SOME COMMUTATIVITY PROPERTIES FOR RINGS

HISAO TOMINAGA and ADIL YAQUB

Let A be a non-empty subset of the ring R with center C; let N denote the set of nilpotent elements of R, and $V_R(A)$ the centralizer of A in R. Let q be a fixed integer greater than 1. We consider the following seven properties:

- (I-A) For each $x \in R$, there exists a polynomial $f(\lambda)$ in $Z[\lambda]$ such that $x-x^2f(x) \in A$.
- (I'-A) For each $x \in R$, either $x \in C$ or there exists a polynomial $f(\lambda)$ in $\mathbb{Z}[\lambda]$ such that $x x^2 f(x) \in A$.
- $(\Pi A)_q$ If $x, y \in R$ and $x y \in A$, then either $x^q = y^q$ or x and y both belong to $V_R(A)$.
- $(\coprod' A)_q$ If $x, y \in R$ and $x y \in A$, then either $x^q = y^q$ or [x, y] = 0.
- $(\prod^n A)_q$ If $x, y \in R$ and $x y \in A$, then either $x^q = y^q$ or [xy, yx] = 0.
- (III-A) For every $a \in A$ and $x \in R$, [[a,x],x] = 0.
- (IV-A) If $a \in A$, $x \in R$ and $[a,x]^2 = 0$, then $[a,x] \in C$.

Needless to say, (I-A) implies (I'-A), (Π -A)_q does (Π' -A)_q, and (Π' -A)_q does (Π'' -A)_q. The major purpose of this paper is to prove the following

Theorem 1. The following statements are equivalent:

- 1) R is commutative.
- 2) There exists a (multiplicatively) commutative subset A for which R satisfies (I-A), (Π -A)_q and (Π -A).
- 3) There exists a commutative subset A for which R satisfies (I-A), $(\Pi A)_q$ and (ΠA) .
- 4) There exists a commutative subset A of N for which R satisfies (I'-A) and (Π'' -A)₂.
- 5) There exists a commutative subset A of N for which R satisfies (I'-A) and $(\coprod -A)$.
- 6) There exists a commutative subset A of N such that R satisfies (I'-A) and (IV-A).

In preparation for proving Theorem 1, we establish the following two lemmas.

- **Lemma 1.** (1) Let ψ be a ring homomorphism of R onto R^* . If R satisfies (I-A), (I'-A), (II-A), (II'-A), (II'-A), (II'-A), then R^* satisfies (I- ψ (A)), (I'- ψ (A)), (II- ψ (A)), (II'- ψ (A)), respectively.
- (2) If R satisfies (1'-A), then N is contained in A^++C , where A^+ is the additive subsemigroup generated by A.
 - (3) If R satisfies (II-A)_q, then $[a,x^q] = 0$ for all $a \in A$ and $x \in R$.
- (4) If R satisfies (I'-A) and (Π "-A)_q (resp. (I'-A) and (Π -A)), then R is normal, that is, every idempotent e of R is central.
- (5) If A is commutative and R satisfies (I'-A), then N is a commutative nil ideal of R containing the commutator ideal of R and is contained in $V_R(A)$.
- (6) If A is commutative and R satisfies (I'-A), then (IV-A) implies (II-A), and (III-A) does (II'-A)_q.

Proof. (1) Straightforward.

- (2) By a trivial induction on nilpotency index.
- (3) Suppose that $[a,x] \neq 0$ for some $a \in A$ and $x \in R$. Since $(x+a)^q = x^q$ by $(\Pi A)_q$, we have $[a,x^q] = [x+a,x^q] = [x+a,(x+a)^q] = 0$.
- (4) Given $x \in R$, we set a = xe exe. Since $a^2 = 0$, (I A) shows that $a \in C \cup A$. Then, by (II"-A)_q (resp. (III-A)), $e + a = (e + a)^q = e^q = e$ or a = [(e + a)e, e(e + a)] = 0 (resp. a = [[a,e],e] = 0). Thus in any case a = 0, and hence xe = exe. Similarly, we can show that ex = exe, and therefore xe = ex.
 - (5) By (2) and a theorem of Chacron (see, e.g. [5, Theorem 1]).
- (6) By (5), N is a commutative ideal containing the commutator ideal of R and is contained in $V_R(A)$. Hence, in case (IV-A) is satisfied, for any $a \in A$ and $x \in R$ we have $[a.x]^2 = [a.x[a.x]] x[a.[a.x]] = 0$. Then, [a.x] is central by (IV-A), and therefore R satisfies (III-A). On the other hand, if (III-A) is satisfied then $[x(x-a).(x-a)x] = [[a.x].x^2] = 0$ by (5) and (III-A). This means that if $x-y \in A$ then [xy.yx] = 0, and R satisfies (II'-A) $_q$.
- **Lemma 2.** Let R be a normal, subdirectly irreducible ring. If A is a commutative subset of N not contained in C for which R satisfies (1'-A), then R is of characteristic p^{α} , where p is a prime and $\alpha > 0$.
- *Proof.* Choose $a \in A$ and $b \in R$ with $[a,b] \neq 0$. By (I'-A), $b-b^2f(b) \in A$ for some $f(\lambda) \in \mathbb{Z}[\lambda]$, and hence $b^m = b^{2m}b_0^m$ with some m > 0 and some b_0 in the subring $\langle b \rangle$ generated by b. Since $b \notin N$ by Lemma 1(5),

 $e=(bb_0)^m$ is a non-zero central idempotent, and therefore e is the identity element 1 of the subdirectly irreducible ring R and b is invertible. Moreover, b^{-1} is integral over $\mathbf{Z} \cdot 1$. Since a cannot commute with both $2b^{-1}$ and $3b^{-1}$, there exists an integer k > 1 such that $[a,kb^{-1}] \neq 0$. Then, by the above argument, $(kb^{-1})^{-1}$ is integral over $\mathbf{Z} \cdot 1$, and hence $k^{-1} \cdot 1 = (kb^{-1})^{-1}b^{-1}$ also is integral over $\mathbf{Z} \cdot 1$. Obviously, this implies that the additive order of 1 is non-zero, and therefore the subdirectly irreducible ring R is of characteristic p^a , where p is a prime and a > 0.

We are now in a position to complete the proof of Theorem 1.

Proof of Theorem 1. Obviously, 1) \Rightarrow 3) and 6). By Lemma 1 (6), 3) \Rightarrow 2) and 6) \Rightarrow 5) \Rightarrow 4).

 $(2) \Rightarrow 1$). In view of Lemma 1 (1), we may (and shall) assume that R is subdirectly irreducible. According to [3, Theorem 19] and (I-A), it suffices to show that $A \subseteq C$. Suppose, to the contrary, that there exist $a \in A$ and $b \in R$ such that $[a,b] \neq 0$. By (I-A) and $(II-A)_q$, $b^q = (b^2 f(b))^q$ with some $f(\lambda) \in \mathbb{Z}[\lambda]$. Since $b \in \mathbb{N}$ by Lemma 1 (2), Lemma 1 (4) shows that $e = (bf(b))^q$ is a non-zero central idempotent, and hence e is the identity element 1 of the subdirectly irreducible ring R. By (I · A), $2-2^2g(2)$ $\in A$ with some $g(\lambda) \in \mathbb{Z}[\lambda]$. Thus, we can find a non-zero integer k such that $k = k \cdot 1 \in A$. Obviously, $[a, b + ik] \neq 0$ for all $i \in \mathbb{Z}$. Hence, by $(\Pi - A)_q$, every b + ik is a zero of the polynomial $(\lambda + k)^q - \lambda^q$. Note here that R/N is a subdirect sum of commutative integral domains (Lemma 1 (5)). Then, since b+ik ($i=0,1,\dots,q$) are zeros of $(\lambda+k)^q-\lambda^q$, we can easily see that $q!k^q \in N$, and so $h \cdot 1 = 0$ for some positive integer h. This means that the characteristic of the subdirectly irreducible ring R is p^{α} , where p is a prime and $\alpha > 0$. We set $q = p^{\beta}t$, where (p,t) = 1. Noting here that every non-zero idempotent of $\bar{R} = R/N$ coincides with $\bar{1}$ (Lemma 1 (4)), we can easily see that $\langle \overline{b} \rangle = GF(p^{\gamma})$ with some $\gamma > 0$, and therefore $b^{qr} - b^{tr} \in N \subseteq V_R(A)$ (Lemma 1 (5)). Combining this with $[a,b^{qr}]=0$ (Lemma 1 (3)), we have $[a,b^{tr}]=[a,b^{qr}]-[a,b^{qr}-b^{tr}]=0$. Now, by (III-A), $t^{\gamma}b^{t^{\gamma}-1}[a,b]=[a,b^{t^{\gamma}}]=0$. Then the usual argument of replacing b by b+1, etc. shows that $t^{r}[a,b]=0$. Since $p^{\alpha}[a,b]=0$ and (p,t)=1, it forces a contradiction [a,b]=0.

4) \Rightarrow 1). First, we claim that $[x^2,[x,a]] = 0$ for all $a \in A$ and $x \in R$. In fact, by $(\Pi''-A)_2$ and Lemma 1 (5), either

$$[x^2,[x,a]] = [(x+a)x,x(x+a)] = 0,$$

or $(x+a)^2 = x^2$ and hence

$$[x^{2},[x,a]] = [x,[x^{2},a]] = [x,[x^{2},x+a]] = [x,[(x+a)^{2},x+a]] = 0.$$

In view of Lemma 1 (1), we may (and shall) assume that R is subdirectly irreducible. According to [3, Theorem 19] and (I'-A), it suffices to show that $A \subseteq C$. Suppose, to the contrary, that there exist $a \in A$ and $b \in R$ such that $[a,b] \neq 0$. Then, by Lemma 1 (4) and Lemma 2 (and its proof), R is of characteristic p^a (p a prime and a > 0), and $\overline{b} = b + N$ is algebraic over GF(p) (Lemma 1 (5)). Furthermore, noting that every non-zero idempotent of R/N coincides with $\overline{1}$ (Lemma 1 (4)), we can easily see that $\langle \overline{b} \rangle = GF(p^a)$ with some $\beta > 0$, and therefore $b^{pr} - b \in N$ for some $\gamma \geq a$. Now, by the opening claim,

$$2[b,[b,a]] = [(b+1)^2,[b+1,a]] - [b^2,[b,a]] = 0.$$

We claim further that [b,[b,a]] = 0. Since R is of characteristic p^a , it suffices to consider the case p = 2. Then $[b^{2r} - b,[b,a]] = 0$ by Lemma 1 (5). On the other hand, $[b^2,[b,a]] = 0$ implies $[b^{2r},[b,a]] = 0$, and therefore [b,[b,a]] = 0 holds always. Combining the last claim with $[b^{pr} - b,a] = 0$ (Lemma 1 (5)), we obtain

$$[b,a] = [b^{pr},a] - [b^{pr}-b,a] = b^r b^{pr-1}[b,a] = 0$$

This contradiction proves that R is commutative.

Corollary 1. The following statements are equivalent:

- 1) R is commutative.
- 2) There exists a (multiplicatively) commutative additive subsemigroup A for which R satisfies (I-A), (Π' -A)_q and (Π -A).
- 3) There exists a commutative additive subsemigroup A for which R satisfies (I-A), (Π' -A)_q and (\mathbb{N} -A).

Proof. It suffices to show that, in case R satisfies (Π' -A) $_q$ for a commutative additive subsemigroup A, $x-y \in A$ and $x^q \neq y^q$ imply $x \in V_R(A)$. Suppose, to the contrary, that there exists $a \in A$ such that $[a,x] \neq 0$. Then $(x+a)-x \in A$, $(x+a)-y \in A$ and [x,y]=0. Since $[x+a,x] \neq 0$ and $[x+a,y] \neq 0$, we get $x^q = (x+a)^q = y^q$, a contradiction.

Corollary 2 (cf. [7, Theorem 1] and [4, Corollary 1]). (1) If there exists a commutative subset A for which R satisfies (I-A) and (Π -A)₂, then R is commutative.

(2) If there exists a commutative additive subsemigroup A for which R satisfies (I-A) and (Π' -A)₂, then R is commutative.

Proof. (1) In view of Lemma 1 (1), we may assume that R is subdirectly irreducible. Suppose that $[a,b] \neq 0$ for some $a \in A$ and $b \in R$. Then, as was shown in the proof of Theorem 1, R has 1. Since $(b+a)^2 = b^2$ and $(b+1+a)^2 = (b+1)^2$ by $(\Pi \cdot A)_2$, we have

$$2a = {b^2 + 2(b+a) + 1} - (b+1)^2 = (b+1+a)^2 - (b+1)^2 = 0,$$

and therefore $[[a,b],b] = [a,b^2] + 2b^2a - 2bab = 0$ by Lemma 1 (3). Thus, we have seen that R satisfies (\mathbb{II} -A), and R is commutative by Theorem 1.

(2) This is immediate by (1) and the proof of Corollary 1.

Corollary 3 (cf. [2, Theorem 2]). Suppose that there exists a commutative subset A of N for which R satisfies (I-A) and (\coprod -A). Then R is commutative.

Remark 1. Theorem 1 is no longer valid if we remove the hypothesis (III-A) in 2) (resp. (IV-A) in 3)). A counterexample is given in [6, Remark, p. 18].

Remark 2. In [1, Theorem 1], the second author and Abu-Khuzam considered the following property:

(I*-N) for each $x \in R$, either $x \in C$ or there exists an integer n > 1 such that $x - x^n \in N$,

and proved that if N is commutative and R satisfies (I*-N) and (\mathbb{II} -N), then R is commutative. Also, in [8, Theorem 1], the second author considered the following property:

(II"-A) if $x, y \in R$ and $x - y \in A$, then either [xy,yx] = 0 or x and y both belong to $V_R(A)$,

and proved that if there exists a commutative subset A of N for which R satisfies (I-A) and (II"-A), then R is commutative. We claim here that (II"-A) may be restated as follows: if $x-y \in A$ then [xy,yx] = 0. In fact, if $x-y \in A$ and $y \in V_R(A)$, then [x,y] = [x-y,y] = 0, and hence [xy,yx] = 0. Needless to say, Theorem 1 includes both [1, Theorem 1] and [8. Theorem 1].

In conclusion, we would like to express our indebtedness and gratitude to the referee for his helpful suggestions and valuable comments.

REFERENCES

- [1] H. ABU-KHUZAM and A. YAQUB: A commutativity theorem for rings with constraints involving nilpotent elements, Studia Sci. Math. Hungar. 14 (1979), 81—86.
- [2] H. Abu-Khuzam and A. Yaqub: Some conditions for commutativity of rings with constraints on nilpotent elements, Math. Japonica 24 (1980), 549—551.
- [3] I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864—871.
- [4] Y. HIRANO, S. IKEHATA and H. TOMINAGA: Commutativity theorems of Outcalt-Yaqub type, Math. J. Okayama Univ. 21 (1979), 21—24.
- [5] Y. HIRANO and H. TOMINAGA: Two commutativity theorems for rings, Math. J. Okayama Univ. 20 (1978), 67—72.
- [6] D.L. OUTCALT and A. YAQUB: Structure and commutativity of rings with constraints on nilpotent elements, Math. J. Okayama Univ. 21 (1979), 15—19.
- [7] H. TOMINAGA: Note on two commutativity properties for rings, Math. Japonica 28 (1983), to appear.
- [8] A. YAQUB: Structure and commutativity of rings with constraints on a nil commutative subset, Math. Japonica 27 (1982), 269—273.

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN UNIVERSITY OF CALIFORNIA, SANTA BARBARA, U.S.A.

(Received August 16, 1982) (Revised September 10, 1982)