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0. Introduction. Let 3 be a compact comnected C=-manifold.
For a fixed riemannian structure g on M we define the injectivity radius
ig(M) of g by

Sup{r > 0:Expyx: Brlox) — M is a diffeomorphism for every x of M},
where Expx denotes the exponential map at x. Br(ox) an r-ball in TxM
centered at the origin. This gives a uniform estimate of the size of domains
over which normal coordinates are valid. Now we consider the space W of
C3*riemannian structures g on M with the C*-topology. We may consider
g— ig(M) as a function on M. P. Ehrlich ([E]) proved

Theorem. g— ig(M) is a continuous function.

Namely when gn, — g, (w.r.t. C*topology) we have to show lim sup /g, (M)
< ig (M) and lim inf 7g, (M) = ig,(M). 1 applied the first inequality in a
previous paper ([S]). Since Ehrlich’'s proof is rather complicated, I pre-
sented a simple proof of the first inequality in my first draft of the above
paper. Then the referee of my paper pointed out that the first inequality
may be proved much more simply by using the Busemann type argument.
Here I will give a very simple proof of the second inequality, which is a
more difficult one. We include a proof of the first inequality for com-
pleteness and I hearty appreciate the referee of my paper ([S)).

1. Preliminaries. Let g be a riemannian metric of class C® on a
compact connected C=-manifold M. We denote by d¢ the distance function
induced from g. Firstly we recall two fundamental facts about the injec-
tivity radius 7z(M):

(1.1) ig(M) is given by the minimum of the shortest distance to the
first conjugate points along geodesics and half the length of the shortest
closed geodesic.

(1.2) Take x, y €M with delx,y) = ig(M) and let c:[0,i(M)]— M
be a minimal geodesic from x to y parametrized by arc-length. If v is not
conjugate to x along any minimal geodesic from x to y, ¢|[0,2/¢(M)] defines
a closed geodesic.
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Next we recall some fundamental facts from the ordinary differential
equations:

Lemma 1.3. Let N be a C*riemannian manifold, X a C'-vector field
on N and x(t).0 < t < R an integral curve of X in a bounded domain D C N.
Then there exist positive constants C, €o, 0o depending on D, X, x(0) and
R with the following property: Take any 0< € (£ &), 0< 8 (< 80) and
a Cluvector field Y on N such that sup | Xx— Yyl < 8. Then for any
integral .curve y(t) of Y with d(x(0),(0)) < € we have y({)E D, 0< <R
and d(x(t),y(t)) < C(e+6t).

Proof Take a local chart (p.U), DD U UDV, VD x([0.R]) such
that x(#), 0 < ¢ < R lie on a coordinate axis and ¢(V) is a convex subset
in RI™¥ (e.g., take Fermi coordinate of x(¢), 0 < » < R if Xx * 0 and
nermal coordinate of x(0) if Xxw = 0). There exists a constant A > 1
such that

1/A2+(8:) < (gi5) < A%(8w5)

on V. where (g;;) denotes the riemannian metric. Denoting the euclidean
norm and riemannian norm by | - | and |+ | respectively, we have then
l2(0)—y(0)| < Ad(x(0),y(0)) if y(0) is in a convex neighborhood of x(0)
and | Xx— Yol < A|Xx— Yyl < A8 for x€ V. Since X is of class C' and
o(V) is convex, there exists a positive constant B such that [Xx—X| <
Blx—y| on V. First assuming that y(t)€ V, 0< ¢t < R and d(x(0),y(0))
< g, we have

12(2) = 9D < 1 Xt — Xoeol + 1 Xin— Yool < Ad+ Blx(2)—y(1)].
From this we easily see that
{lx()—y(Dlle=8) < Ade 8 < AS as far as x(¢) #+ y(¢).
Putting s(¢): = Inf{s: x(s) # y(s) for (0 <) s < ¢}, we get

() —y(Dlle~2 < [ ()= y(D)le=>) b +1x(s(D) — y(s(E)e20
< Adt+[x(0)—y(0)l,
namely
lx(8)— y(2)| < eBA(8t+ d(x(0),y(0))).
Setting C: = Max{l, A%?e®%}, we have
d(x(t),y(1)) < C(8t+d(x(0),¥(0)))
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as far as | Xx— Yyx| < 8 and y(¢) € V.

Next choose &, 8o 5o that C(8,R +¢&,) < a. where a is a positive number
such that Bx(@): ={y:dx(t),y)< a)C V for all 0< ¢t < R. Then we
will be done if we show that £ : =sup{f:v(s)E V for 0 < s < ¢t} equals R
for Y satisfying the assumption of the lemma. Clearly #; > 0 and assume
that ; < R. Then by continuity we have d(x(#)).y(#)) < C(6tHi+¢) < a.
Then y(#)) € V and consequently y({)E V for ¢ > #, |t —#]| sufficiently
small, a contradiction.

Now on a C=-manifold we mean by C’-topology the topology of uni-
form convergence on compact subsets of derivatives up to order ».

Corollary 1.4. Let X, (n=1,2, ). X be C'-vector fields on a C>-
manifold N. Assume that X is complete and Xn— X (w.r.t. CO-topology).
Let ¢} ¢¢ be flows generated by X, X respectively. If xn— x, t,— t then
we have Ll_l:l;lo i(xn) = ddx).

Proof. Choose a riemannian metric on N, R > {,, &. Let C. &, &, be
as in Lemma 1.3 for X, x, R. Forany & >0 take (e,=)e>0,{(6=)8 >0
so that C(e+8R) < €,/2. Then for sufficiently large # we have d(x».x) < €,
| X»— X| < 8 ona compact domain D whose interior contains ¢:(x). 0< ¢t < R
and d($.(x),¢{x)) < €1/2. Then from Lemma 1.3 we get for such »

d(@%(xn).@(x)) < d(@F(xn). 0. (x))+ d(Dr, (), Pu(x))
< C(e+dtn)+e1/2 < ey

Now to prove the continuity of g— is(M) we take the geodesic flow
view point. For a riemannian structure g on M we denote by ¢% the
geodesic flow on the tangent bundle 7 : TM— M. Namely for v € TM —{0},
t— mogp¥(v) is a geodesic emanating from zv with the initial direction v
which will be denoted by c%(¢).

We denote by U(M,g) the unit tangent bundle with respect to g.

Lemma 1.5. Let (M.g) be a complete C*riemannian manifold and
gn (n=1,2, ) a sequence of C>*riemannian wmetrics on M such that
gn— 8o (w.r.t. C'-topology). Then for va € UM,gn), va—veE UMg,)
w.r.l. the topology of TM and t,— t we have

(i) lim ¢f(vn) = ¢#(v)

Nn—oo

(i) lim c&(tn) = cf(1).

n-oo
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Proof. Let S% be the geodesic spray with respect to g which is a
Cl:vector field on TM given by

St = 2& 0/ox'— 3 I's&’&" 0/0¢",

in terms of local coordinates of M. Then clearly S%— S&% (w.r.t. C°-
topology) when g, — g, (w.r.t. C-topology). Since ¢f is a flow generated
by S# we get the first assertion from Corollary 1.4. The second assertion
is trivial because c£(f) = nopf(v).

Lemma 1.6. Lef (M,g,) be a complete C3-riemannian manifold and
gn— 8o (w.r.t. C*topology) be a sequence of C3-viemannian wmetrics on M.
Then if vn € UMgn)—vE UMg) in TM, wa € Ty, TM — w € T, TM
in TTM and th,— t, we have

(i) lim (8)x1wn = (55w

(ii) lim 7f*(¢tg.f')*wn = mx(dF)x 0.

n-co

Proof. First note that the following easily proved fact: Let
X =3 X' 9/ox" be a C%vector field on a C*-manifold N and ¢; a flow

generated by X. Then the C!-vector field X* on TN defined from a flow
(¢)x: TN — TN is given by

X = 2 Xi(x) 0/0x"+2 v-X' 6/0&"
with respect to the adapted chart on TN,

Applying this to the geodesic spray on TM, we have with respect to
the adapted local coordinate (x%,&,y%,7) on TTM,

Stenn = 2 &t a/x"—i%F:fk(x)é"S‘“ d/o&!
+2 7 G/Gy"—ijZ‘.“(ZI‘}'k(x)E"v“r %y‘éfék)é/av‘.

Namely if (M.,g) is a C*riemannian manifold, S* is a C'-vector field on
TTM. Moreover (S&7)* — (S®)* (w.rt. C°topology) if g — g (w.r.t.
C2-topology) and Lemma 1.6 also follows from Corollary 1.4.

Lemma 1.7. Let M be a compact manifold and g,, g, be C’-riemannian
metrics such that gn— g (w.r.t. CC-topology), namely (1—en)go < gn <
(1+§n)go with €,— 0. Then we have

(1—en)de(x,y) < dalxy) < (1+e)da(xy)



CONTINUITY OF INJECTIVITY RADIUS FUNCTION 95
for x, y € M.

Proof. This follows easily from
(1—en)Lelc) < Lglc) < (14+€x)Lglc)

for any piecewise smooth curve connecting x and y, and the definition of
the ditance.

Corollary 1.8. Under the assumption of Lemma 1.7 we have
lim de(M) = de(M),

n—oo

where ds(M) denotes the diameter of M.

Proof. This is clear from the definition of the diameter, ie.,
de(M): = M,a)f, de(x,y) and the lemma.
Xy ye

2. Proof of Theorem.
1°. lim sup ig{M) < ig(M).

Put R, : = ig(M). R:=lim sup R, and fix any x € M. Then it suffiees
to show that for any gp-geodesic ¢, which emanates from x with initial
tangent vector v € Ux(M.g,) we have dg(x,cs(R)) = R. Taking a subse-
quence we may also assume that R,— K. Recall that c,(t) = 7-¢%(v).
Let ¢}, be the gn-geodesic emanating from x with initial tangent vector
vn: = v/|vls, € Ux(M.gn), namely ci(t) = meg¥(v,). Since gn— g, (W.r.t.
C'-topology), vn— v in TM, R,— R hold and we have from Lemmas 1.5
and 1.7

R =lim R, = lim dg(x.c5(Rx))
< lim (de(x,co(R) +delcu(R).cE, (Rn)))
< defx.cR)+1im (1+en)de(cu(R).ch(Rx)
= dg,(x.co(R)).
Remark 1. For this inequality we only have to assume that g,— g,
(w.r.t. C'-topology).
2°. lim inf ig,(M) = ig,(M).

Taking a subsequence we may assume that R,: = ig(M)— R and we
have to show that R > ig(M). Choose points x,. y» € M with de,(xn,vn)
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= Ry and let v, be the g,-unit initial tangent vector to a minimal g,-geodesic
¢y, connecting x, and y,. Again we may assume that x,—x, y,— 3y, va— v
by taking subsequences if necessary. Firstly we show that R is positive.
In fact if R =0, we have x =y by Lemma 1.7. Since g,— g, (w.r.t. C%
topology) we can find a universal positive constant X such that sectional
curvesures Kg, of the metric g, satisfy Kg, < K, Kg, < K for sufficiently
large n. Then there appears no conjugate point to x, along g,-geodesic
¢, up to the (arc-length) parameter value 7/V/K. Thus from (1.2) we see
that c.0.2r. are go-closed geodesics for sufficiently large » because &, — 0.
Then for any € >0, t — ¢(#) are contained in an e-ball Bx) (wrt. g,)
centered at x for sufficiently large # by Lemma 1.7. Then from Lemma 1.5
we see that g,-geodesic ! — cy(t) = mo¢%(v) is also contained in B.(x).
Taking & < ig,(M)/2 we get a contradiction. Thus R is positive. Next
we consider the following two cases:

Case 1. For infinitely many » v, is not conjugate to x, along any
minimal geodesic connecting x, and y.. Let c¢hnrs be a minimal g,-
geodesic from x, to y, with initial direction v, € Us,(M.g»). Then from
(1.2) ci0.2ra defines a closed geodsic, namely #£%.(vn) = v». Again from
Lemma 1.5 we have ¢%(v) = v. where v is a cluster point of ¢, and belongs
to Ux(M.g,). This means that there exists a closed g,-geodesic of length
2R and we get ig,(M) < R ((1.1)).

Case 2. For almost all », v, is conjugate to x, along some minimal
gn-geodesic cf0.z,. First we recall a characterization of Jacobi fields from
the geodesic flow view point.

Lemma 2.1. Let (M, g) be a riemannian manifold and v, w € TxM.
Regarding w as an element of ToTxM(C Ty TM) via the canonical identi-
fication ToTxM = TxM, Y(t): = m@§)sw is a Jacobi field along a geodesic
t— mep(v) with the initial condition Y(0) =0, FY(0) = w. Conversely
any Jacobi field Y with Y(0) =0 may be expressed in the above way.

Proof. Put a(s,t): =m-¢¥(sw+v). Then t — as(t): = als,t) are geo-

desics from x for all s and Y{(#) = m(¢F)sw = Ma—%ﬁis=0 is a Jacobi field.

Moreover we have Y(0)= /3s,s=0a(s,0) =0 and

A
FY(0) =P s500=0 Oaéi’t)|s=o = Vamw:o%‘j’ﬁlmo = I zas1s=0(SW0+0) = w.

Converse is clear because the Jacobi field is uniquely determined by Y(0)
and 7 Y(0).
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Now we return to the second case. We have non-trivial g,-Jacobi lields
Y, along ¢}, which vanish at (0 and R,. We may assume that Y, is gn-
perpendicular to ¢¥ and w,: =FY,(0)&E Ux(M.gr). Then from Lemma
2.1 we have Y,(1) = 7(F)s1en. Since {(vp.wn)} is contained in a compact
subset of TM X TM, we may assume that v, — ¢, 1w, — w and R,— K by
taking subsequences if necessary. Clearly ¢, w € UM &), go{v, ) = 0.
Now from Lemma 1.6 we get

0= YuRn) = mldf)sctn— 7l @dF )0 = 0.

Then Y(¢): = m{pf)xer is a g-Jacobi field along ¢, which satisfies
Y(0)=0,7Y(0) =« (¥ 0) and Y(#)=0. Namely y is conjugate to x
along ¢, and we get again ig{M) < R ((1.1)).

Remark 2. Define the injectivity radius /x( M.g) of (M.g) at x as
ix(M.g):=Sup {r >0:Expy: Brlox)— M is a diffeomorphism},
and the diameter from x as

d(Mg):= i\-’lam:;c d(xy).

Then by a similar argument we can show that the functions on 9t defined
by g— ix{M.g) and g— dx(M.g) is continuous.
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