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NOTE ON SKEW POLYNOMIALS

Takast NAGAHARA

Let B be an arbitrary ring with identity element 1, and B[X;p] a skew
polynomial ring 3% X‘B whose multiplication is given by aX = Xp(a)
(@ € B) where p is an automorphism of B. A monic polynomial f € B[ X;p]
is called to be separable (resp. Frobenius) if fB[X;p]= B[X;p]f and the
factor ring B[X:p]l/fB[X:p] is separable (resp. Frobenius) over B. Such
polynomials have been discussed in [ 2]—[11] from various angles.

The present study is more about separable (and Frobenius) polynomials
in B[X:p] which are closely associated with some results in [3], [4], [8]
and [9].

We begin our study by stating the following lemma which contains the
result of {9, Lemma 1].

Lemma 1. Let f = X"-324 X'a; € B[X:p] (n = 2), and fB[X:p]
= B[ X:el/. Then

(i) ao'(a;)= pYa)e™(a) (0<i<n—1 and a< B) for any
integer L.

(ii) " " Ha))=a; (0< i< n-1).

(iii) olaf) = af (0 < i < n—1) for any integer s = 2.

Proof. By [9, Lemma 1], it suffices to prove the assertion (iii). Now,
by (1) and (ii), we have

a? = a;p" (a:) = a;p(a;) = pla;)o" (a;) = pla)o(a;) = p(a?)

where 0 < i < n—1. Hence, for any positive integer s, we have that
a?™ = p(a#"), and

a?™*' = a;p(a)ola)?™ " = olas)ola)o(a:)*™ " = p(a;)?™!
which implies our assertion.
Moreover, we can prove the next that contains the results of [8, Th.
1 (b)] and [11, pp. 10—11 (Remark)].
Lemma 2. Let f= X"—2% Xla; (n = 2) be a separable polynomial
in B[X;o]. Then
o N ag)=a; (0< i< n—-1)
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where (n—1, i) is the greatest common divisor of n—1 and i,
Proof.  From the proof of [9, Lemma 1], it follows that

(1) a;p(an-1)—aian1 = aioy—plais)) (1<i<n—1)
ao0(an-1) = aoan-1, and aian_1 = an-ra; (0<i<n—1).

Hence by Lemma 1 (i), we have
(2) aolan-1) = plan-1)o(ai) = plan-1a:) = pasan-)) (0< i< n—1).
By (1), this gives that
p(alan-l)—alan—l = ao— p(ao).
Since " '(a¢) = ao (Lemma 1 (ii)), it follows that

pn-l(alan—l)_alan—l = 348 (PSH(alan—l)_ps(alan—l))
= 23828 (0%(ao)— 05*(a0)) = 0.

Combining this with (2) and Lemma 1 (ii), we obtain
ar1an = " Ha1an-1) = p" A o(@1as-1))
= 0" 2(a10(an-1)) = a10" (an-1).
Moreover, by (1), (2) and Lemma 1 (ii), we have
Aoan-1 = aﬂp(an—l) = P(do an—l) = P"—l((lodn—l) = doﬂn_l(an-l).
Since Bao+ Ba; = B ([2, Lemma 1]), it follows that
(3) 0" Nan-1) = an-1. R
Now, let 2<#» < n—1. Then, by (2), there holds that o(aran_1) =
arolan-1). We assume here that
olaoan-1) = p(ar)o' =" an-1)
for some integer ¢ = 0. Then, by Lemma 1 and (3), we have
- olaran-1) = par)p' """ an-1) = o'~ an-1)0"*(ar)
— pt+l(ar)pl—t(r—l)+n—r(an_l) = p‘“(ar)p”'“*”"‘”(an-1)
— pt+l(ar)pl_“+“(r_l)(an—l).
Hence, by induction method, we obtain that
o(aran-1) = p™(ar)o' """ "ay_,)
for all integer m = 0. Taking m = n—1, it follows from Lemma 1 and
(3) that

o(aran-1) = p" ar)p' """ Nap-1) = p" ar)p(an-1)
= pl—(n—r)(dn—l)lon_l(ar) = pr(an—l)Pn_l_r+r((Zr)
= o"(an-1)0"(ar) = p"(an-1ar)
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and hence aran-1 = p" Yaran-1) (by (1)). Since
ar-1—plar-1) = plaran-1)—aran-y (by (1) and (2))
this gives

ar-1—p"  Nar-1) = 2528 (05(ar-1)— o5 (a,-1))
= 25z% (% (aran-1)— p(aran-1)) = 0.

Thus, we obtain p(a;) = a;(1 < i< n—2). Moreover p‘(a;)= a; for i =0
and #—1 (by (3)). Since p* ' a;) =a; for i=0,1, -, n—1 (Lemma
1 (ii)), it follows that p”~V?(a;) =a; (0 < { < n—1), completing the proof.

Now, for g = 2% X'b; € B[X;p], Be denotes the subring of B which
is generated by the subset

{0%(0;)|0 <7< m, and ¢ runs over all the integers} U {1}.

Clearly Bg[X:p|Bg] is a subring of B[X;p] containing g. Moreover, by
J(0®) (resp. B(p®)), we denote the fixed subring of p°® in B (resp. the subset
of elements b in B such that ab = bp°(a) for all « € B), where s is an
integer. Evidently B(p°) is the center of B. Further, by p*, we denote a
ring automorphism of B[X;p] defined by o*(2: X a;) = ;X p(a:) (a: € B).
Clearly, the fixed subring J(p*°) of ¢*S in B[ X;p] coincides with the subring
J(05)[X:0lJ(0%)]. For a subring By of B and for f € B[ X:p), f is called
to be separable (resp. Frobenius) over By if Bo 21, o(Bo) = Bo, and f is a
separable (resp. Frobenius) polynomial in Bo[X:p|B].

If f is a separable polynomial in B[X;p] of degree # > 2 then B; C
J(p"!) by virtue of Lemma 2. Hence by [5, Prop. 1.13], we readily obtain
the following theorem which is one of our main resuits.

Theorem 3. If f is a separable polynomial in B[ X;p] of degree n =2,
then f is Frobenius over By and over J(p" 1).

Next, we shall prove the following lemma which contains the result
of [3, Prop. 3.2].

Lemma 4. Assume that B[X,p) contains a separable polynomial of
degree n = 2. Then J(p™" V) 3 B(pS) for all integer s. Moreover, for
g € B[X;p), if ag = go®(a) (@ € B) for some integer s, then g is contained
m ](p*n(n—l))_

Proof. Let f= X"—27%4 Xa; be a separable polynomial in B[X;p]
(n=2). In case n=2, we have p(ap) = ap (Lemma 2). Combining this
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and the result of Lemma 1(iii), we see that po(af) = af and p(af™!) = af™!
for n>2. Now, let ¢ € B(p®) where s is an integer. Then

atc = co(at) =-cal and af 'c = co(af™?) = calf'.

Since ™" V(¢) € B(0%) and a; € B(p* ) for i =0, 1 (Lemma 1(i)), this
gives

Pn("_“((,‘)d? — a{zpn(n—l)(c) — ca{’ and
pn(n—l)(c)ag—l — a(r)z—lpn(n—l)(c) — ca(r)x—l-

Now by [2, Lemma 1], we have @B+ aoB = B and whence a/B+a}'B
= B. Therefore, it follows that o®”"'(¢) = ¢. This proves B(p®) C
J(p""=1).  As to the rest of our assertion, let g = 2%¢ Xb; € B[X;p]
and ag = go%(a) (@ € B) for some integer s. Then pi(e)b; = b:0%(a), that
is, ab; = b;05" (@) (@ € B). Hence b; € B(p5~%) C J(o™* 1) (0 < i < m).
This implies g € J(e*™*” "), completing the proof.

Now, let f = X"—3%4 X‘a; be a separable polynomial in B[X;p]
(n=2), and f; = X" il—Xn"i2q, — e —Xayo—ai (0<71< n—1).
Then, by [4, Th. 1.8], there is an element y in B[X;p] such that deg y < #,
oY a)y =yae (@€ B), and 2%¢ fivX =1 (mod fB[X;p]). Then, by
Lemma 4, the f; and y are contained in J(o*™*"™V), and 224 fiyXi=1
(mod ff(p*™*-V). Hence, again by [5, Th. 1.8], we obtain the following

Theorem 5. Assume that B[ X;0) contains a sepavable polynomial of
degree n = 2. Then, any separable polynomial in B[X;0] is separable over

](pn(n—l)).

In virtue of Th. 5, we shall prove the following

Corollary 6. Let f be a separable polynomial in B[X;p] of degree
n=2, and assume that n is inversible in B. Then [ is separable and
Frobenius over J(p*™').

Proof. By Th. 3, it suffices to prove that f is separable over J(o"!).
Now, by Th.5 and [5, Th. 1.8], there is an element y in J(p*""*~V) such
that deg y < n, 0" Y a)y = ya (e € J(p""* V), and 2%¢ fiyX =1 (mod
(p** 1), Since f € J(p**" '), the f; are contained in J(p**"!). We set
here v = #2274 (0** 1) (y). Then, we obtain

D fivo X! = n ' 2 (0* (X fivyX) =1 (mod fF(p**7))
and 0" Ya)yo = woa (@ € J(p"')). Therefore, it follows from [5, Th. 1.8]
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that f is separable over J(p"!), completing the proof.

Now, for a monic polynomial g in B[X;p] with gB[X;0] = B[X;0lg
and p*(g) = g, g will be called to be s-separable (or p-separable) over B if
the discriminant of g (as an element of Bg[X] in the sense of (6, p. 152])
is inversible in B, or equivalently, gB[X;el+ g B[ X:0] = B[ X:p] where g’
is the derivative of g (cf. Lemma 1, [3, Th. 2.1], [4] and [6, Th. 2.1]). By
[3, pp. 118—119], any s-separable polynomial is separable. The notion is
useful to Galois theory of polynomials. If g € B[X;p] is s-separable then
the factor ring B[X;0]/gB[X;p] can be imbedded in a Galois extension of
B which is a splitting ring of g The converse holds for a monic g €
B[X:p] with deg g =2 and gB[X;p] = B[X:plg (cf. [6], [7]. [8] and
[10]). If B = GF(22) and p is an automorphism of B which is not identity,
then B[X:p] contains a separable polynomial of degree 2 which is p*-
invariant but is not s-separable (cf. [7, Remark 2.4]).

We shall now prove the following theorem which is a partial sharpening
of the last result in [4, Th. 1.4].

Theorem 7. Assume that B[ X;p) contains a separable polynomial of
degree n =22, and n(n—1) is inversible in B. Then, any separable polyno-
mial g in B[X;p) with p*(g) = g is s-separable, and whence Frobenius.

Proof. Let deg g = m. Then, by Th.5 and [5, Th. 1.8], there is an
element y € J(0*™"~Y) such that 227" g;yX* =1 (mod g/(p***~ V). Clearly
&€ J(p*)(0<i <n—1). We set here yo = (n®>—n) 2% Vp*(y). Then
2% giv X =1 (mod g/ (p*™”~"). Since p*(y0)= yo. we have 2123 gy X?
= (275 &X)yo = gvo. Therefore, it follows that gB[ X:0]+ gB[X:0] =
B[X;p). Thisimplies that g is s-separable in B[ X;0], completing the proof.

Now, an element a of B is said to be n-regular (resp. left r-regular)
if there exists an element ¢ in B and an integer ¢ > 0 such that a’ca’ = gt
(resp. ca’ = a'~'). If every element of B is m-regular then B will be called
to be mregular. Let B satisfy the descending chain condition on two-sided
ideals, and 2z any element of the center Z of B. Then Bz! = Bz?! for some
integer ¢ > 0 and z' = cz?! for some ¢ € Z (see, e.g., [1, Lemma 1]). Thus
z is mregular in Z. This implies that Z is a m-regular ring.

Finally, we shall prove the following theorem which is a generalization
of [9, Th.5].

Theorem 8. Let the center of B be m-vegular. Then, any separable
polynomial in B[X:p] is Frobenius.
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Proof. Let f = X"—3%d X'a; be a separable polynomial in B[X;p]
(n=2). Then, by [2, Lemma 1], there are elements dy and d, in B such
that 1 = aedo+a1dy and the a;d; are contained in the center Z of B. We
set here

N(aoby) = ITETVp'(aodo) = aobo, and
1 = [TAF Vo aodo+ ardr) = aobo+ a1b

where by, by € B. Since aobo (€ Z) is m-regular, there exists some integer
t >0 and an idempotent e in Z such that (aobo)!Z = (aoho)'"'Z = enZ.
Evidently epaoB = eoB. We put e; =1—ep. Then, since 1 = (apbo+ a15,)*
= (aobo)'+a;c, for some ¢, € B, we see that B = egB+ a1 B, and so, e, B
=ea;B. Hence B = e,B® eiB = epao B P e1a; B (direct sum). This
shows that epap is inversible in eyB and e;a; is inversible in e1B. Now,
by Lemma 4, we have """ V(aods) = aedo, which implies that p(aobs) =
aobo, and so, ole;) = e; ({ =0, 1). Since f is separable over B, each e;f is
separable in R; = e;B[ X;ple:B]. Hence, by [2, Th. 1], each e;f is Frobenius
in R;. Noting

B[ X;0]/fB[X;p] = Ro/esfRo ® Ri/eifR:

it follows that f is Frobenius. This completes the proof.
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