NOTE ON SKEW POLYNOMIALS

TAKASI NAGAHARA

Let B be an arbitrary ring with identity element 1, and $B[X;\rho]$ a skew polynomial ring $\sum_{i=0}^{\infty} X^i B$ whose multiplication is given by $aX = X \rho(a)$ $(a \in B)$ where ρ is an automorphism of B. A monic polynomial $f \in B[X;\rho]$ is called to be *separable* (resp. *Frobenius*) if $fB[X;\rho] = B[X;\rho]f$ and the factor ring $B[X;\rho]/fB[X;\rho]$ is separable (resp. Frobenius) over B. Such polynomials have been discussed in [2]—[11] from various angles.

The present study is more about separable (and Frobenius) polynomials in $B[X;\rho]$ which are closely associated with some results in [3], [4], [8] and [9].

We begin our study by stating the following lemma which contains the result of [9, Lemma 1].

Lemma 1. Let $f = X^n - \sum_{i=0}^{n-1} X^i a_i \in B[X;\rho]$ $(n \ge 2)$, and $fB[X;\rho] = B[X;\rho]f$. Then

- (i) $\alpha \rho^t(a_i) = \rho^t(a_i) \rho^{n-i}(\alpha)$ $(0 \le i \le n-1 \text{ and } \alpha \in B)$ for any integer t.
 - (ii) $\rho^{n-1-i}(a_i) = a_i \ (0 \le i \le n-1).$
 - (iii) $\rho(a^s) = a^s \ (0 \le i \le n-1)$ for any integer $s \ge 2$.

Proof. By [9, Lemma 1], it suffices to prove the assertion (iii). Now, by (1) and (ii), we have

$$a_i^2 = a_i \rho^{n-i}(a_i) = a_i \rho(a_i) = \rho(a_i) \rho^{n-i}(a_i) = \rho(a_i) \rho(a_i) = \rho(a_i^2)$$

where $0 \le i \le n-1$. Hence, for any positive integer m, we have that $a_i^{2m} = \rho(a_i^{2m})$, and

$$a_i^{2m+1} = a_i \rho(a_i) \rho(a_i)^{2m-1} = \rho(a_i) \rho(a_i) \rho(a_i)^{2m-1} = \rho(a_i)^{2m+1}$$

which implies our assertion.

Moreover, we can prove the next that contains the results of [8, Th. 1 (b)] and [11, pp. 10-11 (Remark)].

Lemma 2. Let $f = X^n - \sum_{i=0}^{n-1} X^i a_i$ $(n \ge 2)$ be a separable polynomial in $B[X;\rho]$. Then

$$\rho^{(n-1,i)}(a_i) = a_i \ (0 \le i \le n-1)$$

where (n-1, i) is the greatest common divisor of n-1 and i.

Proof. From the proof of [9, Lemma 1], it follows that

(1)
$$a_i \rho(a_{n-1}) - a_i a_{n-1} = a_{i-1} - \rho(a_{i-1}) \quad (1 \le i \le n-1)$$
$$a_0 \rho(a_{n-1}) = a_0 a_{n-1}, \text{ and } a_i a_{n-1} = a_{n-1} a_i \quad (0 \le i \le n-1).$$

Hence by Lemma 1 (i), we have

$$(2) \quad a_i \rho(a_{n-1}) = \rho(a_{n-1}) \rho(a_i) = \rho(a_{n-1}a_i) = \rho(a_i a_{n-1}) \quad (0 \le i \le n-1).$$

By (1), this gives that

$$\rho(a_1a_{n-1})-a_1a_{n-1}=a_0-\rho(a_0).$$

Since $\rho^{n-1}(a_0) = a_0$ (Lemma 1 (ii)), it follows that

$$\rho^{n-1}(a_1a_{n-1}) - a_1a_{n-1} = \sum_{s=0}^{n-2} (\rho^{s+1}(a_1a_{n-1}) - \rho^s(a_1a_{n-1}))$$

= $\sum_{s=0}^{n-2} (\rho^s(a_0) - \rho^{s+1}(a_0)) = 0.$

Combining this with (2) and Lemma 1 (ii), we obtain

$$a_1 a_{n-1} = \rho^{n-1}(a_1 a_{n-1}) = \rho^{n-2}(\rho(a_1 a_{n-1}))$$

= $\rho^{n-2}(a_1 \rho(a_{n-1})) = a_1 \rho^{n-1}(a_{n-1}).$

Moreover, by (1), (2) and Lemma 1 (ii), we have

$$a_0a_{n-1} = a_0\rho(a_{n-1}) = \rho(a_0a_{n-1}) = \rho^{n-1}(a_0a_{n-1}) = a_0\rho^{n-1}(a_{n-1}).$$

Since $Ba_0 + Ba_1 = B$ ([2, Lemma 1]), it follows that

(3)
$$\rho^{n-1}(a_{n-1}) = a_{n-1}.$$

Now, let $2 \le r \le n-1$. Then, by (2), there holds that $\rho(a_r a_{n-1}) = a_r \rho(a_{n-1})$. We assume here that

$$\rho(a_0 a_{n-1}) = \rho^t(a_r) \rho^{1-t(r-1)}(a_{n-1})$$

for some integer $t \ge 0$. Then, by Lemma 1 and (3), we have

$$\rho(a_r a_{n-1}) = \rho^{t}(a_r) \rho^{1-t(r-1)}(a_{n-1}) = \rho^{1-t(r-1)}(a_{n-1}) \rho^{t+1}(a_r)
= \rho^{t+1}(a_r) \rho^{1-t(r-1)+n-r}(a_{n-1}) = \rho^{t+1}(a_r) \rho^{n-(t+1)(r-1)}(a_{n-1})
= \rho^{t+1}(a_r) \rho^{1-(t+1)(r-1)}(a_{n-1}).$$

Hence, by induction method, we obtain that

$$\rho(a_r a_{n-1}) = \rho^m(a_r) \rho^{1-m(r-1)}(a_{n-1})$$

for all integer $m \ge 0$. Taking m = n-1, it follows from Lemma 1 and (3) that

$$\rho(a_r a_{n-1}) = \rho^{n-1}(a_r) \rho^{1-(n-1)(r-1)}(a_{n-1}) = \rho^{n-1}(a_r) \rho(a_{n-1})
= \rho^{1-(n-r)}(a_{n-1}) \rho^{n-1}(a_r) = \rho^r(a_{n-1}) \rho^{n-1-r+r}(a_r)
= \rho^r(a_{n-1}) \rho^r(a_r) = \rho^r(a_{n-1}a_r)$$

and hence $a_r a_{n-1} = \rho^{r-1} (a_r a_{n-1})$ (by (1)). Since

$$a_{r-1} - \rho(a_{r-1}) = \rho(a_r a_{n-1}) - a_r a_{n-1}$$
 (by (1) and (2))

this gives

$$a_{r-1} - \rho^{r-1}(a_{r-1}) = \sum_{s=0}^{r-2} (\rho^s(a_{r-1}) - \rho^{s+1}(a_{r-1}))$$

= $\sum_{s=0}^{r-2} (\rho^{s+1}(a_r a_{n-1}) - \rho^s(a_r a_{n-1})) = 0.$

Thus, we obtain $\rho^i(a_i) = a_i$ $(1 \le i \le n-2)$. Moreover $\rho^i(a_i) = a_i$ for i = 0 and n-1 (by (3)). Since $\rho^{n-1-i}(a_i) = a_i$ for $i = 0, 1, \dots, n-1$ (Lemma 1 (ii)), it follows that $\rho^{(n-1,i)}(a_i) = a_i$ $(0 \le i \le n-1)$, completing the proof.

Now, for $g = \sum_{i=0}^{m} X^{i}b_{i} \in B[X;\rho]$, B_{g} denotes the subring of B which is generated by the subset

$$\{\rho^t(b_i) \mid 0 \le i \le m, \text{ and } t \text{ runs over all the integers}\} \cup \{1\}.$$

Clearly $B_{\mathcal{S}}[X;\rho|B_{\mathcal{S}}]$ is a subring of $B[X;\rho]$ containing g. Moreover, by $J(\rho^s)$ (resp. $B(\rho^s)$), we denote the fixed subring of ρ^s in B (resp. the subset of elements b in B such that $ab = b\rho^s(a)$ for all $a \in B$), where s is an integer. Evidently $B(\rho^0)$ is the center of B. Further, by ρ^* , we denote a ring automorphism of $B[X;\rho]$ defined by $\rho^*(\sum_i X^i a_i) = \sum_i X^i \rho(a_i)$ ($a_i \in B$). Clearly, the fixed subring $J(\rho^{*s})$ of ρ^{*s} in $B[X;\rho]$ coincides with the subring $J(\rho^s)[X;\rho|J(\rho^s)]$. For a subring B_0 of B and for $f \in B[X;\rho]$, f is called to be separable (resp. Frobenius) over B_0 if $B_0 \ni 1$, $\rho(B_0) = B_0$, and f is a separable (resp. Frobenius) polynomial in $B_0[X;\rho|B_0]$.

If f is a separable polynomial in $B[X;\rho]$ of degree $n \ge 2$ then $B_f \subset J(\rho^{n-1})$ by virtue of Lemma 2. Hence by [5, Prop. 1.13], we readily obtain the following theorem which is one of our main results.

Theorem 3. If f is a separable polynomial in $B[X;\rho]$ of degree $n \ge 2$, then f is Frobenius over B_f and over $J(\rho^{n-1})$.

Next, we shall prove the following lemma which contains the result of [3, Prop. 3.2].

Lemma 4. Assume that $B[X;\rho]$ contains a separable polynomial of degree $n \geq 2$. Then $J(\rho^{n(n-1)}) \supset B(\rho^s)$ for all integer s. Moreover, for $g \in B[X;\rho]$, if $\alpha g = g\rho^s(\alpha)$ ($\alpha \in B$) for some integer s, then g is contained in $J(\rho^{*n(n-1)})$.

Proof. Let $f = X^n - \sum_{i=0}^{n-1} X^i a_i$ be a separable polynomial in $B[X;\rho]$ $(n \ge 2)$. In case n = 2, we have $\rho(a_0) = a_0$ (Lemma 2). Combining this

and the result of Lemma 1(iii), we see that $\rho(a_1^n) = a_1^n$ and $\rho(a_0^{n-1}) = a_0^{n-1}$ for $n \ge 2$. Now, let $c \in B(\rho^s)$ where s is an integer. Then

$$a_1^n c = c\rho^s(a_1^n) = ca_1^n$$
 and $a_0^{n-1}c = c\rho^s(a_0^{n-1}) = ca_0^{n-1}$.

Since $\rho^{n(n-1)}(c) \in B(\rho^s)$ and $a_i \in B(\rho^{n-i})$ for i = 0, 1 (Lemma 1(i)), this gives

$$\rho^{n(n-1)}(c)a_1^n = a_1^n \rho^{n(n-1)}(c) = ca_1^n \text{ and }$$

$$\rho^{n(n-1)}(c)a_0^{n-1} = a_0^{n-1} \rho^{n(n-1)}(c) = ca_0^{n-1}.$$

Now by [2, Lemma 1], we have $a_1B+a_0B=B$ and whence $a_1^nB+a_0^{n-1}B=B$. Therefore, it follows that $\rho^{n(n-1)}(c)=c$. This proves $B(\rho^s)\subset J(\rho^{n(n-1)})$. As to the rest of our assertion, let $g=\sum_{i=0}^m X^ib_i\in B[X;\rho]$ and $ag=g\rho^s(a)$ $(a\in B)$ for some integer s. Then $\rho^i(a)b_i=b_i\rho^s(a)$, that is, $ab_i=b_i\rho^{s-i}(a)$ $(a\in B)$. Hence $b_i\in B(\rho^{s-i})\subset J(\rho^{n(n-1)})$ $(0\leq i\leq m)$. This implies $g\in J(\rho^{*n(n-1)})$, completing the proof.

Now, let $f = X^n - \sum_{i=0}^{n-1} X^i a_i$ be a separable polynomial in $B[X;\rho]$ $(n \ge 2)$, and $f_i = X^{n-i-1} - X^{n-i-2} a_{n-1} - \cdots - X a_{i+2} - a_{i+1}$ $(0 \le i \le n-1)$. Then, by [4, Th. 1.8], there is an element y in $B[X;\rho]$ such that deg y < n, $\rho^{n-1}(\alpha)y = y\alpha$ $(\alpha \in B)$, and $\sum_{i=0}^{n-1} f_i y X^i \equiv 1 \pmod{fB[X;\rho]}$. Then, by Lemma 4, the f_i and y are contained in $J(\rho^{*n(n-1)})$, and $\sum_{i=0}^{n-1} f_i y X^i \equiv 1 \pmod{fJ(\rho^{*n(n-1)})}$. Hence, again by [5, Th. 1.8], we obtain the following

Theorem 5. Assume that $B[X;\rho]$ contains a separable polynomial of degree $n \ge 2$. Then, any separable polynomial in $B[X;\rho]$ is separable over $J(\rho^{n(n-1)})$.

In virtue of Th. 5, we shall prove the following

Corollary 6. Let f be a separable polynomial in $B[X;\rho]$ of degree $n \geq 2$, and assume that n is inversible in B. Then f is separable and Frobenius over $J(\rho^{n-1})$.

Proof. By Th. 3, it suffices to prove that f is separable over $J(\rho^{n-1})$. Now, by Th. 5 and [5, Th. 1.8], there is an element y in $J(\rho^{*n(n-1)})$ such that deg y < n, $\rho^{n-1}(\alpha)y = y\alpha$ ($\alpha \in J(\rho^{n(n-1)})$, and $\sum_{i=0}^{n-1} f_i y X^i \equiv 1$ (mod $fJ(\rho^{*n(n-1)})$). Since $f \in J(\rho^{*n-1})$, the f_i are contained in $J(\rho^{*n-1})$. We set here $y_0 = n^{-1} \sum_{i=0}^{n-1} (\rho^{*n-1})^i(y)$. Then, we obtain

$$\sum_{i=0}^{n-1} f_i y_0 X^i = n^{-1} \sum_{i=0}^{n-1} (\rho^{*n-1})^i (\sum_{i=0}^{n-1} f_i y X^i) \equiv 1 \pmod{ff(\rho^{*n-1})}$$
 and $\rho^{n-1}(\alpha) y_0 = y_0 \alpha \ (\alpha \in f(\rho^{n-1}))$. Therefore, it follows from [5, Th. 1.8]

that f is separable over $J(\rho^{n-1})$, completing the proof.

Now, for a monic polynomial g in $B[X;\rho]$ with $gB[X;\rho] = B[X;\rho]g$ and $\rho^*(g) = g$, g will be called to be s-separable (or $\tilde{\rho}$ -separable) over B if the discriminant of g (as an element of $B_g[X]$ in the sense of [6, p. 152]) is inversible in B, or equivalently, $gB[X;\rho] + g'B[X;\rho] = B[X;\rho]$ where g' is the derivative of g (cf. Lemma 1, [3, Th. 2.1], [4] and [6, Th. 2.1]). By [3, pp. 118-119], any s-separable polynomial is separable. The notion is useful to Galois theory of polynomials. If $g \in B[X;\rho]$ is s-separable then the factor ring $B[X;\rho]/gB[X;\rho]$ can be imbedded in a Galois extension of B which is a splitting ring of g. The converse holds for a monic $g \in B[X;\rho]$ with deg g=2 and $gB[X;\rho]=B[X;\rho]g$ (cf. [6], [7], [8] and [10]). If $B=GF(2^2)$ and ρ is an automorphism of B which is not identity, then $B[X;\rho]$ contains a separable polynomial of degree 2 which is ρ^* -invariant but is not s-separable (cf. [7, Remark 2.4]).

We shall now prove the following theorem which is a partial sharpening of the last result in [4, Th. 1.4].

Theorem 7. Assume that $B[X;\rho]$ contains a separable polynomial of degree $n \ge 2$, and n(n-1) is inversible in B. Then, any separable polynomial g in $B[X;\rho]$ with $\rho^*(g) = g$ is s-separable, and whence Frobenius.

Proof. Let deg g=m. Then, by Th. 5 and [5, Th. 1.8], there is an element $y \in J(\rho^{*n(n-1)})$ such that $\sum_{i=0}^{m-1} g_i y X^i \equiv 1 \pmod{gJ(\rho^{*n(n-1)})}$. Clearly $g_i \in J(\rho^*)$ $(0 \le i \le n-1)$. We set here $y_0 = (n^2 - n)^{-1} \sum_{i=1}^{n(n-1)} \rho^{*i}(y)$. Then $\sum_{i=0}^{m-1} g_i y_0 X^i \equiv 1 \pmod{gJ(\rho^{*n(n-1)})}$. Since $\rho^*(y_0) = y_0$, we have $\sum_{i=0}^{m-1} g_i y_0 X^i = (\sum_{i=0}^{m-1} g_i X^i) y_0 = g'y_0$. Therefore, it follows that $gB[X;\rho] + g'B[X;\rho] = B[X;\rho]$. This implies that g is s-separable in $B[X;\rho]$, completing the proof.

Now, an element a of B is said to be π -regular (resp. left π -regular) if there exists an element c in B and an integer t>0 such that $a^tca^t=a^t$ (resp. $ca^t=a^{t-1}$). If every element of B is π -regular then B will be called to be π -regular. Let B satisfy the descending chain condition on two-sided ideals, and z any element of the center Z of B. Then $Bz^t=Bz^{2t}$ for some integer t>0 and $z^t=cz^{2t}$ for some $c\in Z$ (see, e.g., [1, Lemma 1]). Thus z is π -regular in Z. This implies that Z is a π -regular ring.

Finally, we shall prove the following theorem which is a generalization of [9, Th. 5].

Theorem 8. Let the center of B be π -regular. Then, any separable polynomial in $B[X;\rho]$ is Frobenius.

Proof. Let $f = X^n - \sum_{i=0}^{n-1} X^i a_i$ be a separable polynomial in $B[X;\rho]$ $(n \ge 2)$. Then, by [2, Lemma 1], there are elements d_0 and d_1 in B such that $1 = a_0 d_0 + a_1 d_1$ and the $a_i d_i$ are contained in the center Z of B. We set here

$$N(a_0b_0) = \prod_{i=1}^{n(n-1)} \rho^i(a_0d_0) = a_0b_0$$
, and
 $1 = \prod_{i=1}^{n(n-1)} \rho^i(a_0d_0 + a_1d_1) = a_0b_0 + a_1b_1$

where b_0 , $b_1 \in B$. Since a_0b_0 ($\in Z$) is π -regular, there exists some integer t>0 and an idempotent e_0 in Z such that $(a_0b_0)^tZ=(a_0b_0)^{t-1}Z=e_0Z$. Evidently $e_0a_0B=e_0B$. We put $e_1=1-e_0$. Then, since $1=(a_0b_0+a_1b_1)^t=(a_0b_0)^t+a_1c_1$ for some $c_1\in B$, we see that $B=e_0B+a_1B$, and so, $e_1B=e_1a_1B$. Hence $B=e_0B\oplus e_1B=e_0a_0B\oplus e_1a_1B$ (direct sum). This shows that e_0a_0 is inversible in e_0B and e_1a_1 is inversible in e_1B . Now, by Lemma 4, we have $\rho^{n(n-1)}(a_0d_0)=a_0d_0$, which implies that $\rho(a_0b_0)=a_0b_0$, and so, $\rho(e_i)=e_i$ (i=0,1). Since f is separable over B, each e_if is separable in $R_i=e_iB[X;\rho|e_iB]$. Hence, by [2,Th,1], each e_if is Frobenius in R_i . Noting

$$B[X;\rho]/fB[X;\rho] \simeq R_0/e_0fR_0 \oplus R_1/e_1fR_1$$

it follows that f is Frobenius. This completes the proof.

REFERENCES

- [1] G. AZUMAYA: Strongly π-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I, 13 (1954), 34—39.
- [2] S. IKEHATA: On a theorem of Y. Miyashita, Math. J. Okayama Univ. 21 (1979), 49-52.
- [3] S. IKEHATA: On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ. 22 (1980), 115—129.
- [4] S. IKEHATA: On separable polynomials and Frobenius polynomials in skew polynomial rings. II, Math. J. Okayama Univ. 25 (1983), 23—28.
- [5] Y. MIYASHITA: On a skew polynomial ring, J. Math. Soc. Japan 31 (1979), 317-330.
- [6] T. NAGAHARA: On separable polynomials over a commutative ring II, Math. J. Okayama Univ. 15 (1972), 149—162.
- [7] T. NAGAHARA: On separable polynomials of degree 2 in skew polynomial rings, Math. J. Okayama Univ. 19 (1976), 65—95.
- [8] T. NAGAHARA: On separable polynomials of degree 2 in skew polynomial rings II, Math.
 J. Okayama Univ. 21 (1979), 167—177.
- [9] T. NAGAHARA: A note on separable polyomials in skew polynomial rings of automorphism type, Math. J. Okayama Univ. 22 (1980), 73—76.
- [10] T. NAGAHARA: On imbeddings of some separable extensions in Galois extensions, Sûrikaikaisekikenkyûsho Kôkyûroku 438 (1981), 29—30.
- [11] T. NAGAHARA and K. KISHIMOTO: On free cyclic extensions of rings, Proc. 10 th Symp. Ring Theory (Shinshu Univ., Matsumoto, 1977), 1978, 1—25.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received December 2, 1982)