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HOPF GALOIS EXTENSIONS WITH HOPF ALGEBRAS
OF DERIVATION TYPE

ATsusHl NAKAJIMA and KENj1 YOKOGAWA

Throughout the present paper, R will denote a commutative ring with
identity of prime characteristic p. Let H be a Hopf algebra over R. A
commutative ring extension A of R is called an H-Hopf Galois extension
of R (or A/R is an H-Hopf Galois exfensz'on) if A is a finitely generated
faithful projective R-module and an H-module algebra and the natural
homomorphism (arising from the H-module structure of A) from the smash
product algebra A# H to the endomorphism algebra Endz(A) is an iso-
morphism. For details, we refer to [2], [6], [7] and [8]. Unadorned ®
and Hom etc. are taken over R and every map is R-linear. All the modules
and R-algebra homomorphisms considered are unitary.

By the Hopf aigebra of derivation type of degree p™ (cited below as
H(p™)) we mean a Hopf algebra over R defined as follows: H(p™) is an
R-algebra freely generated by d with relation d*” = 0 and its Hopf algebra
structure is given by

Ad)=d®1+1®d, e(d)=0 and Ad) = —d,

where 4, € and A are the diagonalization, augmentation and antipode, re-
spectively. (Hereafter, the letter "d” will always mean the above genera-
tor.) In [4, Corollary 1.4], the first named author shows that any H(p™)-
Hopf Galois extension of R is of the form

RX/(XP—a) ® - @ R[Xnl/(Xfi—an) (& € R).

As is easily checked, such an extension is an H(p)™-Hopf Galois extension
of R, where H(p)" = H(p) ® - ® H(p). Conversely, in case An = R[X,]/
(XP— ) ® - @ R[ Xnl/(X5— an)is a field, the existence of a non-integrable
element in A,_; enabled R.Baer [1] to show inductively that any derivation
of An-10ver R can be extended to that of A, satisfying the same conditions
as for d (especially its p™th power equals zero and the invariant subfield
is R). This fact may be interpreted as An to be an H(p™)-Hopf Galois
extension of K. But unfortunately the explicit form of the non-integrable
element was not given.

In this paper we shall consider a typical non-integrable element and
construct a derivation (compatible with the above characterization) on an
H(p)™Hopf Galois extension of R. Furthermore, we shall show that a
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commutative R-algebra A is an H(p™)-Hopf Galois extension of R if and
only if it is an H(p)™Hopf Galois extension.
Now, we begin our study with stating two propositions quoted from[4 ].

Proposition 1 ([4, Corollary 1.6]). Let A be a commutative R-algebra.
Then A is an H(p)-Hopf Galois extension of R if and only if A is isomorphic
to R[X)/(XP—a) (a € R) as H-module algebra, where the action of d €
H(p) on R[X])/(XP—a) is defined by d(x) =1, x the residue class of X.

Proposition 2 ([4, Lemma 1.2 and Corollary 14]). Let A/R be an
H(p™)-Hopf Galois extension. Then A is isomorphic to R[X\]/(XFf—a)®
Q@ R Xnl/(XE—am) (a; E R). When this is the case, d(x\) =1, x;=
dP" P N xm) and d(x;) € Rlx1, =, xi-1] 2= 1), where x; is the residue
class Of X

Proposition 3. Let H\, H> be finite cocommutative Hopf algebras over
R. IfA/R is an H, Q H»-Hopf Galois extension, then there exist subalgebras
Ay, As of A such that Ai/R is an H;-Hopf Galois extension (i =1, 2) and
A=A ® A, as H ® H,-module algebra. Conversely, if A:i/R is an H;-
Hopf Galois extension, then A\ ® Az is an H\ @ Hy-Hopf Galois extension
of R.

Proof The converse part has been proved in [2, Proposition 3.2] and
[8, Lemma 4.2]. Let &;: H;— R be an augmentation, p) =1Q® &: A, ®
Hy,— H,and p=6,®1: Hi® H,— H,. Then, by [8, Lemma 4.1], A;=
Homu,eu,(H: A) is an H-Hopf Galois extension of R, where H; is regarded
as an H; ® Hy;-module via p;. Thus A ® A, is an H; ® H;-Hopf Galois
extension of k. By taking the image of 1 € H;, we may identify A, with
At = (g€ A| h-a = e(h)afor all hE H>}; and A; with A", Under these
identifications we can define the homomorphism ¢: A, ® A>— A by the
product in A. Since A is commutative, ¢ is a well-defined H, @ Hz-module
algebra homomorphism. Thus ¢ is an isomorphism by [2, Theorem 1.1.12].

By Propositions 1, 2 and 3 we get the following:

Corollary 4. Let A= R[X)/(Xf—a) @ - @ R[Xnl/(XE— am) be an
H(p™)-Hopf Galois extension of R. Then A is an H(p)"-Hopf Galois
extension of R, where 0; = 0/0x; =1 R1RQdR1YQ - VIEIR - X
1IQH(P) Q1R ®1 (i-th position) acts on A as 0:x;) = 6i; (Kronecker’s
delta).



HOPF GALOIS EXTENSIONS 51

Conversely, if A is an H(p)™-Hopf Galois extension of R, then A is iso-
morphic to R[X\]/(XP—ai) @ @ R[Xunl/(Xh—an) as H(p)"-module
algebra, 0; acts as 0:x;) = Sy

For further investigation, we need the following lemmas.

Lemma 5. (p"-};—l) =(—1)*(mod p), n=22, 0< k< pr1—1.

Proof. Since (1+X)*"' =1+ X*"" (mod p), we have

(%) =16 tmed 5 horwise. ”

-1_ -1__ n-—1
Combining this with (pn b 1)+(p';€+1 1) = (2-;—1)’ we can easily get the

assertion by induction.

Lemma 6. Let A= R[X\]/(Xf—a) ® - ® R[Xn)/(XE—am) be an
H(p)™-Hopf Galois extension of R. Then there exists a nilpotent R-derivation
8: A— A of index p™ such that 5(x1) =1 and 677 (xp) =xp1 2=k
< m).

Proof. Let 6;: A— A be a derivation defined by 9:(x;) = 8. We put
6 = Pyo1+ Pio2+ =+ + Pn_10m wherefor p+2, Po=1, P;=(—1)ixf 1. !
(lé z gm—l) and for p= 2, Po = 1, Pl = X, Pi = Pi_lxﬁ— Xyt X1
(2<i<m—1). Since the assertion is valid for m = 1, 2, we proceed by
induction on m. Assume that 8(x;) =1 and 6" """ "(xn) = xx-y Q< k<
m—1). Then, it is easy to see that 8" '(xz) =1 (1 £ £ < m—1), and hence
07"'(Py-1) = 0. First, we consider the case p = 2. Noting that 67" is a
derivation with 6*™*(Py,_») = 0, we have

SO (Y = §PTI-PTI-L( Ymolypl L xbo1)
_ 6pm_2_lapm»z(p_2)((_l)m—lx{’-l Xy%:ll
= 3P (1) aP e BT8P A (aha))
= 671 (— 1)L xp 1 e xBh(p— 1))
= 87" U8 (xm-1)Xmo1)

= Sypma1 -1 E+1( §Pm -1k
= k=0 b xm—l) (xm-l)

= a(xm—l)apm—z—l(xm—l)_62(xm—1)5pm‘2_2(xm—1)+
+ 87" 2 X 1) 8 (Xmo1) — 6P N (Xmo 1) S (Xmo1)
+ 0" *(Xm-1)xm-1  (by Lemma 5)

- x”z—l.
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Next, we consider the case p = 2. Noting that 6 *(xx-,) = 1, we have
0¥ xy v xp) = 2?;11_1<2k-;_1)8i(1\71 o Xp-2)0% 1 ()
= 0710y x-2) 0% T T (k)
= (x1++ x4-2)0% 7 H(8% * (xk-1))
+8(x1  x-2)8% (8% (k- ) + o
+ %7 My - Xa22) 0% (x0m1)
+8(8% 7 W (xy =+ xp=2)) 0% N (kpmr ) F oo
+6%7*(8% (%) +** Xk-2))xk-1  (by Lemma 5)
= 52“_1(361 xk—z)azh-z(xk—l)
+ 88271 (x1 -+ xpm2))0F T (xpe )+ -
+ 8% 8% oy ot Xpm2)) Xeo.

Hence, by induction method we get 6% '~'(x; - x,1) =1 (2< k< m—1).
Now, we see that

57 ) = 87 () = 87N (Ppoy)

— 3""1‘1(Pm_2Xm—1 +xp° x,;;-zdm-z)

= 82" YO m-1)Xme1+ Um-202"" "Xy Xmo2)

= =18 i ()82 (k) )+ Az

= 0(xm-1)0%"" "W xmo1)+ 0k m-1)8%" """ Hxm-1) + -
+ 02" (xm-1)02" (xm-1) + -
+ 82" Y xm-1)6%(xm-1) + 67" HXm-1)8(xm-1)
+62”"2(xm_l)xm_1 + am-2

= (8" (tm-1))’ +2xm-1+ (Xm-2)* = Zm-1.

It is easy to see that 6°""'= 0 and 6°" = 0.

We now return back to the investigation of an H(p)™Hopf Galois
extension A/R. Let § be such a derivation as in Lemma 6. Then & acts
naturally on A and makes A an H(p™)-module algebra. Since 8° =1, ¢,
82, -+, 87" 1 are left A-linearly independent, the usual argument of passing
to the residue class fields and counting the ranks shows that A/R is an
H(p™)-Hopf Galois extension ; especially A'® = {e€ A| 8(a)=0}=R by
[7, Proposition 1.2]. Conversely, by Corollary 4, every H(p™)-Hopf Galois
extension is an H(p)™-Hopf Galois extension. Summarizing the above, we
get

Theorem 7. Let A be a commutative R-algebra. Then A is an
H(p™)-Hopf Galois extension of R if and only if it is an H(p)™-Hopf Galois
extension.
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Remark. It should be noted that if j < 7 then H(p") ® H(p)™ ! is not
isomorphic to H(p”) @ H(p)™ 7. In fact, H(p") @ H(p)™ ¢ contains the
element d ® (1 - X 1) (d € H(p?)) with the property (d ® 1@ ---® 1)*"
& R but ¢c®' € R for any c € H(p’) ® H(p)"’. It should also be noted
that if A/R is an H(p™)-Hopf Galois extension, then it is an H(p") ®
H{(p)™~-Hopf Galois extension (m # 1), so there exist many non-isomorphic
Hopf algebras which make A/R an Hopf Galois extension. Furthermore,
A. Hattori [ 3] has pointed out that R[X]/(X?—a) (e € R) is a Hom(RG,
R) Hopf Galois extension of R, where G is a cyclic group of order p (cf.
also [9]). Therefore there exist much more non-isomorphic Hopf algebras
which make A/R an Hopf Galois extension.

Finally, we are going to make a precision of Proposition 2. To this
end, we define the (weighted) degree of a monomial in an H(p™)-Hopf (or
H(p)™-Hopf) Galois extension R[X\]/(Xf—a)® - R R[ Xnl/(XE—an) =
R[x1, -+, xn] as follows:

Dreplif r=0(ER), 0 e; < p—1

LY em) —
degree (rxf' - x§ { _1 i 0.

Since {xf'*** x%"}ose;sp-1 is an R-free basis of A [4, Theorem 1.3], the above
definition is well-defined. Further, considering the p-adic expansion, we see
that a monic monomial of given degree is uniquely determined.

Lemma 8. Let A= R[Xi\J/(XP—)® - ® R[Xn)/(XE—an) = R[x,
o, xXm] be an H(p™)-Hopf Galois extension of R, and

d(x))=1 and d(x;) = P,y (i 22),

where P;_\ is given in the proof of Lemma 6.

(1) For a monic monomial f of degree £, d(f) is the sum of a mono-
mial of degree £—1 with unit coefficient and a sum of monomials of degree
less than ¢—1.

(2) Every monomial g of degree less than p™—1 is integrable, that is
there exists an element G in A such that d(G) = g ; every sum of monomials
of degree less than p™—1 is integrable.

Proof. (1) This can be shown by direct computation,

(2) We shall proceed by induction on degree £ For ¢=—1, 0, the
assertion is valid. We assume that there holds the assertion for all 2 <
£—1 (< p™—2). Let G be the monic monomial of degree ¢+1 (< p™),
and g = rxf' - x5" (0 < e; £ p—1, » € R) an arbitrary monomial of degree
£ Then by (1), we have
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d(G) = uxt - xg+h,

where # is a unit of R and % is a sum of monomials of degree less than
¢—1. We set Go= »u~'G,. Then d(G:) = g+ ru~'h, and by induction
hypothesis, 7~/ is integrable, say d(Gs)= ru~'h. Thus, we get d(G>—Gs3)
= &

Theorem 9. Let A be a commutative R-algebra. Then A is an H(p™)-
Hopf Galois extension of R if and only if A is isomorphic to R[X\]/(Xf—a1)
® - Q@ R[Xnl/(XE—an) = R[x1,,xn). xP € R, as H-module algebra,
where x; is the wvesidue class of X; and the action of d € H(p™) on
Rlxi, - xm] s defined by d(x;) = P,y (see the proof of Lemma 6).

Proof. “If” part is already proved in the paragraph preceding Theorem
7. “Only if” part will be proved by induction on #m. By Prpoosition 2, we
can choose yi,**, ymn € A as follows: A=R[y, -, yul = R V11/(YF—8)
R Q R[Yul/(YE—Bn), yP=B8ER, diy) =1, y:=d"" """ (yn) and
d(y:)) € R[y1,**, vi-1]. Obviously, the assertion is valid for m=1. We
assume that there holds the assertion for m—1, that is there exist xi, -,
Xm_1 such that R[xi, -, xm-1] = B[y, +vm_1] and the restriction of d to
Rlx1, -, xm-1] is of the form Podi+ -+ +Pm_20m-1. Since d(ym) €
Rly1, =" ¥ma]l = Rlx1, -, xm-1] and ™" = 1, we have

d(¥m) = Pn_1+g(x1,**, Xm-1),

where g(x1, -, xn_1)is a sum of monomials of degree less than p”"!—1. By
Lemma 8, g(x1, =, xm_1) is integrable, say dG(x1, -+, xm-1) = g(x1,**, Xm-1).
Setting xm = ym— G{x1, ***, Xm-1), we get d(xn) = Pn-1 and R[x1,***, xn] =
Ry, ym]. Since d is a derivation and R = {a € A| d(a) = 0}, it follows
that x4 is in £. This completes the proof.

Remark. Let d = P;d+ -+ + Pp-10» be another derivation on A=
RIX\ /(X —a) R ® R[Xnl/(X5— an) satisfying the condition in Lemma
6. Then, for such 4, there holds an analogue of Theorem 9.

Corollary 10. Let A/R be an H(p™)-Hopf Galois extension, and let
X1, Xm be elements of A such that A= R[x1,**, xn), xf = a&: € R, d(x1)
=1 and x; = d?"'"?(xn). Then, concerning the action of d € H(p™)
restricted to A; = R[x1,-,x:), A:/R is an H(p?)-Hopf Galois extension.

Proof. From the proof of Theorem 9, we may assume that xi, ", Xm
are chosen as in the proof of the only if part of Theorem 9. Then the
assertion follows immediately.
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