\pi(i)}$ $(i=1,\dots,m)$. Moreover, there holds

$$R_m \cong R_{m-1}[X_m; D_m^*] \ (1 \le m \le n).$$

Definition 1.1. Let g be a monic polynomial in $R_{m-1}[X_m; D_m^*] = R_m$ where $1 \le m \le n$. g is called a *generator* in R_n if $gR_n = R_ng$. Moreover, a generator g in A[X;D] is called *weakly irreducible* (abbreviate *w-irreducible*) if g has no proper monic factors of degree ≥ 1 which is a generator.

Remark 1.2. The notion of w-irreducibility of g in A[X] coincides with irreducibility of g in C(A)[X] where C(A) is the center of A since each generator in A[X] is contained in C(A)[X].

Remark 1.3. Let $R_m = R_{m-1}[X_m; D_m^*]$ $(1 \le m \le n)$. Then, there exists a generator $g = X_m - f$ $(f \in R_{m-1})$ in R_m if and only if there exists an element $Y \in R_m$ such that $R_m = R_{m-1}[Y]$ (i.e., R_m is a free R_{m-1} —module with the basis $\{1, Y, Y^2, \dots\}$ such that hY = Yh for all $h \in R_{m-1}$).

For, if $g=X_m-f$ $(f \in R_{m-1})$ is a generator in $R_m=R_{m-1}[X_m; D_m^*]$ then D_m^* is the inner derivation I_f of R_{m-1} effected by f (that is, $D_m^*(h)=I_f(h)=hf-fh$ for all $h \in R_{m-1}$), which implies $R_m=R_{m-1}[g]$. Conversely, if $R_m=R_{m-1}[Y]$ and $X_m=\sum Y_jf_j$ $(f_j \in R_{m-1})$ then, for $h \in R_{m-1}$, $D_m^*(h)=hX_m-X_mh=\sum Y^j(hf_j-f_jh)$, and whence $D_m^*(h)=hf_0-f_0h$, which implies that X_m-f_0 is a generator in R_m .

Definition 1.4. Let B be a ring extension of A with the common identity 1 and G a finite group of automorphisms of B. Then B is said to be a G-Galois extension of A if $A=B^G(=\{b\in B: \tau(b)=b \text{ for all } \tau\in G\})$, A_A is a direct summand of B_A and there exist elements r_i , s_i $(1 \le i \le k)$ such that $\sum_{i=1}^k r_i \tau(s_i) = \delta_{1,\tau}$ for all $\tau \in G$ (cf. [10]). Moreover, a G-Galois extension B/A is called a p^e -cyclic extension if G is a cyclic group of order p^e .

Remark 1.5. Let $G = (\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_n)$ be an elementary abelian group of order p^n . Then, A has a G-Galois extension B if and only if there exist derivations $\{D_i: i=1,\cdots,n\}$ of A, a family $\mathcal A$ of elements in A which satisfy conditions (1)-(3) and there exist elements α_1,\cdots,α_n of A such that $X_i^p - \alpha_i = X_i^p - X_i - \alpha_i$ is a generator in $R_n = A[X_1,\cdots,X_n:D_1,\cdots,D_n,\mathcal A]$ for $i=1,\cdots,n$. Moreover, if this is the case, B is isomorphic to the factor ring R_n/M , $M = (X_1^p - \alpha_1,\cdots,X_n^p - \alpha_n)$ and $\sigma_i(x_j) = x_j + \delta_{ij}$ where x_j is the coset of X_j and δ_{ij} is the Kronecker's delta (see [4, Corollary 2.1]). Hence we may write

$$B = \sum \bigoplus (x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n}) A \quad (0 \le \nu_i \le p-1)$$

with $ax_i = x_i a + D_i(a)$ for $a \in A$, $x_i x_j = x_j x_i + a_{ij}$ and $x_i^{\mathfrak{p}} = a_i \in A$.

Moreover, in this paper, we shall use the following conventions:

$$A_m = A[x_1, \dots, x_m : D_1, \dots, D_m, \{a_{i,i} : 1 \le i, i \le m\}] \ (1 \le m \le n)$$

which is a subring of B (as in Remark 1.5) generated by elements x_1, \dots, x_m over A.

$$A'_{m} = A[x_{1}, \dots, x_{m-1}, x_{m+1}, \dots, x_{n}; D_{1}, \dots, D_{m-1}, D_{m+1}, \dots, D_{n}, \{a_{ij}; i, j \neq m\}].$$

In case $a_{ij}=0$ $(1 \le i, j \le m)$, abbreviate

$$A_m = A[x_1, \dots, x_m : D_1, \dots, D_m],$$

and further

$$R_m = A[X_1, \dots, X_m; D_1, \dots, D_m].$$

Remark 1.6. Let $R_n = A[X_1, \dots, X_n; D_1, \dots, D_n]$. Then, $X_i^p - \alpha(\alpha \in A)$ is a generator in R_n if and only if $\alpha \in A_0 = \bigcap_{i=1}^n A^{D_i}$ and $I_\alpha = D_i^p = D_i^p - D_i$, where $A^{D_j} = \{a \in A; D_j(a) = 0\}$ ([5, Theorem 2.1]).

Now, the rest of this section is devoted to generalize some results in [7] to the non-commutative case. These results are not only useful in our study, but also, interesting of themselves.

Definition 1.7. Let H be a group and N a normal subgroup of H. Then, we say that N is a *small subgroup* (abbreviate an s-subgroup) of H if $NH' \neq H$ for any proper subgroup H' of H.

If $H = (\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_n)$ is an abelian group with $|\sigma_i| = p^{e_i}$ (p is prime and $e_i \ge 1$), then $N = (\sigma_1^p) \times (\sigma_2^p) \times \cdots \times (\sigma_n^p)$ is an s-subgroup of H. Moreover, if H is a finite p-group then the Frattini subgroup $\Phi(H)$ of H is an s-subgroup of H.

The following Lemma and Theorem are proved in [7] when the rings considered are commutative. But the validity of them can be shown by the same way for the non-commutative case. For the convenience of readers, we will prove them here again.

Lemma 1.8. Let A be connected and let B/A be an H-Galois extension for a finite group H. If B is disconnected, then there exists a nontrivial idempotent $e \in C(B)$ such that $e\tau(e)=0$ or $\tau(e)=e$ for every $\tau \in H$.

Proof. Let f be a nontrivial idempotent of C(B). Then H-norm N(f) is either 1 or 0. If N(f)=1, then f is invertible and this leads to a contradiction f=1. Thus N(f)=0. Let e be a product $\tau_1(f)\tau_2(f)\cdots\tau_r(f)$ of maximal length such that $e\neq 0$, and such that $\tau_i(f)$'s are distinct. For an element τ of H, assume $e\tau(e)\neq 0$. Then each $\tau(\tau_i(f))$ appears among the $\tau_i(f)$'s and so $\tau(e)=e$.

Theorem 1.9. Let A be connected and let B/A be an H-Galois extension for a finite group H. If B^N is connected for an s-subgroup N of H, then B is connected.

Proof. Suppose B is disconnected. For any idempotent e as in Lemma 1.8, we set $H' = \{\tau \in H : \tau(e) = e\}$. Choose τ_1, \dots, τ_s to be the right coset representatives in NH'/H'. Then all $\tau_i(e)$'s are distinct. Hence, for each pair $i \neq j$, we have $\tau_i^{-1}\tau_j(e) = \tau_k(e) \neq e$ for some k, and whence $e\tau_i^{-1}\tau_j(e) = 0$ (Lemma 1.8), which implies $\tau_i(e)\tau_j(e) = 0$. Therefore, $e' = \tau_1(e) + \dots + \tau_s(e)$ is an idempotent which is fixed by N and hence, e' is 1 or 0. If e' = 0, then all $\tau_i(e)$'s are zero, a contradiction. Hence e' = 1. It follows that $\{\tau_i(e): i=1,\dots,s\}$ is the full H-orbit of e. Since $\phi: H/H' \to NH'/H'$ such that $\phi(\sigma H') = \tau_i H'$ for $\sigma(e) = \tau_i(e)$ is a bijection, this means that H'N = H. Since N is an s-subgroup of H, we have H' = H, which is a contradiction.

2. Connected cyclic extensions. The purpose of this section is to give

a necessary and sufficient condition for a connected ring A to have a connected p-cyclic extension and some related results.

The map 'defined in R = A[X : D] by $g'(X) = \sum_{i=1}^{n} iX^{i-1}a_i$ for all $g(X) = \sum_{i=0}^{n} X^i a_i$, satisfies $(D^*(g(X))' = D^*(g'(X)))$ and so is a derivation in R, where $D^* = I_X$.

Let f(X) be a generator in R. Then f(X) is contained in the commutative ring $C(A^D)[X]$ (cf. [1, Lemma 1.6]). Hence, if f(X) is separable in $C(A^D)[X]$, then f'(X) is invertible in $C(A^D)[X] \cong C(A^D)[X]/(f(X))$ ([7, Theorem 1]). Under these remarks we can prove the following

Lemma 2.1. Let $f(X) = \sum_{i=0}^{n} (X^{p})^{i} a_{i}$ be a generator in R = A[X; D], and assume that R/(f(X)) is connected. Then

- (i) A is connected.
- (ii) If f(X) is separable in $C(A^D)[X]$, then f(X) is w-irreducible.
- *Proof.* (i) We set B=A[x:D]=R/(f(X)). Now let e be an idempotent of C(A). Then ea=ae for all $a \in A$. Hence $e \in C(B)$ if and only if D(e)=ex-xe=0. $D(e)=D(e^2)=2eD(e)$ implies (2e-1)D(e)=0. Multiplying by e, we have eD(e)=0 and so D(e)=0.
- (ii) If f(X) is separable in $C(A^D)[X]$ then $f'(x)=a_0$ is invertible in $C(A^D)$. Assume f(X) is not w-irreducible. Then f(X)=g(X)h(X) for some proper monic factors g(X) and h(X) which are generators. Hence $a_0=f'(X)=g(X)h(X)+g(X)h'(X)$ shows that (g(X))+(h(X))=R. Since g(X) and h(X) are central polynomials, (g(X))(h(X))=(h(X))(g(X)) and hence $(f(X))=(g(X))(h(X))=(g(X))\cap (h(X))$. Thus $R/(f(X))\cong R/(g(X))\oplus R/(f(X))$ is disconnected.

As is noted in Remark 1.5, a polynomial $X_i^p - \alpha_i$ which is a generator in $R_n = A[X_1, \dots, X_n; D_1, \dots, D_n, \mathcal{A}]$ plays a key role to construct an abelian extension of A. In the following we shall give an important property of $X^p - \alpha$.

Theorem 2.2. Let A be connected. Then a generator $f(X) = X^p - a$ in R = A[X;D] is either w-irreducible or a product of generators of degree 1.

Proof. Suppose f(X) is not w-irreducible. Then there exists a proper factor g(X) of f(X) which is a generator. Let $g(X) = X^n + \sum_{i=0}^{n-1} X^i a_i$. Then n < p and ag(X) = g(X)a for $a \in A$ implies $nD(a) = a_{n-1}a - aa_{n-1}$ ([1, Lemma 1.6]) and so D is inner. Hence we may assume that R = A[X] and $X^p - \alpha \in C(R) = C(A)[X]$. Hence $X^p - \alpha$ is reducible in C(A)[X]

and it is a product of linear factors which are generators by [7, Lemma 2.1].

Corollary 2.3. Let R = A[X;D]. If D is outer then a generator $X^{v} - \alpha$ is w-irreducible,

Now, in the rest of this section, B/A will mean a p-cyclic extension (cf. Definition 1.4). Then, by Remark 1.5, B is obtained by $A[X;D]/(X^{\mathfrak{p}}-\alpha)$ for some derivation D of A and a generator $X^{\mathfrak{p}}-\alpha$ in R=A[X;D]. Hence, we may write

$$B = A[x;D] = A[x;D/\alpha] = \sum_{i=0}^{p-1} \bigoplus x^i A$$

where $x = X + (X^{\mathfrak{p}} - \alpha)$.

Lemma 2.4. Let B = A[x;D] and $f = \sum_{i=0}^{s} x^{i}a_{i}$ be an element of $V_{B}(A)$, the centralizer of A in B, where $1 \le s \le p-1$ and $a_{s} \ne 0$. Then

- (i) $a_s \in C(A)$, and $sD(a)a_s = a_{s-1}a aa_{s-1}$ for all $a \in A$.
- (ii) If a_s is invertible in A then D is inner.
- (iii) If $f \in C(B)$ then $D(a_i)=0$ for all i.

Proof. For any $a \in A$, we have

$$0 = af - fa = x^{s}(aa_{s} - a_{s}a) + x^{s-1}(sD(a)a_{s} + aa_{s-1} - a_{s-1}a) + \sum_{i=0}^{s-2} x^{i}c_{i}$$

where $c_i \in A$, $i=1,\dots,s-2$. This implies (i). The other assertions will be be easily seen.

Now, let $A_0(D) = \{a \in A_0 ; I_a = D\}$ where $A_0 = A^D$. Then $A_0(D) = C(A_0)$ (D), and X - c is a generator in R = A[X;D] if and only if $c \in A_0(D)$ (Remark 1.3). Moreover, let $A(D^{\mathfrak{p}}) = \{a \in A_0 ; I_a = D^{\mathfrak{p}}\}$. Then $A_0(D^{\mathfrak{p}}) = C(A_0)$ $(D^{\mathfrak{p}})$, and $X^{\mathfrak{p}} - c$ is a generator in R if and only if $c \in A_0(D^{\mathfrak{p}})$ (Remark 1.6). Further, we shall write $A_0(D)^{\mathfrak{p}} = \{a^{\mathfrak{p}} ; a \in A_0(D)\}$.

Next, we shall prove the following theorem which is one of our main results.

Theorem 2.5. Let A be connected. Then, for $B=A[x;D/\alpha]$, the following conditions are equivalent.

- (1) B is connected.
- (2) $X^{\mathfrak{p}} \alpha$ is w-irreducible in R.
- (3) $\alpha \in A_0(D^{\mathfrak{p}}) \setminus A_0(D)^{\mathfrak{p}}$.

Proof. (1) \Rightarrow (2) is clear from Lemma 2.1(ii), and (2) \Leftrightarrow (3) is clear from Theorem 2.2.

- $(2) \Rightarrow (1)$. Let $e = \sum_{i=0}^{s} x^i a_i$ be an idempotent of C(B), and assume that $1 \le s \le p-1$ and $a_s \ne 0$. Then e is a nontrivial idempotent in C(B). Now, by Lemma 2.4, we have
 - (a) $D(a_i)=0$ for all i,
 - (b) $a_s \in C(A)^D$,
 - (c) $sD(a)a_s = a_{s-1}a aa_{s-1} \ (a \in A).$

From (a), we see that

$$e^{p} = \sum_{i=0}^{s} (x^{p})^{i} a_{i}^{p} = \sum_{i=0}^{s} (x+\alpha)^{i} a_{i}^{p} = e = \sum_{i=0}^{s} x^{i} a_{i}.$$

This implies $a_s^p = a_s$. Since $X^{\mathfrak{v}}$ is separable in C(A)[X]([9, Lemma 2.1]) and $a_s^p = a_s \in C(A)$ (connected) by (b), it follows that $a_s \in GF(\mathfrak{p})$ and is invertible. Hence D is inner by (c). Thus we may assume that R = A[X] and $C(B) \cong C(A)[X]/(X^{\mathfrak{v}} - a)$. Since $X^{\mathfrak{p}} - a$ is irreducible in C(A)[X] (Remark 1.2), C(B) is connected by [8, Theorem 1.6], a contradiction. Therefore, we obtain $e = a_0 \in C(A)$.

As a consequence of Theorem 2.5, we have

Corollary 2.6. Let A be connected. Then A has a connected p-cyclic extension if and only if one of the following conditions (a) and (b) is satisfied.

- (a) $p \leq (C(A): C(A)^p)$, the index of the subgroup $C(A)^p$ in the additive group (C(A), +).
 - (b) A has an outer derivation D such that $C(A_0)$ $(D^p) \neq \emptyset$.

Proof. First, we assume that A has a connected p-cyclic extension B. Then, there exists a derivation D of A and an element $\alpha \in A$ such that $X^{\mathfrak{p}} - \alpha$ is a w-irreducible generator in R = A[X;D] (Remark 1.5 and Theorem 2.5). In this case, there holds $\alpha \in A_0(D^{\mathfrak{p}}) = C(A_0)$ ($D^{\mathfrak{p}}$) and $\alpha \notin A_0(D)^{\mathfrak{p}}$. If it is possible to choose D as inner, we may assume D = 0 and so $A_0(D^{\mathfrak{p}})$ C(A) and $\alpha \in C(A) \setminus C(A)^{\mathfrak{p}}$. Since $\nu \alpha + C(A)^{\mathfrak{p}}$, $\nu = 0, 1, \cdots, p-1$, are distinct cosets in $C(A)/C(A)^{\mathfrak{p}}$, $(C(A):C(A)^{\mathfrak{p}}) \geq p$. Conversely, if (a) is satisfied, then C(A) has a connected commutative p-cyclic extension C ([8, Lemma 1.2 and Theorem 1.6]) and $B = A \otimes_{C(A)} C$ is a requested one. If (b) is satisfied, $A_0(D) = \emptyset$, and so $X^{\mathfrak{p}} - \alpha$ is w-irreducible for any $\alpha \in A_0(D^{\mathfrak{p}})$ (Theorem 2.5).

A p-cyclic extension B/A is said to be *inner* (resp. outer) if its Galois group can be choosen as an inner automorphism group (resp. an outer automorphism group). In [5, Corollary 1.3], it is proved that if B=A[x;D] is a p-cyclic extesnion of A, then B/A is inner if and only if there exists

an elemet $c \in U = U(C(A))$, the group of invertible elements in C(A), such that D(c) = c. Further, if C(A) is a field and B/A is inner, then each A-automorphism of B is inner and $V_B(A) = C(A) \supseteq C(B)$ ([6, Theorem 1]). On the other hand, if C(A) is a field and B/A is outer, then each A-automorphism of B is outer and $V_B(A) = C(B)$ ([6, Theorem 2]). Combining this with Corollary 2.6, we have the following

Corollary 2.7. (I) Let A be connected. Then A has a connected inner p-cyclic extension if and only if there exists a derivation D of A such that

- (i) $A_0(D^{\mathfrak{p}}) \neq \emptyset$,
- (ii) $D(U) \cap U \neq \emptyset$, where U = U(C(A)).
- (II) Let C(A) be a field and B=A[x;D] a connected p-cyclic extension. Then C(B) is a field and further,
 - (i) B/A is outer if and only if D(C(A))=0,
 - (ii) B/A is inner if and only if $D(C(A)) \neq 0$.
- *Proof.* (I) Assume that A has a derivation D which satisfies (i) and (ii). Then D is outer by (ii). Hence, by Corollary 2.6, A has a connected p-cyclic extension B = A[x;D]. Further, by (ii), there exists an element $c \in U$ such that $D(c) \in U$. Then $c(xD(c)^{-1}c)c^{-1}=(cxc^{-1})$. $D(c)^{-1}c=xD(c)^{-1}c+1$. Put $y=xD(c)^{-1}c$. Then $B=A[y;D(c)^{-1}cD]$ shows that B is an inner p-cyclic extension with a Galois group (\bar{c}), a cyclic group generated by an inner automorphism $\bar{c}(=c_lc_r^{-1})$. The converse is clear by [5, Corollary 1.3].
- (II) If D is inner, then we may assume that C(B) = C(A)[x] and so C(B) is a field. On the other hand, if D is outer, then $C(B) \subseteq V_B(A) \cap A = C(A)$ (by Lemma 2.4), which implies $C(B) = C(A)^D \subseteq C(A)$. Finally, if B/A is outer, $C(B) \supseteq C(A)$ and then $D(C(A)) = I_x(C(A)) = 0$. If B/A is inner then $C(A) \supseteq C(B)$ and hence $D(C(A) = I_x(C(A)) \neq 0$. This completes the proof of (II).
- Let J(A) be Jacobson radical of A. We say that A is a *quasi local ring* (resp. a *primary ring* (see [2, p.56]) if A/J(A) is a two sided simple ring (resp. a simple artinian ring).

Let A be a two sided simple ring. Then each proper ideal of R = A[X;D] is generated by a generator in R and an ideal of R is maximal if and only if it is generated by a w-irreducible polynomial (see [4, p. 76]).

Corollary 2.8. (I) If A is a two sided simple ring (resp. a simple

artinian ring) then, for $B = A[x;D/\alpha]$, the following conditions are equivalent.

- (1) B is a two sided simple ring (resp. a simple artinian ring).
- (2) B is connected.
- (3) $X^{\mathfrak{p}} \alpha$ is w-irreducible in R.
- (II) If A is a quasi local ring (resp. a primary ring) with $D(J(A)) \subseteq J(A)$ then, for $B = A[x;D/\alpha]$, the following conditions are equivalent.
 - (1) B is a quasi local ring (resp. a primary ring).
 - (2) B/J(B) is connected.
- (3) $X^{p} \bar{a}$ is w-irreducible in $A/J(A)[X;\bar{D}]$ where \bar{a} is the coset of a modulo J(A) and \bar{D} is a derivation of A/J(A) defined by $\bar{D}(\bar{a}) = \bar{D}(\bar{a})$.

Proof. (I) is clear from the above remark and Theorem 2.5.

(II) If $D(J(A)) \subseteq J(A)$ then $J(A)[x;D] = \{\sum_{i=0}^{p-1} x^i a_i ; a_i \in J(A)\}$ is an ideal of B. Hence J(B) = J(A)[x;D] by [10, Proposition 7.8] and B/J(B) is a p-cyclic extension of A/J(A) by [10, Theorem 5.6]. The rest is clear from (1).

Corollary 2.9. Let A be a finite dimensional central simple algebra and B=A[x;D] a connected p-cyclic extension of A. Then B/A is inner if and only if D is outer.

Proof. If B/A is inner then D is outer by Corollary 2.7. Conversely, if D is outer then $D(C(A)) \neq 0$. For, if D(C(A)) = 0 then D is an inner derivation of A ([2, Theorem 6.13.2]), a contradiction. Thus B/A is inner by Corollary 2.7.

Lemma 2.10. Let B = A[x;D] be a p-cyclic extension with a Galois group (σ) . Then $T_{\sigma}(y) = \sum_{i=0}^{p-1} \sigma^{i}(y) = 1$ for $y \in B$ if and only if $y = -x^{p-1} + f(x)$ for $f(x) = \sum_{i=0}^{p-2} x^{i} a_{i}$.

Proof.
$$T_{\sigma}(x^{i}a) = (x^{i} + (x+1)^{i} + \dots + (x+p-1)^{i})a$$

$$= [px^{i} + \binom{i}{i-1}(x^{i-1}(1+\dots+(p-1)) + \dots + \binom{i}{j}x^{j}(1^{i-j} + \dots + (p-1)^{i-j} + \dots + (1^{i} + \dots + (p-1)^{i}]a.$$

Since $\{1,\dots,p-1\}$ is a cyclic group generated by some element c, we see that, if $1 \le s \le p-2$, then

$$\sum_{k=1}^{p-1} c^s = \sum_{k=0}^{p-2} (c^k)^s = \sum_{k=0}^{p-2} (c^s)^k = (1 - (c^s)^{p-1}) (1 - c^s)^{-1} = 0.$$

Hence
$$T_{\sigma}(x^i a) = \begin{cases} 0 \text{ if } i \leq p-2\\ -a \text{ if } i = p-1. \end{cases}$$

This shows that $T_{\sigma}(y)=1$ if and only if $y=-x^{p-1}+\sum_{i=0}^{p-2}x^{i}a_{i}$.

Let B be a p^e -cyclic extension of A for a cyclic group (σ) . If we put $\tau_i = \sigma^{p^i}$ $(i \leq e)$ and $B_i = B^{\tau_i}$, then B_{i+1}/B_i is a p-cyclic extension with a cyclic group $(\tau_i \mid B_{i+1})$ such that B_i is a B_i -direct summand of B_{i+1} . Hence $B_{i+1} = B_i[x_{i+1}; \partial_i]$ for some derivation ∂_i of B_i and an element $x_{i+1} \in B_{i+1}$ such that $\tau_i(x_{i+1}) = x_{i+1} + 1$. A p^e -cyclic extension B of A is said to be a trivail extension if B is obtained by $C \otimes_{C(A)} A$ for some commutative p^e -cyclic extension C of C(A). Hence B_{i+1}/B_i is a trivial extension if and only if ∂_i is inner. Then we have the following

Corollary 2.11. Let A be connected.

- (i) B is connected if and only if B_1 is connected.
- (ii) B/A is a trivial extension if and only if B_{i+1}/B_i is a trivial extension for every i.
- *Proof.* (i) Since $B_1 = B^{\tau_1}$ and (τ_1) is an s-subgroup of (σ) , the connectedness of B_1 implies that of B by Theorem 1.9. The converse is also clear by Lemma 2.1.
- (ii) It is clear that B/A is a trivial extension if each B_{i+1}/B_i is a trivial extension. To prove the converse, it is enough to prove that if ∂_i is inner, then ∂_{i-1} is also inner. Now, we assume that ∂_i is inner. Then $\partial_i = I_C$ for some $c \in B_i$. We write $y = x_{i+1} c$, $x_i = x$, $\tau_i = \tau$ and $\tau_{i-1} = \rho$. Then $\tau(y) = y + 1$ and $B_{i+1} = B_i[y]$ (that is, $y \in C(B_{i+1})$). Let $t = \rho(y) y$. Then $t \in B_i$ since $\tau(\rho(y) y) = \rho(y + 1) (y + 1) = \rho(y) y = t$, and further, $T_\rho(t) = \sum_{i=0}^{p-1} \rho^i(t) = \sum_{i=0}^{p-1} \rho^i(\rho(y) y) = \tau(y) y = 1$. Hence $t = -x^{p-1} + \sum_{i=0}^{p-1} x^i d_i$ ($d_i \in B_{i-1}$) by Lemma 2.10 and $\rho(y) y = t \in C(B_{i+1}) \cap B_i = V_{B_i}(B_{i+1}) \subseteq V_{B_i}(B_{i-1})$. Hence, by Lemma 2.4, ∂_{i-1} is the inner derivation effected by $-d_{p-2}$.

As a direct consequence of Corollary 2.8 and Corollary 2.11, we obtain the following

- Corollary 2.12. When A is a two sided simple ring (resp. a simple artinian ring), B is a two sided simple ring (resp. a simple artinian ring) if and only if so is B_1 .
- 3. Connected Abelian extensions. Let $G = (\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_n)$ be an elementary abelian group of order p^n . In this section, we assume that B is a G-Galois extension. Hence $B = A[x_1, \dots, x_n; D_1, \dots, D_n, \mathcal{A}] = \sum \bigoplus (x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n}) A$

with $x_i^p = a_i \in A$, $ax_i = x_i a + D_i(a)$ for $a \in A$ and $x_i x_j = x_j x_i + a_{ij}$. Unless otherwise stated, B means one which is obtained by the free A-basis $\{x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n}; 0 \le \nu_i \le p-1\}$, and as to notations A_k , etc., we follow Remark 1.5 and others.

The following lemma is easy to obtain by induction, using Lemma 2.1 and Corollary 2.7(2).

Lemma 3.1. If B is connected then A_k is connected, and if C(A) is a field then $C(A_k)$ is a field for $0 \le k \le n$.

It is clear that the converse of Lemma 3.1 is not true. For this reason, the main interest of this section is to study sufficient conditions for B to be connected.

In virtue of Theorem 2.5, we can easily see that if $X_i^{\mathfrak{p}} - a_i$ is *w*-irreducible in $A_i'[X_i; D_i^*]$ for $i=1,\dots,n$, then B is connected. Now we shall study some types of intermediate subrings of B/A which depend on properties of derivations D_i 's.

Let S_n be the set of all permutations of $\{1, \dots, n\}$ and for $\pi \in S_n$, let $A_{\pi(k)}$ be a subring of B generated by elements $x_{\pi(1)}, \dots, x_{\pi(k)}$ over A. Then, there exists an element $\pi \in S_n$ and $m \ge 0$ such that $D_{\pi(i)}^*$ is inner (resp. outer) in $A_{\pi(i-1)}$ for each $i \le m$, and for each $\nu \in S_n$, $D_{\nu(j)}^*$ is not inner (resp. outer) in $A_{\nu(j-1)}$ for some $1 \le j \le m+1$ (cf. Remark 1.0 and Remark 1.5).

For the inner (resp. outer) case, we set

$$\mathcal{J} = \{D_{\pi(1)}, \dots, D_{\pi(m)}\}\ (\text{resp. } \mathcal{O} = \{D_{\pi(1)}, \dots, D_{\pi(m)}\}).$$

Then, \mathcal{I} (resp. \mathcal{O}) will be called a maximal inner (resp. outer) subset of $\{D_1, \dots, D_n\}$ over A. Moreover, we denote $A_{\pi(m)}$ by $A(\mathcal{I})$ (resp. $A(\mathcal{O})$). Clearly, \mathcal{I} (resp. \mathcal{O}) might be \mathcal{O} , or not \mathcal{O} , and it seems that \mathcal{I} (resp. \mathcal{O}) does not determine uniquely. As to our study, we shall distiguish two cases.

Case 1. D_i is inner for some i.

In this case, there is a maximal inner subset \mathcal{I}_1 of $\{D_1, \dots, D_n\}$ over A which is not empty. Next, let \mathcal{O}_1 be a maximal outer subset of $\{D_1, \dots, D_n\} \setminus \mathcal{I}_1$ over $A(\mathcal{I}_1)$. Clearly $\mathcal{I}_1 \neq \{D_1, \dots, D_n\}$ if and only if $\mathcal{O}_1 \neq \emptyset$. We shall now write

$$A(\mathcal{I}_1,\mathcal{O}_1) = A(\mathcal{I}_1) (\mathcal{O}_1).$$

If $\mathcal{I}_1 \cup \mathcal{O}_1 \neq \{D_1, \dots, D_n\}$ then we can see

$$B = A(\mathcal{G}_1, \mathcal{O}_1) (\mathcal{G}_2, \mathcal{O}_2) \cdots (\mathcal{G}_k, \mathcal{O}_k)$$

for some k by repetition of this procedure, where $\mathcal{G}_k \neq \emptyset$.

Case 2. Each D_i is outer.

In this case, there is a maximal outer subset \mathcal{O}'_1 of $\{D_1, \dots, D_n\}$ over A which is not empty. Next, let \mathcal{I}'_1 be a maximal inner subset of $\{D_1, \dots, D_n\} \setminus \mathcal{O}'_1$ over $A(\mathcal{O}'_1)$, and we write

$$A(\mathcal{O}_1',\mathcal{I}_1') = A(\mathcal{O}_1') (\mathcal{I}_1').$$

If $\mathcal{O}'_1 \cup \mathcal{I}'_1 \neq \{D_1, \dots, D_n\}$ then we can see

$$B = A(\mathcal{O}_1', \mathcal{I}_1') (\mathcal{O}_2', \mathcal{I}_2') \cdots (\mathcal{O}_h', \mathcal{I}_h')$$

for some h by repetition of this procedure, where $\mathcal{O}'_h \neq \emptyset$.

Now, in the rest of this section, we shall write as follows:

In Case 1, $\mathcal{J}_1 = \{D_1, \dots, D_{m_1}\}, \mathcal{O}_1 = \{D_{m_1+1}, \dots, D_{m_1+n_1}\}, \dots$

In Case 2, $\mathcal{O}_1 = \{D_1, \dots, D_{m_1}\}, \mathcal{I}_1 = \{D_{m_1+1}, \dots, D_{m_1+n_1}\}, \dots$

If $m_1 < n$ then, it is obvious that in Case 1 (resp. in Case 2), D_j^* is outer (resp. inner) in A_{m_1} for $j = m_1 + 1, \dots, n$, and $A_{q_1} = A(\mathcal{I}_1, \mathcal{O}_1)$ (resp. $A_{q_1} = A(\mathcal{O}_1', \mathcal{I}_1')$) for $q_1 = m_1 + n_1$.

Lemma 3.2. Let D_1 be inner.

- (i) If D_j^* is inner A_1 then D_j is inner.
- (ii) In case $D_1=0$, D_j^* is inner in A_1 if and only if D_j is inner and $x_jx_1=x_1x_j$.

Proof. Let $D_1=I_c$. Then, for $y=x_1-c$, we have $A_1=A[y]$. Now, we assume that D_j^* is inner in A_1 . Then, there exists an element $f=\sum_{i=0}^{p-1}y^ia_i$ $(a_i \in A)$ in A_1 such that $D_j^*(g)=gf-fg$ for all $g\in A_1$. Since y is central in A_1 , it follows that $A\ni D_j(a)=D_j^*(a)=aa_0-a_0a$ for all $a\in A$. Clearly $D_j^*(x_1)=D_j(c)$. Hence, if, in particular, c=0 (that is $D_1=0$) then $x_jx_1=x_1x_j$. The rest of the assertions will be easily seen.

Lemma 3.3. (i) Let $A_{q_1} = A(\mathcal{G}_1, \mathcal{O}_1)$. Then we may assume $D_i = 0$, $a_i \in C(A)$ for $i = 1, \dots, m_1$ and $A_{q_1} = A[x_1, \dots, x_{m_1}, x_{m_1+1}, \dots, x_{m_1+n_1}; D_{m_1+1}, \dots, D_{m_1+n_1}, \{a_{ij}\}]$ where $ax_i = x_i a$, $x_i x_j = x_j x_i$ for $i, j \leq m_1$, $ax_j = x_j a + D_j(a)$ and $x_i x_j = x_j x_i + a_{ij}$ for $j > m_1$.

(ii) Let $A_{q_1} = A(O'_1, \mathcal{G}'_1)$. Then we may assume $D_i^* = 0$ in A_{i-1} for $i = m_1 + 1, \dots, m_1 + n_1$ and $A_{q_1} = A[x_1, \dots, x_{m_1}, y_{m_1+1}, \dots, y_{m_1+n_1}; D_1, \dots, D_{m_1}, \{a_{ij}\}]$ where $ax_i = x_i a + D_i(a), x_i x_j = x_j x_i + a_{ij}$ for $i, j \leq m_1, y_j = x_j - f_j$ for $f_j \in A_{m_1}$ such that $y_j \in C(A_{q_1})$ and $y_j^* \in C(A_{m_1})$.

Proof. (i) $A_{m_1} = A[x_1, \dots, x_{m_1}]$ is clear from Lemma 3.2 and the rest

can be easily seen.

(ii) Replace A by $A_{m_1} = A(\mathcal{O}_i)$. Then we can see the assertion by the same reason as in (i).

In what follows, let A_{q_1} be as follows:

i) If $A_{q_1} = A(\mathcal{I}_1, \mathcal{O}_1)$ then

$$A_{q_1} = A[x_1, \dots, x_{m_1}, x_{m_1+1}, \dots, x_{m_1+n_1}; D_{m_1+1}, \dots, D_{m_1+n_1}, \{a_{ij}\}],$$

where $x_i^{\mathfrak{p}} = \alpha_i \in C(A)$, $i = 1, \dots, m_1$.

ii) If $A_{q_1} = A(\mathcal{O}'_1, \mathcal{J}'_1)$ then

$$A_{q_1} = A[x_1, \dots, x_{m_1}, y_{m_1+1}, \dots, y_{m_1+n_1}; D_1, \dots, D_{m_1}, \{a_{ij}\}],$$

where $y_j = x_j - f_j \in C(A_{q_1})$ for $f_j \in A_{m_1}$ and $y_j^n = \alpha_j - f_j^n \in C(A_{m_1})$.

Moreover, a derivation D of A is said to be *completely outer* if cD is outer for all nonzero $c \in C(A)$. If C(A) is a field then any outer derivation of A is completely outer.

Lemma 3.4. If $B = A[x_1, \dots, x_n; D_1, \dots, D_n]$ and each outer derivation among $\{D_1, \dots, D_n\}$ is completely outer, then B is either $A(\mathcal{I}_1, \mathcal{O}_1)$ or $A(\mathcal{O}_1')$. More precisely, \mathcal{I}_1 is the set of all inner derivations and \mathcal{O}_1 is the set of all outer derivations among $\{D_1, \dots, D_n\}$.

Proof. Since $\mathcal{A}=\{0\}$, \mathcal{G}_1 is the set of all inner derivations in $\{D_1,\cdots,D_n\}$ by Lemma 3.2. Suppose that there exists D_j such that $D_j \notin \mathcal{G}_1 \cup \mathcal{O}_1$. Then D_j is outer and D_j^* is inner in A_{q_1} . Hence $D_j^*=I_f$ for $f=\sum x_{q_1}^{\nu q_1}\cdots x_1^{\nu_1}a_{\nu q_1\cdots\nu_1}$. Then $A\ni D_j(a)=af-fa$ implies $a_{(P-1)\cdots(P-1)}\in C(A)$ and $(p-1)D_{q_1}(a)$ $a_{(P-1)\cdots(P-1)}=a_{(P-2)(P-1)\cdots(P-1)}a-aa_{(P-2)(P-1)\cdots(P-1)}$. Since D_q^* is outer in A_{m_1} , D_{q_1} is outer. Further since D_{q_1} is completely outer, $a_{(P-1)(P-1)\cdots(P-1)}$ must be 0 and hence $a_{(P-2)(P-1)\cdots(P-1)}\in C(A)$. Then, by the same way, we have $(p-2)D_{q_1}(a)\cdot a_{(P-2)(P-1)\cdots(P-1)}=a_{(P-3)(P-1)\cdots(P-1)}a-aa_{(P-3)(P-1)\cdots(P-1)}$. Repeating this, we can see $\nu_{q_1}=\nu_{q_1-1}=\cdots=\nu_{m_1+1}=0$. Consequently, $f\in A_{m_1}$ and D_j^* is inner in A_{m_1} , a contradiction. Thus \mathcal{O}_1 is the set of all outer derivations in $\{D_1,\cdots,D_n\}$.

Lemma 3.5. (i) Let $A_{q_1} = A(\mathcal{I}_1, \mathcal{O}_1)$. If A_{q_1} is connected then $(C(A_{m_1})^p \cap A)/C(A)^p$ is an m_1 -dimensional GF(p)-space with a basis $\{a_i + C(A)^p : i = 1, \dots, m_1\}$.

(ii) Let $A_{q_1} = A(\mathcal{O}_1, \mathcal{I}_1)$. If A_{q_1} is connected then $(C(A_{q_1})^p \cap A_{m_1})/C(A_{m_1})^p$ is an n_1 -dimensional GF(p)-space with a basis $\{\alpha_i - f_i^p + C(A_{m_1})^p; i = m_1 + 1, \dots, m_1 + n_1\}$.

Proof. (i) Let $f \in C(A_{m_1})$ and $f^{\circ} \in A$. First, we shall prove that $f = \sum_{i=1}^{m_1} x_i \mu_i + c$ for some $\mu_i \in GF(p)$ and $c \in C(A)$.

Now, we set $m_1 = r$ and assume that $f = \sum_{i=1}^{s} x_r^i a_i$ where $a_i \in A_{r-1}$, $a_s \neq 0$ and $2 \leq s \leq p-1$. Then $a_i \in C(A_{r-1})$ for $i=0, 1, \dots, s$ and

$$f^{p} = \sum_{i=0}^{s} (x_{r} + a_{r})^{i} a_{i}^{p} - \sum_{i=0}^{s} x_{r}^{i} a_{i}$$

Hence we obtain $a_s^{\mathfrak{p}} = 0$ and $sa_r a_s^{\mathfrak{p}} = (-a_{s-1})^{\mathfrak{p}}$. Since A_{q_1} is connected, A_r is connected by Lemma 3.1. Then, noting $a_s^{\mathfrak{p}} = 0$, we have $a_s \in GF(p)$, and whence $a_r = (-a_{s-1}s^{-1}a_s^{-1})^{\mathfrak{p}}$. This implies that $X_r^{\mathfrak{p}} - a_r$ is reducible in $C(A_{r-1})[X_r]$, a contradiction. Hence, it follows that $f = x_r a_1 + a_0$. Clearly $a_1^{\mathfrak{p}} = 0$ and so, $a_1 = \mu_r \in GF(p)$. Moreover $f^{\mathfrak{p}} - (x_r \mu_r)^{\mathfrak{p}} = a_0^{\mathfrak{p}} \in A \cap C(A_{r-1})^{\mathfrak{p}}$. Therefore, by induction methods, we obtain $f = \sum_{i=1}^{m_1} x_i \mu_i + c$ for $\mu_i \in GF(p)$ and $c \in C(A)$. Now, noting $x_i^{\mathfrak{p}} = a_i$, we have $f^{\mathfrak{p}} = \sum_{i=1}^{m_1} a_i \mu_i + c^{\mathfrak{p}}$. Clearly $C(A_{m_1})^{\mathfrak{p}} \supset C(A)^{\mathfrak{p}}$ and they are GF(p)-modules. Since $a_i \in C(A_{m_1})^{\mathfrak{p}} \cap A$, it follows that

$$(C(A_{m_1})^{\mathfrak{p}} \cap A)/C(A)^{\mathfrak{p}} = \sum_{i=1}^{m_1} (\alpha_i + C(A)^{\mathfrak{p}})GF(p).$$

If $\alpha_i = \alpha_1 \nu_1 + \dots + \alpha_{i-1} \nu_{i-1} + \alpha_{i+1} \nu_{i+1} + \dots + \alpha_{m_1} \nu_{m_1} + c^{\mathfrak{p}}(\nu_i \in \mathrm{GF}(p))$ and $c^{\mathfrak{p}} \in C(A)^{\mathfrak{p}}$) then $X_i^{\mathfrak{p}} - \alpha_i$ has a factor $X_i - (x_1 \nu_1 + \dots + x_{i-1} \nu_{i-1} + x_{i+1} \nu_{i+1} + \dots + x_{m_1} \nu_{m_1} + c)$ which is a generator in $A[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{m_1}][X_i]$. But this is a contradiction since A_{m_1} is connected by Lemma 3.1.

(ii) Since $A_{q_1} = A_{m_1}[y_{m_1+1}, \dots, y_{m_1+n_1}]$, we can see the validity of the assertion by the same way as in (i) by replacing A to A_{m_1} .

Theorem 3.6. Let A be connected.

- (I) If $B = A(\mathcal{I}_1, \mathcal{O}_1)$, then the following conditions are equivalent.
- (1) B is connected.
- (2) $\{a_i + C(A)^p : i = 1, \dots, m_1\}$ is linearly independent over GF(p) in $C(A)/C(A)^p$.
 - (II) If $B = A(\mathcal{O}_1, \mathcal{I}_1)$, then the following conditions are equivalent.
 - (1) B is connected.
- (2) $\{a_i f_i^p + C(A_{m_1})^p; i = m_1 + 1, \dots, m_1 + n_1\}$ is linearly independent over GF(p) in $C(A_{m_1})/C(A_{m_1})^p$.
- *Proof.* (I) (1) \Rightarrow (2). Since $C(A_{m_1})^{\mathfrak{p}} \cap A \subseteq C(A)$, this is clear from Lemma 3.5(i).
- $(2) \Rightarrow (1)$. Let A_{k-1} be connected for $k \leq m_1$. If $X_k^p a_k$ is reducible in $C(A_{k-1})[X_k]$, then there exists $f \in C(A_{k-1})$ such that $f^p = a_k \ (\in A)$, and so $f = x_1 \mu_1 + \ldots + x_{k-1} \mu_{k-1} + c$ by making use of the same methods as in the

proof of Lemma 3.5 (i), where $\mu_i \in \operatorname{GF}(p)$ and $c \in C(A)$. Hence $f^e = \alpha_k = \alpha_1 \mu_1 + \ldots + \alpha_{k-1} \mu_{k-1} + c^e$ and this contradicts to the linear independence of $\{\alpha_i + C(A)^p : i = 1, \cdots, m_1\}$. Thus A_k is connected. By inductive argument, we can see that A_{m_1} is connected. Since $A_{m_1}[x_{m_1+1}:D_{m_1+1}^*]/A_{m_1}$ is a (σ_{i+1}) -cyclic extension and $D_{m_1+1}^*$ is outer in A_{m_1} , $A_{m_1+1} = A_{m_1}[x_{m_1+1}:D_{m_1+1}^*]$ is connected by Corollary 2.3. Repeating this we can see the connectedness of B.

(II) This can be prove by the similar way as in (I).

Lemma 3.7. If C(A) is a field and B is connected then B is either $A(\mathcal{J}_1,\mathcal{O}_1)$ or $A(\mathcal{O}_1')$.

Proof. If D_J^* is inner in A_1 , then D_J is inner. For, if D_1 is inner, it follows from Lemma 3.2. On the other hand, if D_1 is outer, it is a consequence of the fact that D_1 is completely outer. Since $C(A_k)$ is a field by Lemma 3.1, continuing this way, we can see that \mathcal{I}_1 is the set of all inner derivations and \mathcal{O}_1 is the set of all outer derivations in $\{D_1, \dots, D_n\}$ (cf. the proof of Lemma 3.4).

Combining Theorem 3.6 with Lemma 3.7, we have the following

Corollary 3.8. Let C(A) be a field. Then A has a connected G-Galois extension B such that $A = \{0\}$ if and only if one the following conditions (a) and (b) is satisfied.

- (a) There exist outer derivations $D_{m_1,\dots,D_{m_1+n_1}}$ of A and elements $a_i \in A$ $(i=1,\dots,n)$ such that
 - (1) $[D_i,D_j]=0.$
- (2) $\alpha_1, \dots, \alpha_{m_1} \in C(A)_0$ and $\{\alpha_i + C(A)^p; i=1,\dots,m_1\}$ is linearly independent over GF(p) in $C(A)/C(A)^p$,
 - (3) $\alpha_j \in A^{D_j}(D_j^p)$ for $j > m_1$.
- (b) There exist outer derivations D_1, \dots, D_n and elements $\alpha_i \in A$ $(i=1,\dots,n)$ such that
 - $(1) [D_i,D_j]=0,$
 - (2) $\alpha_i \in A^{D_i}(D_i^{\mathfrak{p}})$ for all $i,j=1,\dots,n$.

Proof. If B is a connected G-Galois extension such that $\mathcal{A} = \{0\}$, then $B = A(\mathcal{I}_1, \mathcal{O}_1)$ or $A(\mathcal{O}_1')$ by Lemma 3.4. Thus we can easily see that A satisfies conditions (a) or (b) by Theorem 3.6. Conversely, if A satisfies (b), then $B = A[X_1, \dots, X_n; D_1, \dots, D_n] / (X_1^p - \alpha_1, \dots, X_n^p - \alpha_n)$ is a G-Galois extension of A and $X_1^p - \alpha_i$ is w-irreducible in A_i' . While, if A satisfies

- (a), then $B = A[X_1, \dots, X_{m_1}, X_{m_1+1}, \dots, X_n; D_{m_1+1}, \dots, D_n]/(X_1^{\mathfrak{p}} \alpha_1, \dots, X_n^{\mathfrak{p}} \alpha_n)$ is a *G*-Galois extension of *A* such that A_{m_1} is connected by Theorem 3.6. Since D_j^* is outer in A_{j-1} by Lemma 3.4, this means that *B* is connected.
- **Corollary 3.9.** Let A be a two sided simple ring (resp. a simple artinian ring) and B a G-Galois extension of A. Then B is a two sided simple ring (resp. a simple artinian ring) if and only if B is connected, and if this is the case, B is either $A(\mathcal{I}_1, \mathcal{O}_1)$ or $A(\mathcal{O}_1)$.

Proof. By Corollary 2.8, B is a two sided simple ring (resp. a simple artinian ring) if and only if B is connected. The rest is clear from Lemma 3.7.

Corollary 3.10. Let $H=(\tau_1)\times(\tau_2)\times\cdots(\tau_n)$ be an abelain group such that $|\tau_i|=p^{e_i}$ $(e_i\geq 1)$, B/A an H-Galois extension and $T=B^{G'}$ for $G'=(\tau_i^p)\times(\tau_i^p)\times\cdots\times(\tau_n^p)$.

- (i) Let A be connected. Then B is connected if and only if so is T.
- (ii) Let A be a two sided simple ring (resp. a simple artinian ring). Then B is a two sided simple ring (resp. a simple artinian ring) if and only if so is T.

Proof. Since G' is an s-subgroup of H, these are direct consequences of Theorem 1.9 and Corollary 3.9.

4. Connected *p*-extensions. In this section, we will deal with the connectedness of a *G*-Galois extension over a connected ring *A* when *G* is a nonabelian *p*-group of order p^e . Thus we assume here B/A is a *G*-Galois extension and $T = B^{\Phi(G)}$ where $\Phi(G)$ is the Frattini subgroup of *G* which is an *s*-subgroup of *G* (cf. Definition 1.7). Then we can readily see the following

Theorem 4.1. (i) Let A be connected. Then B is connected if and only if so is T.

(ii) Let A be a two sided simple ring (resp. a simple artinian ring). Then B is a two sided simple ring (resp. a simple artinian ring) if and only if so is T.

Proof. By Theorem 1.9, B is connected if so is T. Conversely, assume B is connected, $\Phi(G) = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_t = \{1\}$ is a composition series of $\Phi(G)$ and $B_i = B^{G_t}$. Then B_i/B_{i-1} is a p-cyclic extension and so the

connectedness of $B=B_t$ implies that of $T=B_0$ by Lemma 3.1. This completes the proof of (i).

Since $H = G/\Phi(G)$ is an elementary abelian group and T/A is a connected H-Galois extension, T is two sided simple if so is B by Corollary 3.9. The converse is an immediate consequence of Corollary 2.8.

Let C be a central subgroup of order p of G which is contained in $\mathcal{O}(G)$ and let P be a p-group which is isomorphic to G/C. If all rings considered are supposed commutative, then a P-Galois extension M/A can be embedded into a G-Galois extension B/A ([7] and [11]). In the following we shall give a necessry and sufficient condition for M/A can be embedded into B/A in general case.

Let $C = (\sigma)$. Then as same as in [11], we choose representatives $u(\tau) \in G$ for $\tau \in P$. Define the group cohomology of 2-cocycles $g(\tau, \rho)$ by

$$u(\tau)u(\rho)=g(\tau,\rho)u(\tau\rho).$$

 $u(\tau)\sigma = \sigma u(\tau)$ is clear for $\tau \in P$ since C is central.

Let $\chi: C \rightarrow GF(p)$ be the homomorphism defined by $\chi(\sigma^i) = i$. $\chi(g(\tau, \rho))$ is a 2-cocycle of P into GF(p).

For a derivation D of M, we put $\Delta_0(u)=1$ and $\Delta_i(u)=D(\Delta_{i-1}(u))+\Delta_{i-1}(u)u$ for $u \in M$.

Under these notations, we have the following

Theorem 4.2. Let M/A be a P-Galois extension. Then M/A can be embedded into a G-Galois extension B/A if and only if there exist a derivation D of M, elements $t \in M^D$ and $t_{\tau} \in M$ ($\tau \in P$) such that

- (1) $D^{\mathfrak{p}}=I_t$,
- (2) $[\tau,D]=I_t, \cdot \tau$,
- $(3) \quad t_{\tau} + \tau(t_{\rho}) = t_{\tau\rho} + \chi(g(\tau, \rho)).$
- (4) $T_{\tau}(t_{\tau}) = \sum_{i=0}^{|\tau|-1} \tau^{i}(t_{\tau}) = \chi(g)$ where $g \in C$ such that $u(\tau)^{|\tau|} = g$,
- (5) $(\tau-1)(t) = \Delta_p(t_\tau) t_\tau \text{ for } \tau \in P.$

Proof. Let B/A be a G-Galois extension. Then $B^c = M$. Since B possessess an element $y \in B$ such that $T_G(y) = 1$ (since $B_A \oplus > A_A$), we can see that $T_C(T_P(y)) = 1$. Hence B/M is a C-Galois extension with $B_M \oplus > M_M$. Therefore there is an element $x \in B$ such that $\{1, x, \dots, x^{p-1}\}$ is a free M-basis for B, $x^p = t \in M$ and $\sigma(x) = x + \chi(\sigma)$.

Let c be an arbitrary element of M. Then $\sigma(I_x(c)) = \sigma(cx - xc) = c\sigma(x) - \sigma(x)c = I_x(c)$ shows that $D = I_x|M$ is a derivation of M satisfying (1).

Let $u(\tau)(x) = \sum x^i c_{i\tau}$ for $c_{i\tau} \in M$. Since $\sigma u(\tau) = u(\tau)\sigma$, $\dot{\Sigma}(x+1)^i c_{i\tau} = \sigma u(\tau)(x) = u(\tau)\sigma(x) = \sum x^i c_{i\tau} + 1 = u(\tau)(x) + 1 = u(\tau)(x) - x + \sigma(x)$, and whence, $u(\tau)(x) = x + t_{\tau}$ for some $t_{\tau} \in M$.

$$[\tau,D] (c) = \tau(cx - xc) - (\tau(c)x - x\tau(c)) = u(\tau) (cx - xc) - (\tau(c)x - x\tau(c))$$

$$= \tau(c) (x + t_{\tau}) - (x + t_{\tau})\tau(c) - (\tau(c)x - x\tau(c))$$

$$= \tau(c)t_{\tau} - t_{\tau}\tau(c) + I_{t}.\tau(c).$$

Since $u(\tau)u(\rho) = g(\tau,\rho)u(\tau\rho)$, $x + t_{\tau} + \tau(t_{\rho}) = u(\tau)(x + t_{\rho}) = u(\tau)u(\rho)(x)$ $= g(\tau,\rho)u(\tau\rho)(x) = g(\tau,\rho)(x + t_{\tau\rho}) = x + t_{\tau\rho} + \chi(g(\tau,\rho))$ and $x + T_{\tau}(t_{\tau}) = u(\tau)^{|\tau|}(x)$ $= g(x) = x + \chi(g)$ shows that $t_{\tau} + \tau(t_{\rho}) = t_{\tau\rho} + \chi(g(\tau,\rho))$ and $T_{\tau}(t_{\tau}) = \chi(g)$ for $g = u(\tau)^{|\tau|}$.

Noting that $(x+t_{\tau})^{\mathfrak{p}} = x^{\mathfrak{p}} + \mathcal{D}_{\rho}(t_{\tau})([5, p. 163]), t + \mathcal{D}_{\rho}(t_{\tau}) - t_{\tau} = x^{\mathfrak{p}} + \mathcal{D}_{\rho}(t_{\tau}) - t_{\tau}$ means that $(\tau - 1)(t) = \mathcal{D}_{\rho}(t_{\tau}) - t_{\tau}$.

Conversely, assume that there exist a derivation D, elements t and t_{τ} ($\tau \in P$) which satisfy the conditions (1)–(5).

By (1). $X^{\mathfrak{p}} - t$ is a generator in R = M[X;D]. Let $B = R/(X^{\mathfrak{p}} - t)$ and let x be the coset of X. We define the action of σ on B by

$$\sigma(\sum x^i c_i) = \sum (x + \chi(\sigma))^i c_i \ (c_i \in M).$$

Then $\sigma(x^{\mathfrak{v}}) = (x^{\mathfrak{v}} + \chi(\sigma)^{\mathfrak{p}}) = x^{\mathfrak{v}} = t = \sigma(t)$ and $\sigma(cx) = \sigma(xc + D(c)) = xc + \chi(\sigma)c + D(c) = c(x + \chi(\sigma)) = \sigma(c)\sigma(x)$. This shows that σ acts on B as an M-automorphism of order p.

Next we extend $u(\tau)$ ($\tau \in P$) to an automorphism of B by

$$u(\tau): \sum x^i r_i \rightarrow \sum (x+t_{\tau})^i \tau(r_i) \ (r_i \in M).$$

Then $u(\tau)(x^{\mathfrak{v}})=x^{\mathfrak{v}}+\Delta_{\rho}(t_{\tau})-t_{\tau}=t+\Delta_{\rho}(t_{\tau})-t_{\tau}=u(\tau)(t)$ by (5) and $u(\tau)(rx)=u(\tau)(xr+D(r))=(x+t_{\tau})\tau(r)+\tau D(r)=x\tau(r)+\tau(r)t_{\tau}+D\tau(r)=\tau(r)(x+t_{\tau})=\tau(r)\tau(x)$ by (2). Thus τ is a ring homomorphism of B. Moreover $u(\tau)^{|\tau|}(x)=x+T_{\tau}(t_{\tau})=x+\chi(g)$ by (4), and whence $g^{\rho}(x)=x$. Thus $u(\tau)$ acts as an automorphism on B and $u(\tau)|M=\tau$. $\sigma u(\tau)=u(\tau)\sigma$ is clear and $u(\tau)u(\rho)(xr)=(x+t_{\tau}+\tau(t_{\rho}))\tau\rho(r)=(x+t_{\tau\rho}+\chi(g(\tau,\rho))\tau\rho(r)=g(\tau,\rho)u(\tau\rho)(xr)$ show that $u(\tau)u(\rho)=g(\tau,\rho)u(\tau\rho)$. Now it is clear that $A\subseteq B^{\sigma}\subseteq M^{\sigma}\subseteq M^{\rho}=A$.

Let $\{y_i, z_i : i=1, \dots, n\}$ and $\{u_i, v_i : i=1, \dots, m\}$ be a (σ) -Galois coordinate system for B/M and a P-Galois coordinate system for M/A respectively. Then $\sum_i y_i(\sum_j u_j \tau \sigma^k(v_j)) \tau \sigma^k(z_i) = \delta_{1,\tau\sigma^k}$ for all $\tau \sigma^k \in G = \bigcup_{\tau} \tau(\sigma)$, where τ runs over all the elements of a complete representatives of G modulo (σ) .

Noting that C is an s-subgroup of G, we have the following

Corollary 4.3. Let A be connected and B/A a G-Galois extension. Then the following conditions are equivalent.

- (1) B is connected.
- (2) M is connected.
- (3) T is connected.

REFERENCES

- S. IKEHATA: On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ 22 (1980), 115—129.
- [2] N. JACOBSON: Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, Rev. Ed., Providence, 1968.
- [3] G.J. JANUSZ: Separable algebras over commutative rings, Trans. Amer. Math. Soc., 122 (1966), 461—479.
- [4] K. KISHIMOTO: On cyclic extensions of simple rings, J. Fac. Sci. Hokkaido Univ. 19 (1966), 74—85.
- [5] K. KISHIMOTO: On abelian extensions of rings I, Math. J. Okayama Univ. 14 (1970), 159—174.
- [6] K. KISHIMOTO: Note on cyclic extensions of rings, J. Fac. Sci. Shinshu Univ. 5 (1970), 29—32.
- [7] K. KISHIMITO: On p-extensions of an algebra of characteristic p, to appear in J. Algebra.
- [8] T. NAGAHARA and A. NAKAJIMA: On cyclic extensions of commutative rings, Math. J. Okayama Univ. 15 (1971), 81—90.
- [9] T. NAGAHARA: Characterization of separable polynomials over a commutative rings, Proc. Japan. Acad. 46 (1970), 1011—1015.
- [10] Y. MIYASHITA: Finite outer Galois theory of non commutative rings, J. Fac. Sci. Hokkaido Univ. 19 (1966), 114—134.
- [11] D.J. SALTMAN: Noncrossed product p-algebra and Galois p-extensions, J. Algebra, 52 (1978), 302—314.

INSTITUTO DE MATEMATICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY

(Received April 28, 1983)