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ON THE CARTAN INVARIANTS OF p-SOLVABLE
GROUPS

YasusHl NINOMIYA

Throughout the present paper, £ will represent an algebraically closed
field of characteristic p > 0. Let G be a finite p-solvable group, and B a
block ideal of defect d of the group algebra #G. In [ 3], Fong proved that
each Cartan invariant of B is always bounded above by p¢. On the other
hand, Koshitani [ 6] proved that the nilpotency index of the Jacobson radical
of B is bounded above by p¢, that is, the Loewy length of each projective
indecomposable B-module is not greater than p?. In this paper, we consider
the possibility that the composition length of each projective indecomposable
B-module is not greater than . In other words, we consider the possibility
that

(*) each row-sum of the Cartan matrix of B is bounded above by p%.

In §1, we consider the case that G has p-length 1, and prove that the
Cartan matrix of every block ideal of %G has property (*) if and only if
G/Opp(G) is abelian. Furthermore. we prove that if every irreducible B-
module has %-dimension a power of p, then the Cartan matrix of B has
property (%). Now, let G be an arbitrary finite group, and H a normal
subgroup of G. Let B and & be block ideals of £G and kH, respectively,
such that B covers b. In §2 (resp. §3), we consider the case that [G:H]=p
(resp. [G:H] = g, a prime number different from p), and the relationship
between the Cartan invariants of B and those of & will be investigated.
As a consequence, we show that if [G:H] is a power of p and the Cartan
matrix of b has property (* ), then the Cartan matrix of B also has property
(*). However, in general, the converse need not be true ; a counterexample
will be given in §4.

Throughout this paper, all modules are assumed to be finitely generated
right modules. We denote by Pc(M) the projective cover of a £G-module
M. If H is a subgroup of G, then M|y is a £H-module obtained from M
by restricting the domain of operators to 2H. Given a 2H-module L, we
denote by L€ the induced module L ®.4kG. The Jacobson radical of A£G
is denoted by Js. Given a block ideal B of k£G, we denote by Cg and 6(B)
the Cartan matrix of B and a defect group of B, respectively.

1. Let G be a p-solvable group, and B an arbitrary block ideal of
57
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kG. In [9], Schwarz proved that if G/Opp(G) is abelian then each row-
sum of Cp is equal to |8(B)]. Furthermore, the converse of this fact has
been proved in [8]. First, by making use of these results, we prove the
following

Theorem 1. Let G be a p-solvable group of order p°m (a =1, pt m).
If G has p-length 1, then the following are equivalent :

(1) G/Opo(G) is abelian.

(2) If B is an arbitrary block ideal of kG, then each row-sum of Cg
is bounded above by |5(B).

(3) If B is an arbitrary block ideal of kG, then each row-sum of Cg
s equal to |6(B)|.

(4) If Bo is the principal block ideal of kG, then each row-sum of Ca,
is bounded above by p°.

(5) If By is the principal block ideal of kG, then each row-sum of Csg,
is equal fo p°.

Proof In view of [9, Satz 6.3] and [8, Theorem 5], it suffices to show
that (4) implies (1).

Suppose that (4) holds. Since G has p-length 1, G/Op(G) has a
normal Sylow p-subgroup. As is well known, Bo is isomorphic to £G/Op(G).
Hence, we may assume that Op(G) =1 and G has a normal Sylow p-
subgroup. Then kG itself is the principal block ideal of 4G. Now, let
{Fy, Fy, +, Fs} be a full set of non-isomorphic irreducible #G-modules, where
F is a trivial kG-module. We put f; = dim,F; and u; = dim.Pe(F) (1 =
7 = s). Then pdoes not divide f; because G has a normal Sylow p-subgroup.
As is well known, P¢(F}) is isomorphic to a direct summand of F; ®:Pc(F)).
Hence, by [4, Theorem 2B], we have u; = p%f; for all ;. Now, we may
assume that fs is a maximal one among f;'s, and that f; = fis1 = = fs.
Suppose that fs > 1, and so £ > 1. Let c¢i; be the (7,/)-entry of the Cartan
matrix C of /G (the multiplicity of F; as a composition factor of Ps(F})).
Then, by our assumption, there holds that

Pfimwi=25cufi S Saca)ispfi (<1< s).
This implies that if ¢, = 0 then f; = f,. Hence we have c;; = 0 provided
t<i<sand 1<j<¢t-1. However, this is impossible, because C is

indecomposable. Hence fs = 1. This implies that every irreducible AG-
module has 4-dimension 1, and hence G/Ox(G) is abelian, proving (1).

Next, we prove the following
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Proposition 2. Let G be a p-solvable group, and B a block ideal of
kG. If every irreducible B-module has k-dimension a power of p, then each
row-sum of Cg is bounded above by |0(B)|.

Proof Let {F\, F», -+, Fs} be a full set of non-isomorphic irreducible
B-modules. Then, by assumption, dim,Ps(F;) = p¢ for all 7, where p° is
the order of a Sylow p-subgroup of G ([4, Theorem 2B]). Now, we put
dim,F;=p% (1 £ 7 <s). We may assume that e, is minimal among e,’s.
Let c;; be the (i.j)-entry of Cs. Then we have

2% = dim o Pe(F;) = 2521 codime F5 = (25=1 ¢i)p?.
Since |8(B) | = p®=¢', the above implies that
[8(B) | = p?/p° =2 251 ¢is for all i,

proving the assertion.

2. Let H be a normal subgroup of a finite group G, and b a block
ideal of #H. We denote by Ts(b) the inertial subgroup of &:

Te(b) ={g€ Glg'fg =/},

where f is a central primitive idempotent of 2#H such that 6 = fkH. Given
an irreducible #-module L, we denote by 7¢(L) the inertial subgroup of L :

Te(L) = {g € G| LQurug = L as kH-modules}.

One may remark that 7¢(L) is contained in Ts(d). Now, let {g;|1<i<¢)
be a right transversal of 7¢(6) in G. Then e = 34, gi'fg; is a central
idempotent of £G. If e = e1+e2+ .- +en is the decomposition of e into
(orthogonal) central primitive idempotents of 4G, then we say that each
block ideal e;kG covers b.

Throughout the subsequent study in this section, we suppose that
[G:H] = p. Our objective is to find some relationship between Cartan
invariants of 4 and those of a block ideal of A£G which covers &, We notice
here that if L is an irreducible 2H-module then Tc(L) is either H or G.

At first, we prove the following

Lemma 3. Let L be an irreducible kH-module. Then theve holds the
Jollowing .

(1) If T(L) = H, then LC is an irreducible kG-module and Pc(L°)
= Puy(L)C

(2) If To(L) = G, then there exists a unique (up to isomorphism)
irreducible kG-module W such that Wly = L ; and then P;(W) = Py(L)S.
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Proof. (1) It is well known that LS is an irreducible £G-module
({2, Chap. I, (2.11)]). Since Py(L)¢ is a projective £G-module and

Pu(L)/(Pu(L)]1)¢ = (Py(L)/ Pu(L)Jy)€ = LS,

we see that Pg(LC) = Py(L)C.

(2) It is well known that there exists a unique irreducible £G-module
W such that W|y = L ([2, Chap. I, (3.16)]) and that Py4(L)¢ is a projective
indecomposable £G-module ([2, Chap. I, (3.13)]). Since W is isomorphic
to an irreducible submodule of L¢ and L¢ is isomorphic to a submodule of
Py(L)¢, W is isomorphic to the socle of Py(L)®. This implies that Pg(W)
= Py(L)C.

Now, let L, L,. Vi and V-, be irreducible 2ZH-modules such that 7¢(L;)
=H and Te(V)) =G (i =1, 2). We put M; = L% Further, we denote
by W; an irreducible 2G-module such that W]y = V;. Let ¢ be an element
of G such that {1, g, -, 6!} is a right transversal of H in G. Given a
kepace X and a positive integer #, we denote by #.X a direct sum of »
copies of X. Then, in virtue of Frobenius reciprocity theorem and the
preceding lemma, we can easily see the next

Lemma 4. (1) Hom,c(Pc(M), Pe(M)) =
D2 Hompu(Pu(Ly), Pu(L2)@rno?) = DF Hompu(Py(Ly) @ruo’, Pu(Lz)).
(2) Homue(Pe(My), Pc(W1)) = pHomeun(Pu(L)), Pu( V1))
= @5 Homu (Pu(L1) Quna’, Pu(1h)).
(3) Homuc(Pe(W1), Po(M)) = @D?=¢ Homun(Pu( V1), Pu(L)) @ruo?)
= pHompu(Pu( V1), Pu(L))).
(4) Homc(Pe(W1), Pe(W2)) = pHomeu(Pu( V1), Pu(V2)).

By [1, Theorem 54.16], we see that if X and Y are irreducible kG-
modules, then dimzHomc(Pc(X), Pc(Y)) is equal to the multiplicity of X
as a composition factor of Pc(Y). Hence, the above gives a linkage between
the Cartan invariants of 2G and those of kH.

The next can be proved by [2. Chap.V, (3.5)], [5, Proposition 4.2] and
[7. Theorem 6.11].

Lemma 5. If b is a block ideal of kH, then b is covered by a unique
block ideal B of kG, and theve holds the following .

(1) If Te(b) = H then 8(B) = 6(b).

(2) If Te(b) = G then 8(B)N H= 8(b) and |8(B)| = plo(b)l.

Now, let & be a block ideal of #H such that 7¢(b) = H. Then T¢(L)
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= H for every irreducible 5-module L. Let B be a block ideal of &G
which covers b, and M an irreducible B-module. Then M|y is a completely
reducible £#H-module by Clifford’s theorem, and there exists a composition
factor L of M|y belonging to 4. Since LS is an irreducible #G-module
(Lemma 3 (1)) and Homge(L® M) = Homuu(L, M|y) + 0, we have LE = M,
Now, let {L,, Ly, -, Ls} be a full set of non-isomorphic irreducible &-
modules. We put b; = 0" Pbo'!, Lji=L;Quuo™™" and M;=L§ (17
<p;1£j=<5s). Then Lemmas 4 and 5 together with the above fact imply
the following result which is a special case of [2, Chap. V. (2.5)].

Proposition 6. (1) (M) M. -, Ms} is a full set of non-isomorphic
irreducible B-modules, and {L.:, La:, -+, Lsi} is a full set of non-isomorphic
irveducible b;-modules (1 < i < p).

(2) B and b have the same Cartan matrix. and have a defect group
in common.

Next, suppose that & is a block ideal of £H with T¢(b) = G. Then
the inertial subgroup 7T¢(L) of any irreducible b-module L is either H or
G. Let B be a block ideal of #G which covers 6. If M is an irreducible
B-module, then there exists a composition factor L of a completely reduc-
ible kH-module M|y belonging to b. If T¢(L) = H then, as stated just
before Proposition 6, L¢ is isomorphic to M. On the other hand, if T¢(L)
= G then M|y = L by Lemma 3 (2). Now, let {Ly, ==*. Lip; *=*; Ls1, **
Lio: Vi, Vo, >+, V) be a full set of non-isomorphic irreducible d-modules,
where TG(L,'l) = H, Lij= Li1®k1-10'j_l (1 i< ri:l1s ] = D) and Tc( V[)
=Gl t). Put M;=L% (1<i<7), and choose an irreducible 2G-
module W, such that Wiy = V, (1 £/ < ¢). Then {M,, -, My: Wy, - W)
is a full set of non-isomorpnic irreducible B-modules. Given irreducible
kG-modules X, Y (resp. irreducible £#H-modules A, B), we denote by cxy
(resp. ¢as) the multiplicity of Y (resp. B) as a composition factor of Ps(X)
(resp. Py(A)). Then, by Lemma 4, we have the following

Proposition 7. (1) cmay = 201 Crary = 20001 Gty =+ =
2 Crptn (LS4 jS 7).

(2) cwm=2%1Cve, (ISiSt; 155 7).

(3) cmw, = DCLavy=BCrav,="=PCrpvs 1Si<r; 1Sj<0)

(4) cww,=pCvv, (14, j< 1)

We are now in a position to state the following
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Theorem 8. Let N be a normal subgroup of G such that G/N is a
p-group. Let b be a block ideal of kEN. If B is a block ideal of kG which
covers b, then there holds the following :

(1) If each row-sum of Co is bounded above by \5(b)|, then each row-
sum of Cp is bounded above by |6(B)|.

(2) The converse of (1) is true, provided ome of the following con-
ditions holds :

(i) To(d)=H.

(i1) Te(L) = G for every irreducible b-module L.

Proof. (1) By Propositions 6, 7 and Lemma 5 (2).

(2) If (i) holds, then the converse is true by Proposition 6. On the
other hand, if (ii) holds then Cz = [G:N]Cs by Proposition 7. Since |8(B)|
=[G:N]1|8(d)| (Lemma 5 (2)), the converse of (1) is also true.

The next is a combination of Theorems 1 and 8.

Corollary 9. Let G be a group such that G = Oppps(G) and
Opoo{G) /Opp(G) is abelian, and let B be a block ideal of kG. Then each
row-sum of Cg is bounded above by |8(B)\.

3. Throughout this section, we assume that H is a normal subgroup
of G with [G:H] = q, a prime different from p. We notice here that if L
is an irreducible #H-module and 7¢(L) = H then T¢(L) = G. We establish
first three lemmas which correspond to Lemmas 3, 4 and 5, respectively.

Lemma 10. Let L be an irreducible kH-module. Then there holds the
Sfollowing :

(1) If Te(L) = H, then L€ is an irreducible kG-module and Pc(L°)
= Puy(L)°.

(2) If Te(L) = G, then there exist q non-isomorphic irreducible kG-
modules Wy, Wa, +++, Wq such that Wiy = L: and then Pc(W)ly = Py(L).

Proof. (1) It is well known that L€ is an irreducible £G-module ([2,
Chap. I, (2.11)]). It is also clear that Py(L)¢ is a projective kG-module.
Noting that J¢ = JukG, we get

Pu(L)C/Py(L)]c = (Pu(L)/Pu(L)]u)® = LE.
Hence, Py(L)¢ = Pe(LS).

(2) The existence of such Wys is well known ([10, Lemma 1]).

Observing J¢ = JukG, we get
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Pe(Wlu = Pu(Pe(Wlu) = Pl Pe(Wlu/(Pe(Wi)lu)Jn)
= Pu(Pc(Wlu/(Pe(Wi)Jo)lw) = Pu(Wiu) = Pu(L).

Let L\, L,, Vi and Vs be irreducible £#H-modules such that To(L;) = H
and Te(V))=G (i=1, 2). We put M;= L% and choose an irreducible
kG-module W) such that W|y = V. Let r be an element of G such that
{1,z -+ 9!} is a right transversal of H in G.

Lemma 11. (1) Homuc(Po(M)), Pe(M.,)) =
@ Hompa(Pu(Ly), Pu(L2)®rnt?) = @80 Homun(Pu( L) ®unt?, Pu(L2)).
(2) Homuc(Pe(M), Pe(W1)) = Homua(Pu(L1), Pu( 1)),
(3) Homuc(Pc(W1), Pe(M:)) = Homuu(Pu( V1), Pu(L)).
(4) If Wiy, «++, Wiq (resp. Way, =+, Waq) are non-isomorphic irreducible
kG-modules such that Wiy =V, (resp. Waily = Vo), and if 1 < | < q, then

2% dimeHomuo(Pc(W,), Pe(Wa)) = dimHom u(Pu(V1). Pu(V3)).

Proof. (1), (2) and (3) are clear by Frobenius reciprocity theorem
and Lemma 10.
(4) Observing that J¢c = JukG. we get

Pu(V)JR/ Pu(V)JE = (Pe(Wa|l ) TR/ (Pe(Wai| ) T+
(Pe(War)JE/ Pc(Wa ) JE~ |,

where » is an arbitrary non-negative integer and 1 </ < ¢. This shows
that the multiplicity of Vi as a composition factor of Py(Va)Ji/Pu(Va)Ji+!
coincides with that of W,; as a composition factor of Pe(Ws,)J&/ Po(Wa))JE*!
(1=i=<gq). Since dimHomuu(Pu(V1), Pu(V2)) (resp. dimxHomuc(Ps(Wiy),
Pc(W21))) is equal to the multiplicity of V; (resp. Wi;) as a.composition
factor of Pu(V2) (resp. Pc(Wa,)), the assertion (4) follows immediately.

-~
~

The next is obvious by [5. Proposition 4.2].

Lemma 12. Let B and b be block ideals of kG and kH, respectively.
If B covers b, then B and b have a defect group in common.

Now, we consider the case that the inertial subgroup T¢(b) of a block
ideal b of kH coincides with H.

Lemma 13. Let b be a block ideal of kH. If Te(b) = H then b is
covered by a uniquely determined block ideal of kG.

Proof. Suppose that more than one block ideal of G covers b, and
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let B,, B3, ***. Bn be all such block ideals of #G. By an argument similar
to that employed in the paragraph preceding Proposition 6, we see that if
M is an irreducible B-module then there exists an irreducible b-module L
such that M = L6 So, we let Ly, La, -, L be irreducible b-modules such
that L¢ belongs to B; (1= :< m). Now. if L and L' are irreducible -
modules such that LS and L’¢ belong to different block ideals of &G, then
Hom pc(Pe(LC), Pe(L¢)) =0, and so Homgu(Pu(L), P4«(L)) =0 by Lemma
11 (1). Thus, we see that ¢, =0 for 7 # 1, where &;,1, is the multiplicity
of L, as a composition factor of Py(L;). But this is impossible, because
Cs is indecomposable. Hence b is covered by a uniquely determined block
ideal of kG.

Let » be a block ideal of £#H such that 7¢(b) = H, and B a block
ideal of £G which covers 6. Let {L. L, -, Ls} be a full set of non-
isomorphic irreducible #-modules. Now, putting b; = =¥ Vbri-!, L; =
Li®uuritand M; =L (1£i<¢g;1</<s) by Lemmas 10—13 we get
the following which is a special case of [2, Chap. V, (2.5)].

Proposition 14. (1) (M. M,, -+, Ms} is a full set of non-isomorphic
irveducible B-modules, and {L\:, La;. -+, Lsi} s a full set of non-isomorphic
irreducible b;-modules (1 = 7 < q).

(2) B and b have the same Cartan matrix and have a defect group
n COMMon.

Next, suppose that & is a block ideal of £#H with 7T¢(b) = G. Then,
for any irreducible &-module L, T¢(L) is either H or G. Let {Bi, Bs, -,
B} be a full set of block ideals of £G covering 6. We put B= B, ® B,
@B Bn If M is an irreducible B-module, then there exists a compo-
sition factor L of a completely reducible #H-module M|y belonging to &.
If T¢(L) = H then, as in the paragraph preceding Proposition 6, we see
that M = L and if T¢(L) = G then M|y = L by Lemma 10 (2). Now,
let {Liy, . Lig; =3 Ly, >+, Lrg; Vi, Vo, -+, Vi} be a full set of non-
isomorphic irreducible d-modules, where T¢(Ln) = H, Ly = Ly Qrur’™!
(1<isr;1<j<gq) and Te(V))=G (1=/<t). We put M;= L%

(1=7/<7), and we let {W,, -, W,q} be a full set of non-isomorphic irre-
ducible £G-modules such that Wy|y = V, (1< 1< ¢t). Then {M\ M, -+, M;;
Wi, ++, Wig: =+ ; Wy, =+, Wi} is a full set of non-isomorphic irreducible

B-modules. Further, according to Lemma 11, we can prove the following
proposition which corresponds to Proposition 7.
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Proposition 15. (1) cum,=281Criei=281C L0, == D1CLieLn
(I<ijgvr).

(2) CWiaMs = CWM; = °°° = CweM; = CviLy = CviL, = **" = CViLsa (1 <
<t 17 7).

(3) Ccmwp = Crewp, = *** = Crywpe = CLavy = CLpvyy = "+ = Crev, 1 L7
Sril<jst).

(4) Zhicwawn = ZhiCwaw, = = 2aCwaw, = Guv, 1 £ 0. j < 1)

We are now in a position to state the following

Theorem 16. Let H be a normal subgroup of G with (G:H]=gq. Let
b be a block ideal of kH, and B a block ideal of kG which covers b. Then
there holds the following :

(1) Suppose that, for every irreducible b-module, its inertial subgroup
coincides with G. If each row-sum of Cy is bounded above by |86(b)|, then
that of Cg is bounded above by |6(B)|.

(2) Suppose that, for every irveducible b-module, its inertial subgroup
cotncides with H.  Then, B is the unique block ideal covering b, and the
the following statements are equivalent :

(i) Each row-sum of Cp is bounded above by |86(b)|.

(i1) Each row-sum of Cg is bounded above by |8(B)|.

Proof (1) By Proposition 15.

(2) In the same way as in the proof of Lemma 13, we can see that
b is covered uniquely by a block ideal of £G, even if T¢(d) is different from
H. The rest of the assertion follows from Propositions 14 and 15.

4. In this section, we assume p = 3 and give a counterexample which
shows that the converse of Theorem 8 (1) need not be true.

Let U = <u>X<v> be an elementary abelian group of order 32. We
look upon U as a vector space over GF(3). Then SL(2,3) acts naturally
on U. We denote by G a semi-direct product of U by SL(2,3) with respect
to this action. We notice that |[SL(2,3)| = 24 and a Sylow 2-subgroup Q of
SL(2,3) is a quaternion group. Welet Q=<a, bla*=1, a?2= b2, b~ 'ab =
a~'>, and denote by <s> a Sylow 3-subgroup of SL(2,3). Then we may,
and shall assume that G =<, v, a, b, s> and

a‘ua = u?v, b~ ub = uv, a'va = uv, b='vb = ur?,
sTlus = uw, sT'os=v, s'as = b, s7'bs = ba.

In what follows, we put X = U<a?>, Y= U<a) and H = UQ. Now, by
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making use of Propositions 7 and 15, we shall determine the Cartan matrices
of kH and kG.

To begin with, we shall determine the Cartan matrix of £X. Put &, =
—(1+a?) and e2= —1+a* Then 1 =&+ ¢ is a decomposition of 1 into
orthogonal primitive idempotents in £X. By a brief computation, we can
see that {e;, e;ue;, e;ve;, €:uve;, €:ulve;} is a k-basis of €:£Xe; (i=1,2)
and that {e,ue2, €1ve2, €1uves, €1u?ves} is a k-basis of €,kXe2. Hence, we
have

Lemma 17. The Cartan matrix of kX is given by (2 l;)

Next, we shall determine the Cartan matrix of £Y. Put e; =1+a+a?
+a% ee=1—a+a*—a® es=1+8a—a’—-&a®* and e, =1—E€a—a*+E&add,
where £ is a primitive 4-th root of 1 in & Then 1 =e1+e:+e3+¢; is a
decomposition of 1 into orthogonal primitive idempotents in £Y. Put L;=
egikX/eiJx (i=1 2) and M;=e;kY/e;Jy (1 £j=<4). Then it is easy to
see that Tv(L\) = Ty(L2) =Y, 1’”1’)( = lex =L, and Ms|lx = M4ix =L,
By Lemma 17 and Proposition 15, we get the following :

Ctvmy+ Coniat, = Crapi+ Cram, = 5,
CuuMat CotsMy = Catarts+Coam, = 4,
CrsMy+ CMsM, = Caomy+ Coranr, = 4,
CMadMat CitaMy = CMuMs+ CMum, = O.

On the other hand, we can see that {e;, e;ue;, e;ve;} is a k-basis of e;kYe;
(i=1, 3) and {e,ues, e ves} is a k-basis of e kYes. Thus, cam = Caems =3
and caa, = 2. Noting here that the Cartan matrix is symmetric, we get
Cmm; = 3 (1s:s 4) and cum; = 2 (1= E N 4)

3222

. .. 2322

Lemma 18. The Cartan matrix of kY is given by 9939
2223

Now, we determine the Cartan matrix of £H. Put

= —(4+a+a2+a3Q+0b),
fo=—(+a+a*+a®)(1-0b),
fi=—(1—a+a®—a®)(1+b),
fi= —(1—a+a®—a®)(1-b),
f=-Q10-ad.
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Noting that kH/U = kQ, we see that fi, f2, f3 and f; are orthogonal primitive
idempotents of #H and f can be decomposed into two orthogonal primitive
idempotents of kH, say fs and fs. Thus, 1 = fi+fi+fa+fi+fs+Ss is a
decomposition of 1 into orthogonal primitive idempotents in k4. Let N; =
fikH/fiJu (1< i<6). Then, it is easy to see that Tu(M;) = Tu(M,) =H,
TulMs)=Tu(My) =Y, Nily = Nz'y =M, Ni|ly= Niy = M, and that Ns=
Ne = M = M{!. Now, Proposition 15 together with Lemma 18 vields the
following :

CNiN, T+ CN Nz = CNaNy + Ciony = 3,
CN,N;'*‘CN..V“ = Csz\"s+cN2N4 = 2
CnaNy HCNsn, = CNoNy T CNN, = 2,

CN:)N3+CN3N4 = CN4N3+ CNyNg = 3'

CNsNy = CNsNy = CNsNg = CNgNs = 2,
CNsNs — 5.
On the other hand, we can see that {f;, fiuf;} is a k-basis of fikHf: (i =1, 3)

and {fiufs} is a k-basis of fikHfs. Hence, cx,n, = Cnonvs = 2 and ca,n, =1.
Now, we can find all the Cartan invariants of #H as in the next lemma.

21112
12112
Lemma 19. The Cartan matvix of kH is given by | 1 1 2 1 2 |.
11122
22225

In conclusion, we determine the Cartan matrix of £G. It is easy to see
that T¢(N) = G and T6(N,) = Te(Ns) = Te(Ny) = H. Now, suppose that
Tec(Ns)=H. Then Ns, Ns Qnus and N; ®rus? are non-isomorphic irreduc-
ible £H-modules. But this is impossible, because N5 is the only one (up to
isomorphism) irreducible £#H-module with A-dimension 2. Hence T¢(Ns) =
G. Thus, we see that f14G, fokG and f;kG are non-isomorphic projective
indecomposable £G-modules (Lemma 3). Putting F\ = fikG/fiJc. Fo =
fokG/fo]c and Fs = fskG/fs]c. we see that Fily = Ny, Fa|y = Ns and F =
NF = Nf = N,°. Hence, by Lemma 19 and Proposition 7, we can get the
Cartan matrix of kG.

63 6
Theorem 20. The Cartan matrix of kG is given by (3 4 6).
6 6 15
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Obviously, each row-sum of the Cartan matrix of £G is not greater

than 27, the order of a Sylow 3-subgroup of G. However, the 5-th row-sum
of the Cartan matrix of £H exceeds 9, the order of a Sylow 3-subgroup
of H.

[8]
(9]

(10]
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