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SOME COMMUTATIVITY PROPERTIES FOR RINGS

Hisao TOMINAGA and ApiL YAQUB

Let A be a non-empty subset of the ring R with center C ; let N denote
the set of nilpotent elements of R. and Vz(A) the centralizer of A in R.
Let g be a fixed integer greater than 1. We consider the following seven
properties :

(I1-A)  For each x € R, there exists a polynomial f(4) in Z[A] such
that x —x2f(x) € A.

(I-A) For each x € R, either x € C or there exists a polynomial
f(A) in Z[A] such that x—x2f(x) € A.

(I-A)g If x. yER and x—y € A, then either x? = y9 or x and y
both belong to Vkx(A).

(0"-A)e If x, yE R and x—y E A, then either x? = y? or [x,y] =0.

(O0"-A)g If x, yE R and x—y E A, then either x?=y? or [xy, yx]=0.

(II-A) Forevery a€ A and xR, [[ax],x] =0.

(V-4) If a€ A . xE R and [a.x]? = 0, then [a.x] € C.

Needless to say. (1-A) implies (I°-A), (I-A)q does (I'-A)q, and
(O°-A)q does (I"-A)qe. The major purpose of this paper is to prove the
following

Theorem 1. The following statements are equivalent :

1) R is commutative.

2) There exists a (mudtiplicatively) commutative subset A for which
R satisfies (1-A), (I1-A)q and (II-A).

3) There exists a commutative subset A for which R satisfies (1-A),
(I1-A)q and (IV-A).

4) There exists a commutative subset A of N for which R satisfies
(1-A) and (0"-A),.

5) There exists a commulative subset A of N for which R satisfies
(1-A) and (II-A).

6) There exists a commutative subset A of N such that R satisfies
(1-A) and (IV-A).

In preparation for proving Theorem 1, we establish the following two
lemmas.
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Lemma 1. (1) Let ¢ be a ring homomorphism of R onto R*. If R
satisfies (1-A), (17-A), (I1-A)q, (I-A)q, (I"-A)a or (M-A), then R*
satisfies (1-¢(A)), (17-¢(A)). (O-¢(ANa. (O"-¢(A))a, (II7-¢(A)a or
(I0-¢(A)), respeciively. ‘

(2) If R satisfies (1°-A), then N is contained in A*+C, where A*
is the additive subsemigroup generated by A.

(3) If R satisfies (I1-A)q, then [ax?] =0 for all a€E A and x € R.

(4) If R satisfies (1'-A) and (1"-A)q (resp. (1°-A) and (I-A)),
then R is normal, that is, every idempotent e of R is central.

(5) If A is commutative and R satisfies (1°-A), then N is a commu-
tative nil ideal of R containing the commutator ideal of R and is contained
in Va(A4).

(6) If A is commutative and R satisfies (1°-A). then (IV-A) implies
(M-A), and (I-A) does (7-A)a.

Proof. (1) Straightforward.

(2) By a trivial induction on nilpotency index.

(3) Suppose that [a.x]+0 for some ¢ € A and x € R. Since
(x+a)? = x7 by (0-A)q, we have [a.x?)=[x+a.x?]=[x+a(x+a)?] = 0.

(4) Given x €E R, we set a = xe—exe. Since a®> =10, (1’-A) shows
that ¢€ CU A. Then, by (II"-A), (resp. (I-A)), e+a=(e+a)?=ec7=e
or a=[(e+a)eele+a)] =0 (resp. a=[[a.e].e]=0). Thus in any case
a=10, and hence xe = exe. Similarly, we can show that ex = exe, and
therefore xe = ex.

(5) By (2) and a theorem of Chacron (see, e.g. [5. Theorem 1]).

(6) By (5). N is a commutative ideal containing the commutator
ideal of R and is contained in Vz(A). Hence, in case (IV-A) is satisfied,
for any a € A and x € R we have [a.x]* = [a.x[a.x])]—x[a[a.x]] = 0. Then,
[a.x] is central by (IV-A), and therefore R satisfies (I-A). On the other
hand, if (0I-A) is satisfied then [x(x—a).(x—a)x] = [[a.x].x?] =0 by (5)
and (Il-A). This means that if x—y € A then [xy,yx] = 0, and R satisfies
(I”-A)a.

Lemma 2. Let R be a normal subdivectly irveducible ving. If A is
a commutative subset of N not contained in C for which R satisfies (1°-A),
then R is of characteristic p® where p is a prime and a > (.

Proof. Choose a € A and b € R with [a,b]# 0. By (1°-A), b—b2f(b)
€ A for some f(A) € Z[A]. and hence b™ = b*"bHF with some m>0 and
some bg in the subring <»> generated by 4. Since b & N by Lemma 1(5),
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e = (bbo)™ is a non-zero central idempotent, and therefore ¢ is the identity
element 1 of the subdirectly irreducible ring R and & is invertible. More-
over, b™! is integral over Z-1. Since a cannot commute with both 25!
and 3b7'. there exists an integer 4 > 1 such that [a@.kb~']# 0. Then, by
the above argument, (kb6~')"! is integral over Z+1, and hence £7'-1 =
(kb=")"'b"' also is integral over Z-1. Obviously, this implies that the
additive order of 1 is non-zero, and therefore the subdirectly irreducible
ring R is of characteristic p* where p is a prime and a > 0.

We are now in a position to complete the proof of Theorem 1.

Proof of Theorem 1. Obviously, 1) = 3) and 6). By Lemma 1 (6).
3)=2)and 6)=>5)=4).

2)=1). In view of Lemma 1 (1), we may (and shall) assume that
R is subdirectly irreducible. According to [3, Theorem 19] and (1 -A4). it
suffices to show that A< C. Suppose, to the contrary, that there exist
a€ Aand b€ Rsuchthat [a,b]#0. By (I1-A)and (I-A)q 67 = (b2/(b))?
with some f(A) € Z[A]. Since b & N by Lemma 1 (2), Lemma 1 (4) shows
that e = (bf(5))? is a non-zero central idempotent, and hence e is the iden-
tity element 1 of the subdirectly irreducible ring R. By (1-A4), 2—22g(2)
€ A with some g(Ad) € Z[A]. Thus, we can find a non-zero integer %4 such
that # = k-1€ A. Obviously, [a.b+ik] + 0 for all i€ Z. Hence, by
(II-A)q, every b+ik is a zero of the polynomial (A4 £)?—2% Note here
that R/N is a subdirect sum of commutative integral domains (Lemma 1
(5)). Then, since b+ik (i =0, 1, .-+, q) are zeros of (A1+k£)?— A9, we can
easily see that g!k#? € N, and so A1 =0 for some positive integer /.
This means that the characteristic of the subdirectly irreducible ring R is
p% where p is a prime and a > 0. We set g = p®t, where (p.f) = 1.
Noting here that every non-zero idempotent of ® = R/N coincides with 1
(Lemma 1 (4)), we can easily see that <&> = GF(p?) with some y > 0,
and therefore 67 —b" € N S Vx(A) (Lemma 1 (5)). Combining this with
[a,69]=0 (Lemma 1 (3)), we have [a,b”] =[a.b¥)~[a,b¥—b"] = 0.
Now, by (II-A), ¢'67 " [a.b] = [a,b"] =0. Then the usual argument of
replacing & by b+1, etc. shows that ¢"[a.b] = 0. Since p*a,b] =0 and
(p.t) = 1, it forces a contradiction [a.b] = 0.

4) =1). First, we claim that [x2[x,.a]] = 0 for all e € A and x € R.
In fact, by (II”-A), and Lemma 1 (5), either

[x2[x.a]] = [(x+a@)xx(x+a)] =0,

or (x+a)? = x% and hence



34 H., TOMINAGA and A. YAQUDB

[x2[x,a]] = [v[x%al] = [e[x?x+al] = [n(x+a) x+a]] = 0.

In view of Lemma 1 (1). we may (and shall) assume that R is subdi-
rectly irreducible. According to [3, Theorem 19] and (I'-A4), it suffices to
show that A< C. Suppose, to the contrary, that there exist « € A and
b€ R such that [«.b] = 0. Then, by Lemma 1 (4 ) and Lemma 2 (and its
proof), R is of characteristic p* (p a prime and @ > 0). and b = b+ N is
algebraic over GF(p) (Lemma 1 (3)). Furthermore, noting that every
non-zero idempotent of #/N coincides with 1 (Lemma 1 (4)), we can easily
see that <) = GF(p#) with some 3 >0, and therefore #”" —b E N for some
y =2« Now. by the opening claim,

2b[b.a]] = [(b+ D40+ 1.a]] =[] ba]] = 0.

We claim further that [6.[b,¢]] = 0. Since R is of characteristic p¢, it
suffices to consider the case p=2. Then [6* —b[b.a]] =0 by Lemma 1
(5). On the other hand, [#?[6.¢]] =0 implies [6¥,[b,¢]] = 0, and therefore
[6[6.¢]] = 0 holds always. Combining the last claim with [#*"—b.«] =0
(Lemma 1 (5)), we obtain

[b.a] = [67al =67 =ba] = pTHP ' [ba]l =0

This contradiction proves that” K is commutative.

Corollary 1. The following statements are equivalent :

1) R is commutative.

2)  There exists ¢ (mulliplicatively) commutative additive subsemigroup
A for which R satisfies (1-A), (1"-A)q and (1-A).

3) There exists a commutative additive subseinigroup A for which R
satisfies (1-A4), (I-A)q and (IV-A).

Proof. It suffices to show that. in case R satisfies (II’-A)q for a com-
mutative additive subsemigroup A, xy—vE A and x? = y? imply x € Ve(A).
Suppose, to the contrary, that there exists « € A such that [a.x] = 0.
Then (x+a)—r€ A, (x+a)—yE A and [x.v]=0. Since [x+ax]=+0
and [x+a,v] #= 0, we get x? = (x+a)? = y9 a contradiction.

Corollary 2 (cf. [7, Theorem 1] and [4. Corollary 1]). (1) If there
exists a conmutative subset A for which R satisfies (1-A) and (I1-A)s, then
R is commutative.

(2) If there exists a commulative additive subsemigroup A for which
R satisfies (1-A) and (I1'-A)a, then R is commutative.



SOME COMMUTATIVITY PROPERTIES FOR RINGS 85

Proof. (1) In view of Lemma 1 (1). we may assume that R is
subdirectly irreducible. Suppose that [@.b] # 0 for some ¢ € A and b E R.
Then, as was shown in the proof of Theorem 1, R has 1. Since (b+ @)? = b?
and (b+1+4a)? = (b+1)? by (I-A4)s, we have

2a = {(b2+2(b+a)+1}— (6412 = (b+1+a)?—(b+1)2 =0,

and therefore [[@,6].6] = [a.b?]+2b%a—2bab =0 by Lemma 1 (3). Thus,
we have seen that R satisfies (IlI-A), and R is commutative by Theorem 1.
(2) This is immediate by (1) and the proof of Corollary 1.

Corollary 3 (cf. [2, Theorem 2]). Suppose that there exists a commu-
tative subset A of N for which R satisfies (1-A) and (I0-A). Then R is
commutative.

Remark 1. Theorem 1 is no longer valid if we remove the hypothesis
(II-A) in 2) (resp. (IV-A) in 3)). A counterexample is given in [6, Remark,
p. 18].

Remark 2. In [1, Theorem 1], the second author and Abu-Khuzam
considered the following property :

(I*N) for each x € R, either x € C or there exists an integer n > 1
such that x—x"€ N,

and proved that if & is commutative and R satisfies (1*-N) and (II-N),
then R is commutative. Also, in [8, Theorem 1}, the second author con-
sidered the following property :

(O”-A) if x, yE R and x—y € A, then either [xy,yx] =0 or x and
v both belong to Vz(A),

and proved that if there exists a commutative subset A of N for which R
satisfies (I -A) and ([”-A). then R is commutative. We claim here that
(II”-A) may be restated as follows: if x—y &€ A then [xy,yx] =0. In fact,
if x—y€ A and y € Vi(A), then [x,y] = [x—».y] = 0. and hence [xy,yx]
=10. Needless to say, Theorem 1 includes both [1, Theorem 1] and
[8, Theorem 1].

In conclusion, we would like to express our indebtedness and gratitude
to the referee for his helpful suggestions and valuable comments.
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