ON THE CARTAN INVARIANTS OF *p*-SOLVABLE GROUPS

YASUSHI NINOMIYA

Throughout the present paper, k will represent an algebraically closed field of characteristic p > 0. Let G be a finite p-solvable group, and B a block ideal of defect d of the group algebra kG. In [3], Fong proved that each Cartan invariant of B is always bounded above by p^d . On the other hand, Koshitani [6] proved that the nilpotency index of the Jacobson radical of B is bounded above by p^d , that is, the Loewy length of each projective indecomposable B-module is not greater than p^d . In this paper, we consider the possibility that the composition length of each projective indecomposable B-module is not greater than p^d . In other words, we consider the possibility that

(*) each row-sum of the Cartan matrix of B is bounded above by p^d . In §1, we consider the case that G has p-length 1, and prove that the Cartan matrix of every block ideal of kG has property (*) if and only if $G/O_{P'P}(G)$ is abelian. Furthermore, we prove that if every irreducible B-module has k-dimension a power of p, then the Cartan matrix of B has property (*). Now, let G be an arbitrary finite group, and H a normal subgroup of G. Let B and B be block ideals of B and B covers B. In §2 (resp. §3), we consider the case that B = p (resp. B = q), a prime number different from B = q), and the relationship between the Cartan invariants of B = q and those of B = q will be investigated. As a consequence, we show that if A = q0 is a power of A = q1 and the Cartan matrix of A = q2 has property (*), then the Cartan matrix of A = q3 also has property (*). However, in general, the converse need not be true; a counterexample will be given in §4.

Throughout this paper, all modules are assumed to be finitely generated right modules. We denote by $P_G(M)$ the projective cover of a kG-module M. If H is a subgroup of G, then $M|_H$ is a kH-module obtained from M by restricting the domain of operators to kH. Given a kH-module L, we denote by L^G the induced module $L \otimes_{kH} kG$. The Jacobson radical of kG is denoted by I_G . Given a block ideal G0 of G1, we denote by G2 and G3 the Cartan matrix of G3 and a defect group of G4, respectively.

1. Let G be a p-solvable group, and B an arbitrary block ideal of

kG. In [9], Schwarz proved that if $G/O_{P'P}(G)$ is abelian then each rowsum of C_B is equal to $|\delta(B)|$. Furthermore, the converse of this fact has been proved in [8]. First, by making use of these results, we prove the following

Theorem 1. Let G be a p-solvable group of order $p^a m$ ($a \ge 1$, $p \nmid m$). If G has p-length 1, then the following are equivalent:

- (1) $G/O_{P'P}(G)$ is abelian.
- (2) If B is an arbitrary block ideal of kG, then each row-sum of C_B is bounded above by $|\delta(B)|$.
- (3) If B is an arbitrary block ideal of kG, then each row-sum of C_B is equal to $|\delta(B)|$.
- (4) If B_0 is the principal block ideal of kG, then each row-sum of C_{B_0} is bounded above by p^a .
- (5) If B_0 is the principal block ideal of kG, then each row-sum of C_{B_0} is equal to p^a .

Proof. In view of [9, Satz 6.3] and [8, Theorem 5], it suffices to show that (4) implies (1).

Suppose that (4) holds. Since G has p-length 1, $G/O_{P'}(G)$ has a normal Sylow p-subgroup. As is well known, B_0 is isomorphic to $kG/O_{P'}(G)$. Hence, we may assume that $O_{P'}(G) = 1$ and G has a normal Sylow p-subgroup. Then kG itself is the principal block ideal of kG. Now, let $\{F_1, F_2, \cdots, F_s\}$ be a full set of non-isomorphic irreducible kG-modules, where F_1 is a trivial kG-module. We put $f_i = \dim_k F_i$ and $u_i = \dim_k P_G(F_i)$ ($1 \le i \le s$). Then p does not divide f_i because G has a normal Sylow p-subgroup. As is well known, $P_G(F_i)$ is isomorphic to a direct summand of $F_i \otimes_k P_G(F_i)$. Hence, by [4], Theorem [2B], we have [2B], we have [2B] for all [2B]. Now, we may assume that [2B] is a maximal one among [2B] and that [2B] had so [2B] be the [2B]-entry of the Cartan matrix [2B] of [2B] of the multiplicity of [2B] as a composition factor of [2B]. Then, by our assumption, there holds that

$$p^{a}f_{l} = u_{l} = \sum_{i=1}^{s} c_{li}f_{i} \le (\sum_{i=1}^{s} c_{li})f_{l} \le p^{a}f_{l} \quad (t \le l \le s).$$

This implies that if $c_{li} \neq 0$ then $f_i = f_l$. Hence we have $c_{ii} = 0$ provided $t \leq i \leq s$ and $1 \leq j \leq t-1$. However, this is impossible, because C is indecomposable. Hence $f_s = 1$. This implies that every irreducible kG-module has k-dimension 1, and hence $G/O_P(G)$ is abelian, proving (1).

Next, we prove the following

Proposition 2. Let G be a p-solvable group, and B a block ideal of kG. If every irreducible B-module has k-dimension a power of p, then each row-sum of C_B is bounded above by $|\delta(B)|$.

Proof. Let $\{F_1, F_2, \dots, F_s\}$ be a full set of non-isomorphic irreducible B-modules. Then, by assumption, $\dim_k P_G(F_i) = p^a$ for all i, where p^a is the order of a Sylow p-subgroup of G ([4, Theorem 2B]). Now, we put $\dim_k F_i = p^{e_i}$ ($1 \le i \le s$). We may assume that e_1 is minimal among e_i 's. Let c_{ij} be the (i,j)-entry of C_B . Then we have

$$p^a = \dim_k P_G(F_i) = \sum_{j=1}^{s} c_{ij} \dim_k F_j \ge (\sum_{j=1}^{s} c_{ij}) p^{e_i}.$$

Since $|\delta(B)| = p^{a-e_1}$, the above implies that

$$|\delta(B)| = p^a/p^{e_1} \ge \sum_{j=1}^s c_{ij}$$
 for all i,

proving the assertion.

2. Let H be a normal subgroup of a finite group G, and b a block ideal of kH. We denote by $T_G(b)$ the inertial subgroup of b:

$$T_G(b) = \{ g \in G \mid g^{-1}fg = f \},$$

where f is a central primitive idempotent of kH such that b = fkH. Given an irreducible b-module L, we denote by $T_G(L)$ the inertial subgroup of L:

$$T_G(L) = \{ g \in G \mid L \bigotimes_{kH} g \cong L \text{ as } kH\text{-modules} \}.$$

One may remark that $T_G(L)$ is contained in $T_G(b)$. Now, let $\{g_i \mid 1 \leq i \leq t\}$ be a right transversal of $T_G(b)$ in G. Then $e = \sum_{i=1}^t g_i^{-1} f g_i$ is a central idempotent of kG. If $e = e_1 + e_2 + \cdots + e_m$ is the decomposition of e into (orthogonal) central primitive idempotents of kG, then we say that each block ideal $e_i kG$ covers b.

Throughout the subsequent study in this section, we suppose that [G:H] = p. Our objective is to find some relationship between Cartan invariants of b and those of a block ideal of kG which covers b. We notice here that if L is an irreducible kH-module then $T_G(L)$ is either H or G.

At first, we prove the following

Lemma 3. Let L be an irreducible kH-module. Then there holds the following:

- (1) If $T_G(L) = H$, then L^G is an irreducible kG:module and $P_G(L^G) \cong P_H(L)^G$.
- (2) If $T_G(L) = G$, then there exists a unique (up to isomorphism) irreducible kG-module W such that $W|_H \cong L$; and then $P_G(W) \cong P_H(L)^G$.

Proof. (1) It is well known that L^G is an irreducible kG-module ([2, Chap. III, (2.11)]). Since $P_H(L)^G$ is a projective kG-module and

$$P_H(L)^G/(P_H(L)J_H)^G \cong (P_H(L)/P_H(L)J_H)^G \cong L^G$$

we see that $P_G(L^G) \cong P_H(L)^G$.

(2) It is well known that there exists a unique irreducible kG-module W such that $W|_H \cong L$ ([2, Chap. III, (3.16)]) and that $P_H(L)^G$ is a projective indecomposable kG-module ([2, Chap. III, (3.13)]). Since W is isomorphic to an irreducible submodule of L^G and L^G is isomorphic to a submodule of $P_H(L)^G$, W is isomorphic to the socle of $P_H(L)^G$. This implies that $P_G(W) \cong P_H(L)^G$.

Now, let L_1 , L_2 , V_1 and V_2 be irreducible kH-modules such that $T_G(L_i) = H$ and $T_G(V_i) = G$ (i = 1, 2). We put $M_i = L_i^G$. Further, we denote by W_i an irreducible kG-module such that $W_i|_H \cong V_i$. Let σ be an element of G such that $\{1, \sigma, \cdots, \sigma^{P-1}\}$ is a right transversal of H in G. Given a k-space X and a positive integer n, we denote by nX a direct sum of n copies of X. Then, in virtue of Frobenius reciprocity theorem and the preceding lemma, we can easily see the next

Lemma 4. (1) $\operatorname{Hom}_{kG}(P_G(M_1), P_G(M_2)) \cong \bigoplus_{i=0}^{p-1} \operatorname{Hom}_{kH}(P_H(L_1), P_H(L_2) \bigotimes_{kH} \sigma^i) \cong \bigoplus_{i=0}^{p-1} \operatorname{Hom}_{kH}(P_H(L_1) \bigotimes_{kH} \sigma^i, P_H(L_2)).$

- (2) $\operatorname{Hom}_{kG}(P_G(M_1), P_G(W_1)) \cong p \operatorname{Hom}_{kH}(P_H(L_1), P_H(V_1))$
 - $\cong \bigoplus_{i=0}^{p-1} \operatorname{Hom}_{kH}(P_H(L_1) \bigotimes_{kH} \sigma^i, P_H(V_1)).$
- (3) $\operatorname{Hom}_{kG}(P_G(W_1), P_G(M_1)) \cong \bigoplus_{i=0}^{p-1} \operatorname{Hom}_{kH}(P_H(V_1), P_H(L_1) \otimes_{kH} \sigma^i)$ $\cong p \operatorname{Hom}_{kH}(P_H(V_1), P_H(L_1)).$
- (4) $\operatorname{Hom}_{kG}(P_G(W_1), P_G(W_2)) \cong p \operatorname{Hom}_{kH}(P_H(V_1), P_H(V_2)).$

By [1, Theorem 54.16], we see that if X and Y are irreducible kG-modules, then $\dim_k \operatorname{Hom}_{kG}(P_G(X), P_G(Y))$ is equal to the multiplicity of X as a composition factor of $P_G(Y)$. Hence, the above gives a linkage between the Cartan invariants of kG and those of kH.

The next can be proved by [2, Chap.V, (3.5)], [5, Proposition 4.2] and [7, Theorem 6.11].

Lemma 5. If b is a block ideal of kH, then b is covered by a unique block ideal B of kG, and there holds the following:

- (1) If $T_G(b) = H$ then $\delta(B) \equiv \delta(b)$.
- (2) If $T_G(b) = G$ then $\delta(B) \cap H_{\overline{G}} \delta(b)$ and $|\delta(B)| = p|\delta(b)|$.

Now, let b be a block ideal of kH such that $T_G(b) = H$. Then $T_G(L)$

= H for every irreducible b-module L. Let B be a block ideal of kG which covers b, and M an irreducible B-module. Then $M|_H$ is a completely reducible kH-module by Clifford's theorem, and there exists a composition factor L of $M|_H$ belonging to b. Since L^G is an irreducible kG-module (Lemma 3 (1)) and $\operatorname{Hom}_{kG}(L^G, M) \cong \operatorname{Hom}_{kH}(L, M|_H) \neq 0$, we have $L^G \cong M$. Now, let $\{L_1, L_2, \cdots, L_s\}$ be a full set of non-isomorphic irreducible b-modules. We put $b_i = \sigma^{-(i-1)}b\sigma^{i-1}$, $L_{ji} = L_j \bigotimes_{kH}\sigma^{i-1}$ and $M_j = L_j^G$ ($1 \le i \le p$; $1 \le j \le s$). Then, Lemmas 4 and 5 together with the above fact imply the following result which is a special case of $[2, \operatorname{Chap}, \operatorname{V}, (2.5)]$.

Proposition 6. (1) $\{M_1, M_2, \dots, M_s\}$ is a full set of non-isomorphic irreducible B-modules, and $\{L_{1i}, L_{2i}, \dots, L_{si}\}$ is a full set of non-isomorphic irreducible b_i -modules $(1 \le i \le p)$.

(2) B and b have the same Cartan matrix, and have a defect group in common.

Next, suppose that b is a block ideal of kH with $T_G(b) = G$. Then the inertial subgroup $T_G(L)$ of any irreducible b-module L is either H or G. Let B be a block ideal of kG which covers b. If M is an irreducible B-module, then there exists a composition factor L of a completely reducible kH-module $M|_H$ belonging to b. If $T_G(L) = H$ then, as stated just before Proposition 6, L^G is isomorphic to M. On the other hand, if $T_G(L) = G$ then $M|_H \cong L$ by Lemma 3 (2). Now, let $\{L_{11}, \cdots, L_{1P}; \cdots; L_{r1}, \cdots, L_{rP}; V_1, V_2, \cdots, V_t\}$ be a full set of non-isomorphic irreducible b-modules, where $T_G(L_{i1}) = H$, $L_{ij} = L_{i1} \bigotimes_{kH} \sigma^{j-1}$ $(1 \le i \le r; 1 \le j \le p)$ and $T_G(V_t) = G$ $(1 \le l \le t)$. Put $M_i = L_{i1}^G (1 \le i \le r)$, and choose an irreducible kG-module W_t such that $W_t|_H \cong V_t$ $(1 \le l \le t)$. Then $\{M_1, \cdots, M_r; W_1, \cdots, W_t\}$ is a full set of non-isomorphic irreducible B-modules. Given irreducible kG-modules X, Y (resp. irreducible kH-modules A, B), we denote by C_{XY} (resp. C_{AB}) the multiplicity of Y (resp. B) as a composition factor of $P_G(X)$ (resp. $P_H(A)$). Then, by Lemma 4, we have the following

Proposition 7. (1) $c_{M_{i}M_{j}} = \sum_{l=1}^{p} \tilde{c}_{L_{l}L_{l}l} = \sum_{l=1}^{p} \tilde{c}_{L_{l}2L_{l}l} = \cdots = \sum_{l=1}^{p} \tilde{c}_{L_{l}pL_{l}l} (1 \leq i, j \leq r).$

- (2) $c_{W_iM_j} = \sum_{l=1}^{p} \tilde{c}_{V_lL_{j_l}} \quad (1 \le i \le t; \ 1 \le j \le r).$
- (3) $c_{M_iW_j} = p\tilde{c}_{L_{i1}V_j} = p\tilde{c}_{L_{i2}V_j} = \dots = p\tilde{c}_{L_{iP}V_j} \ (1 \le i \le r \ ; \ 1 \le j \le t).$
- $(4) \quad c_{W_iW_j} = p\tilde{c}_{V_iV_j} \quad (1 \le i, \ j \le t).$

We are now in a position to state the following

Theorem 8. Let N be a normal subgroup of G such that G/N is a p-group. Let b be a block ideal of kN. If B is a block ideal of kG which covers b, then there holds the following:

- (1) If each row-sum of C_b is bounded above by $|\delta(b)|$, then each row-sum of C_B is bounded above by $|\delta(B)|$.
- (2) The converse of (1) is true, provided one of the following conditions holds:
 - (i) $T_G(b) = H$.
 - (ii) $T_G(L) = G$ for every irreducible b-module L.

Proof. (1) By Propositions 6, 7 and Lemma 5 (2).

(2) If (i) holds, then the converse is true by Proposition 6. On the other hand, if (ii) holds then $C_B = [G:N]C_b$ by Proposition 7. Since $|\delta(B)| = [G:N]|\delta(b)|$ (Lemma 5 (2)), the converse of (1) is also true.

The next is a combination of Theorems 1 and 8.

Corollary 9. Let G be a group such that $G = O_{P'PP'P}(G)$ and $O_{P'PP'}(G) / O_{P'P}(G)$ is abelian, and let B be a block ideal of kG. Then each row-sum of C_B is bounded above by $|\delta(B)|$.

3. Throughout this section, we assume that H is a normal subgroup of G with [G:H]=q, a prime different from p. We notice here that if L is an irreducible kH-module and $T_G(L) \neq H$ then $T_G(L) = G$. We establish first three lemmas which correspond to Lemmas 3, 4 and 5, respectively.

Lemma 10. Let L be an irreducible kH-module. Then there holds the following:

- (1) If $T_G(L) = H$, then L^G is an irreducible kG-module and $P_G(L^G) \cong P_H(L)^G$.
- (2) If $T_G(L) = G$, then there exist q non-isomorphic irreducible kG-modules W_1, W_2, \dots, W_q such that $W_i|_H \cong L$; and then $P_G(W_i)|_H \cong P_H(L)$.
- *Proof.* (1) It is well known that L^G is an irreducible kG-module ([2, Chap. III, (2.11)]). It is also clear that $P_H(L)^G$ is a projective kG-module. Noting that $J_G = J_H kG$, we get

$$P_H(L)^G/P_H(L)^GJ_G\cong (P_H(L)/P_H(L)J_H)^G\cong L^G.$$

Hence, $P_H(L)^G \cong P_G(L^G)$.

(2) The existence of such W_i 's is well known ([10, Lemma 1]). Observing $J_G = J_H kG$, we get

$$P_G(W_i)|_H \cong P_H(P_G(W_i)|_H) \cong P_H(P_G(W_i)|_H/(P_G(W_i)|_H)J_H)$$

$$\cong P_H(P_G(W_i)|_H/(P_G(W_i)J_G)|_H) \cong P_H(W_i|_H) \cong P_H(L).$$

Let L_1 , L_2 , V_1 and V_2 be irreducible kH-modules such that $T_G(L_i) = H$ and $T_G(V_i) = G$ (i = 1, 2). We put $M_i = L_i^G$, and choose an irreducible kG-module W_1 such that $W_1|_H \cong V_1$. Let τ be an element of G such that $\{1, \tau, \dots, \tau^{g-1}\}$ is a right transversal of H in G.

Lemma 11. (1) $\text{Hom}_{kG}(P_G(M_1), P_G(M_2)) \cong$

 $\bigoplus_{i=0}^{q-1} \operatorname{Hom}_{kH}(P_H(L_1), P_H(L_2) \bigotimes_{kH} \tau^i) \cong \bigoplus_{i=0}^{q-1} \operatorname{Hom}_{kH}(P_H(L_1) \bigotimes_{kH} \tau^i, P_H(L_2)).$

- (2) $\operatorname{Hom}_{kG}(P_G(M_1), P_G(W_1)) \cong \operatorname{Hom}_{kH}(P_H(L_1), P_H(V_1)).$
- (3) $\operatorname{Hom}_{kG}(P_G(W_1), P_G(M_1)) \cong \operatorname{Hom}_{kH}(P_H(V_1), P_H(L_1)).$
- (4) If W_{11}, \dots, W_{1q} (resp. W_{21}, \dots, W_{2q}) are non-isomorphic irreducible kG-modules such that $W_{1i}|_H \cong V_1$ (resp. $W_{2i}|_H \cong V_2$), and if $1 \leq l \leq q$, then

$$\sum_{i=1}^{q} \dim_{k} \operatorname{Hom}_{kG}(P_{G}(W_{1i}), P_{G}(W_{2i})) = \dim_{k} \operatorname{Hom}_{kH}(P_{H}(V_{1}), P_{H}(V_{2})).$$

Proof. (1), (2) and (3) are clear by Frobenius reciprocity theorem and Lemma 10.

(4) Observing that $J_G = J_H kG$, we get

$$P_{H}(V_{2})J_{H}^{r}/P_{H}(V_{2})J_{H}^{r+1} \cong (P_{G}(W_{2l})|_{H})J_{H}^{r}/(P_{G}(W_{2l})|_{H})J_{H}^{r+1}$$

$$\cong (P_{G}(W_{2l})J_{G}^{r}/P_{G}(W_{2l})J_{G}^{r+1})|_{H}$$

where r is an arbitrary non-negative integer and $1 \le l \le q$. This shows that the multiplicity of V_1 as a composition factor of $P_H(V_2)J_H^*/P_H(V_2)J_H^{r+1}$ coincides with that of W_{1i} as a composition factor of $P_G(W_{2i})J_C^*/P_G(W_{2i})J_C^{r+1}$ $(1 \le i \le q)$. Since $\dim_k \operatorname{Hom}_{kH}(P_H(V_1), P_H(V_2))$ (resp. $\dim_k \operatorname{Hom}_{kG}(P_G(W_{1i}), P_G(W_{2i}))$) is equal to the multiplicity of V_1 (resp. W_{1i}) as a composition factor of $P_H(V_2)$ (resp. $P_G(W_{2l})$), the assertion (4) follows immediately.

The next is obvious by [5, Proposition 4.2].

Lemma 12. Let B and b be block ideals of kG and kH, respectively. If B covers b, then B and b have a defect group in common.

Now, we consider the case that the inertial subgroup $T_G(b)$ of a block ideal b of kH coincides with H.

Lemma 13. Let b be a block ideal of kH. If $T_G(b) = H$ then b is covered by a uniquely determined block ideal of kG.

Proof. Suppose that more than one block ideal of kG covers b, and

Y. NINOMIYA

let B_1, B_2, \dots, B_m be all such block ideals of kG. By an argument similar to that employed in the paragraph preceding Proposition 6, we see that if M is an irreducible B-module then there exists an irreducible b-module L such that $M \cong L^G$. So, we let L_1, L_2, \dots, L_m be irreducible b-modules such that L^G belongs to B_i $(1 \le i \le m)$. Now, if L and L' are irreducible b-modules such that L^G and L'^G belong to different block ideals of kG, then $\operatorname{Hom}_{kG}(P_G(L^G), P_G(L'^G)) = 0$, and so $\operatorname{Hom}_{kH}(P_H(L), P_H(L')) = 0$ by Lemma 11 (1). Thus, we see that $\tilde{c}_{L_iL_1} = 0$ for $i \ne 1$, where $\tilde{c}_{L_iL_1}$ is the multiplicity of L_1 as a composition factor of $P_H(L_i)$. But this is impossible, because C_b is indecomposable. Hence b is covered by a uniquely determined block ideal of kG.

Let b be a block ideal of kH such that $T_G(b) = H$, and B a block ideal of kG which covers b. Let $\{L_1, L_2, \dots, L_s\}$ be a full set of non-isomorphic irreducible b-modules. Now, putting $b_i = \tau^{-(i-1)}b\tau^{i-1}$, $L_{ji} = L_j \bigotimes_{kH} \tau^{i-1}$ and $M_j = L_j^G$ $(1 \le i \le q ; 1 \le j \le s)$, by Lemmas 10—13 we get the following which is a special case of [2, Chap. V, (2.5)].

Proposition 14. (1) $\{M_1, M_2, \dots, M_s\}$ is a full set of non-isomorphic irreducible B-modules, and $\{L_{1i}, L_{2i}, \dots, L_{si}\}$ is a full set of non-isomorphic irreducible b_i -modules $(1 \le i \le q)$.

(2) B and b have the same Cartan matrix and have a defect group in common.

Next, suppose that b is a block ideal of kH with $T_G(b) = G$. Then, for any irreducible b-module L, $T_G(L)$ is either H or G. Let $\{B_1, B_2, \cdots, B_m\}$ be a full set of block ideals of kG covering b. We put $B = B_1 \oplus B_2 \oplus \cdots \oplus B_m$. If M is an irreducible B-module, then there exists a composition factor L of a completely reducible kH-module $M|_H$ belonging to b. If $T_G(L) = H$ then, as in the paragraph preceding Proposition 6, we see that $M \cong L^G$; and if $T_G(L) = G$ then $M|_H \cong L$ by Lemma 10 (2). Now, let $\{L_{11}, \cdots, L_{1q}; \cdots; L_{r1}, \cdots, L_{rq}; V_1, V_2, \cdots, V_t\}$ be a full set of nonisomorphic irreducible b-modules, where $T_G(L_{i1}) = H$, $L_{ij} = L_{i1} \otimes_{kH} \tau^{j-1}$ $(1 \le i \le r; 1 \le j \le q)$ and $T_G(V_t) = G$ $(1 \le l \le t)$. We put $M_i = L_{i1}^G$ $(1 \le i \le r)$, and we let $\{W_{t1}, \cdots, W_{tq}\}$ be a full set of non-isomorphic irreducible kG-modules such that $W_{tj}|_H \cong V_t$ $(1 \le l \le t)$. Then $\{M_1, M_2, \cdots, M_r; W_{11}, \cdots, W_{1q}; \cdots; W_{t1}, \cdots, W_{tq}\}$ is a full set of non-isomorphic irreducible B-modules. Further, according to Lemma 11, we can prove the following proposition which corresponds to Proposition 7.

Proposition 15. (1) $c_{M_iM_j} = \sum_{l=1}^q \tilde{c}_{L_{l1}L_{jl}} = \sum_{l=1}^q \tilde{c}_{L_{l2}L_{jl}} = \dots = \sum_{l=1}^q \tilde{c}_{L_{lq}L_{jl}}$ $(1 \le i, j \le r).$

- (2) $c_{W_{i1}M_{j}} = c_{W_{i2}M_{j}} = \cdots = c_{W_{iq}M_{j}} = \tilde{c}_{V_{i}L_{j_{1}}} = \tilde{c}_{V_{i}L_{j_{2}}} = \cdots = \tilde{c}_{V_{i}L_{jq}} \ (1 \le i \le t ; 1 \le j \le r).$
- (3) $c_{M_iW_{j_1}} = c_{M_iW_{j_2}} = \dots = c_{M_iW_{j_q}} = \tilde{c}_{L_{i_1}V_j} = \tilde{c}_{L_{i_2}V_j} = \dots = \tilde{c}_{L_{i_q}V_j} \ (1 \le i \le r; 1 \le j \le t).$
 - $(4) \quad \sum_{l=1}^{q} c_{W_{l1}W_{ll}} = \sum_{l=1}^{q} c_{W_{l2}W_{ll}} = \cdots = \sum_{l=1}^{q} c_{W_{lq}W_{ll}} = \tilde{c}_{V_{l}V_{l}} (1 \le i, j \le t).$

We are now in a position to state the following

Theorem 16. Let H be a normal subgroup of G with [G:H] = q. Let b be a block ideal of kH, and B a block ideal of kG which covers b. Then there holds the following:

- (1) Suppose that, for every irreducible b-module, its inertial subgroup coincides with G. If each row-sum of C_b is bounded above by $|\delta(b)|$, then that of C_B is bounded above by $|\delta(B)|$.
- (2) Suppose that, for every irreducible b-module, its inertial subgroup coincides with H. Then, B is the unique block ideal covering b, and the the following statements are equivalent:
 - (i) Each row-sum of C_b is bounded above by $|\delta(b)|$.
 - (ii) Each row-sum of C_B is bounded above by $|\delta(B)|$.

Proof. (1) By Proposition 15.

- (2) In the same way as in the proof of Lemma 13, we can see that b is covered uniquely by a block ideal of kG, even if $T_G(b)$ is different from H. The rest of the assertion follows from Propositions 14 and 15.
- 4. In this section, we assume p=3 and give a counterexample which shows that the converse of Theorem 8 (1) need not be true.

Let $U = \langle u \rangle \times \langle v \rangle$ be an elementary abelian group of order 3^2 . We look upon U as a vector space over GF(3). Then SL(2,3) acts naturally on U. We denote by G a semi-direct product of U by SL(2,3) with respect to this action. We notice that |SL(2,3)| = 24 and a Sylow 2-subgroup Q of SL(2,3) is a quaternion group. We let $Q = \langle a, b \mid a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} \rangle$, and denote by $\langle s \rangle$ a Sylow 3-subgroup of SL(2,3). Then we may, and shall assume that $G = \langle u, v, a, b, s \rangle$ and

$$a^{-1}ua = u^2v$$
, $b^{-1}ub = uv$, $a^{-1}va = uv$, $b^{-1}vb = uv^2$, $s^{-1}us = uv$, $s^{-1}vs = v$, $s^{-1}as = b$, $s^{-1}bs = ba$.

In what follows, we put $X = U\langle a^2 \rangle$, $Y = U\langle a \rangle$ and H = UQ. Now, by

making use of Propositions 7 and 15, we shall determine the Cartan matrices of kH and kG.

To begin with, we shall determine the Cartan matrix of kX. Put $\varepsilon_1 = -(1+a^2)$ and $\varepsilon_2 = -1+a^2$. Then $1 = \varepsilon_1 + \varepsilon_2$ is a decomposition of 1 into orthogonal primitive idempotents in kX. By a brief computation, we can see that $\{\varepsilon_i, \varepsilon_i u \varepsilon_i, \varepsilon_i v \varepsilon_i, \varepsilon_i u v \varepsilon_i, \varepsilon_i u^2 v \varepsilon_i\}$ is a k-basis of $\varepsilon_i kX \varepsilon_i$ (i = 1, 2) and that $\{\varepsilon_1 u \varepsilon_2, \varepsilon_1 v \varepsilon_2, \varepsilon_1 u v \varepsilon_2, \varepsilon_1 u^2 v \varepsilon_2\}$ is a k-basis of $\varepsilon_1 kX \varepsilon_2$. Hence, we have

Lemma 17. The Cartan matrix of kX is given by
$$\begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$$
.

Next, we shall determine the Cartan matrix of kY. Put $e_1=1+a+a^2+a^3$, $e_2=1-a+a^2-a^3$, $e_3=1+\xi a-a^2-\xi a^3$ and $e_4=1-\xi a-a^2+\xi a^3$, where ξ is a primitive 4-th root of 1 in k. Then $1=e_1+e_2+e_3+e_4$ is a decomposition of 1 into orthogonal primitive idempotents in kY. Put $L_i=\varepsilon_i kX/\varepsilon_i J_X$ (i=1,2) and $M_j=e_j kY/e_j J_Y$ ($1\le j\le 4$). Then it is easy to see that $T_Y(L_1)=T_Y(L_2)=Y$, $M_1|_X\cong M_2|_X\cong L_1$ and $M_3|_X\cong M_4|_X\cong L_2$. By Lemma 17 and Proposition 15, we get the following:

$$C_{M_1M_1} + C_{M_1M_2} = C_{M_2M_1} + C_{M_2M_2} = 5,$$

$$C_{M_1M_3} + C_{M_1M_4} = C_{M_2M_3} + C_{M_2M_4} = 4,$$

$$C_{M_3M_1} + C_{M_3M_2} = C_{M_4M_1} + C_{M_4M_2} = 4,$$

$$C_{M_3M_3} + C_{M_3M_4} = C_{M_4M_3} + C_{M_4M_4} = 5.$$

On the other hand, we can see that $\{e_i, e_iue_i, e_ive_i\}$ is a k-basis of e_ikYe_i (i=1,3) and $\{e_1ue_3, e_1ve_3\}$ is a k-basis of e_1kYe_3 . Thus, $c_{M_1M_1}=c_{M_3M_3}=3$ and $c_{M_1M_3}=2$. Noting here that the Cartan matrix is symmetric, we get $c_{M_1M_1}=3$ $(1 \le i \le 4)$ and $c_{M_1M_2}=2$ $(1 \le i \ne j \le 4)$.

Lemma 18. The Cartan matrix of kY is given by
$$\begin{pmatrix} 3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3 \end{pmatrix}$$
.

Now, we determine the Cartan matrix of kH. Put

$$f_1 = -(1+a+a^2+a^3)(1+b),$$

$$f_2 = -(1+a+a^2+a^3)(1-b),$$

$$f_3 = -(1-a+a^2-a^3)(1+b),$$

$$f_4 = -(1-a+a^2-a^3)(1-b),$$

$$f = -(1-a^2).$$

Noting that $kH/U \cong kQ$, we see that f_1 , f_2 , f_3 and f_4 are orthogonal primitive idempotents of kH and f can be decomposed into two orthogonal primitive idempotents of kH, say f_5 and f_6 . Thus, $1 = f_1 + f_2 + f_3 + f_4 + f_5 + f_6$ is a decomposition of 1 into orthogonal primitive idempotents in kH. Let $N_i = f_i kH/f_i J_H$ ($1 \le i \le 6$). Then, it is easy to see that $T_H(M_1) = T_H(M_2) = H$, $T_H(M_3) = T_H(M_4) = Y$, $N_1|_Y \cong N_2|_Y \cong M_1$, $N_3|_Y \cong N_4|_Y \cong M_2$ and that $N_5 \cong N_6 \cong M_3^H \cong M_4^H$. Now, Proposition 15 together with Lemma 18 yields the following:

$$c_{N_1N_1} + c_{N_1N_2} = c_{N_2N_1} + c_{N_2N_2} = 3,$$

$$c_{N_1N_3} + c_{N_1N_4} = c_{N_2N_3} + c_{N_2N_4} = 2,$$

$$c_{N_3N_1} + c_{N_3N_2} = c_{N_4N_1} + c_{N_4N_2} = 2,$$

$$c_{N_3N_3} + c_{N_3N_4} = c_{N_4N_3} + c_{N_4N_4} = 3,$$

$$c_{N_5N_1} = c_{N_5N_2} = c_{N_5N_3} = c_{N_5N_4} = 2,$$

$$c_{N_5N_5} = 5.$$

On the other hand, we can see that $\{f_i, f_i u f_i\}$ is a k-basis of $f_i k H f_i$ (i = 1, 3) and $\{f_1 u f_3\}$ is a k-basis of $f_1 k H f_3$. Hence, $c_{N_1 N_1} = c_{N_3 N_3} = 2$ and $c_{N_1 N_3} = 1$. Now, we can find all the Cartan invariants of k H as in the next lemma.

Lemma 19. The Cartan matrix of kH is given by
$$\begin{pmatrix} 2 & 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 2 & 5 \end{pmatrix}.$$

In conclusion, we determine the Cartan matrix of kG. It is easy to see that $T_G(N_1) = G$ and $T_G(N_2) = T_G(N_3) = T_G(N_4) = H$. Now, suppose that $T_G(N_5) = H$. Then N_5 , $N_5 \otimes_{kH} s$ and $N_5 \otimes_{kH} s^2$ are non-isomorphic irreducible kH-modules. But this is impossible, because N_5 is the only one (up to isomorphism) irreducible kH-module with k-dimension 2. Hence $T_G(N_5) = G$. Thus, we see that f_1kG , f_2kG and f_5kG are non-isomorphic projective indecomposable kG-modules (Lemma 3). Putting $F_1 = f_1kG/f_1J_G$, $F_2 = f_2kG/f_2J_G$ and $F_3 = f_5kG/f_5J_G$, we see that $F_1|_H \cong N_1$, $F_3|_H \cong N_5$ and $F_2 \cong N_2^G \cong N_3^G \cong N_4^G$. Hence, by Lemma 19 and Proposition 7, we can get the Cartan matrix of kG.

Theorem 20. The Cartan matrix of kG is given by
$$\begin{pmatrix} 6 & 3 & 6 \\ 3 & 4 & 6 \\ 6 & 6 & 15 \end{pmatrix}$$
.

Obviously, each row-sum of the Cartan matrix of kG is not greater than 27, the order of a Sylow 3-subgroup of G. However, the 5-th row-sum of the Cartan matrix of kH exceeds 9, the order of a Sylow 3-subgroup of H.

REFERENCES

- C.W. CURTIS and I. REINER: Representation Theory of Finite Groups and Associative Algebras, Interscience, New York-London-Sydney, 1962.
- [2] W. Feit: Representations of Finite Groups, Part I, Lecture Notes, Yale University, 1969.
- [3] P. Fong: On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263-284.
- [4] P. Fong: Solvable groups and modular representation theory, Trans. Amer. Math. Soc. 103 (1962), 484—494.
- [5] R. KNÖRR: Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53—60.
- [6] S. KOSHITANI: On the Jacobson radical of a block ideal in a finite p-solvable group for p≥5, J. Algebra 80 (1983), 134—144.
- [7] G.O. MICHLER: Blocks and centers of group algebras, Lectures on Rings and Modules: Lecture Notes in Math. 246, Springer-Verlag, Berlin-Heidelberg-New York, 1972, 429—563.
- [8] Y. NINOMIYA: On ρ-nilpotent groups with extremal ρ-blocks, Hokkaido Math. J. 11 (1982), 229—233.
- [9] W. Schwarz: Die Struktur modularer Gruppenringe endlicher Gruppen der p-Länge 1,
 J. Algebra 60 (1979), 51-75.
- [10] B. SRINIVASAN: On the indecomposable representations of a certain class of groups, Proc. London Math. Soc. 10 (1960), 497—513.

SHINSHU UNIVERSITY AND OKAYAMA UNIVERSITY

(Received December 2, 1982)