ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. IV

Dedicated to Professor Kentaro Murata on his 60th birthday

KAORU MOTOSE

Throughout this paper, we shall use the following notations: Let p be a fixed prime number, let G be a finite group with a p-Sylow subgroup P of order p^a , let KG be a group algebra of G over a field K of characteristic p and let t(G) be the nilpotency index of the radical J(KG) of KG. Further, given a finite subset S of KG, \hat{S} denotes the sum of all elements of S.

First, in § 1, we shall investigate t(G) of a group G with a split (B,N)-pair. Next, in § 2, we shall state some remarks concerning a theorem of Morita [5]. § 3 is devoted to studying a p-solvable group G with $t(G) = \alpha(p-1)+1$. Unfortunately, we have not characterized yet a group G of minimal order such that G is p-solvable, $t(G) = \alpha(p-1)+1$ and P is not elementary abelian. However, we can establish the structure of such a group under certain extra conditions (Theorem 12). § 4 contains an example of a group H satisfying the following conditions:

- (1) H possesses all the conclusions of Lemma 11.
- (2) $t(H) > \beta(p-1)+1$ where p^{β} is the order of a *p*-Sylow subgroup of *H*.

Finally, by making use of results in § 3, we shall prove that there exist no finite rings satisfying certain conditions (§ 5).

1. We begin with stating a lemma which is efficient in studying the nilpotency index of the radical of a group algebra.

Lemma 1. Let A be a ring. Let B, I and J be subsets of A satisfying the following conditions:

(1) IAI = IBI, (2) IJ = JI, (3) $BJ \subseteq JB$. Then $(JIA)^n \subseteq J^nIA$. Moreover, if $J^n = 0$ then JIA is contained in the radical of A.

Proof. Clearly, the result holds for n = 1. Assume the result for n. Then we conclude that $(JIA)^{n+1} \subseteq J^nIAJIA = J^nIAIJA = J^nIBIJA = J^nIBIJA$

Theorem 2. Suppose that a group G has finite subgroups H and U such that $G = UN_G(H)U$ and $H \subseteq N_G(U)$. Then $(J(KH)\widehat{U}KG)^{t(H)} = 0$ and $J(KH)\widehat{U} \subseteq J(KG)$.

Proof. Taking A to be KG, B to be $KN_G(H)$, I to be $\{\widehat{U}\}$, and J to be J(KH) in Lemma 1, we readily obtain the conclusion.

We suggest the effectiveness of Theorem 2 by giving the following example which played a fundamental role in [8].

Example 3. Let $q = p^e$, r a divisor of q-1, and s a multiple of p with (s, q-1) = 1. Let H be the Galois group of $R = GF(q^s)$ over S = GF(q) and let T be $\langle b^r \rangle$ where b is a generator of the multiplicative group of R. We consider the following permutation groups on $R: V = \{v_a: x \to x + a \mid a \in R\}$ and $U = \{u_t: x \to tx \mid t \in T\}$, and put $G = \langle H, U, V \rangle$. Since q-1 and $(q^s-1)/(q-1)$ are relatively prime, every element of R is a product of an element of T and an element of T. This shows that $G = UC_G(H)U$ since $C_G(H)$ contains $\{v_a \mid a \in S\}$ and $u_tv_au_t^{-1} = v_{ta}$. Noting that $hu_th^{-1} = u_{h(t)}$ for all $h \in H$, by Theorem 2, we obtain that $J(KH)\widehat{U} \subseteq J(KG)$ and the nilpotency index of $J(KH)\widehat{U}KG$ is the p-part of s.

Theorem 2 is also applicable to finite groups of Lie type (see [1]).

Proposition 4. Suppose that a finite group G has a split (B, N)-pair of characteristic r such that B is a semi-direct product of a normal r-subgroup U and an abelian r'-subgroup $H = B \cap N$ (see [1]). Then J(KH) $\widehat{U} \subseteq J(KG)$.

Proof. Since G = UNU by Bruhat decomposition and H is a normal subgroup of N, the assertion follows from Theorem 2.

Although the next is stated for a special type of a finite group, similar observation is possible for finite groups of Lie type, too.

Proposition 5. Let r be a prime number, $q = r^e$, p an odd prime divisor of q-1, and G = SL(2, q). Then t(G) is the p-part p^m of q-1.

Proof. Obviously, G has a split (B, N)-pair, where B is the subgroup of upper triangular matrices and N is the subgroup of monomial matrices. Thus $H = B \cap N$ is the subgroup of diagonal matrices which is isomorphic to the multiplicative group of the finite field of q elements. Thus, by

Proposition 4, we have $p^m = t(H) \le t(G)$. Since the order of G is $q(q-1) \cdot (q+1)$, a p-Sylow subgroup of G is a cyclic group of order p^m , and so $t(G) = p^m$ by Dade's theorem [2] (see also [7]).

2. Throughout this section, we shall use the following notations: Let N be a normal subgroup (not necessarily a p'-subgroup) of a finite group G and let e be a centrally primitive idempotent of KN. We set $H = \{x \in G \mid xex^{-1} = e\}$ and $\tilde{e} = \sum_{i=1}^{g} a_i e a_i^{-1}$, where $\{a_i\}$ $\{a_1 = 1\}$ is a set of representatives of the right cosets of H in G.

The following interesting theorem has been proved by K. Morita.

Theorem 6 (Morita [5]). If K is algebraically closed and KNe is simple, then $KG\tilde{e}$ is isomorphic to a complete matrix algebra over a twisted group algebra of H/N.

The next is immeadiate from the preceding theorem.

Corollary 7. Assume that K is algebraically closed. If N=H and KNe is simple, then $KG\tilde{e}$ is simple.

This result applies especially to the radical of a group algebra of a Frobenius group.

Corollary 8 ([6]). Let G be a Frobenius group with kernel N and complement W. If p divides the order of W then $J(KG) = J(KW)\hat{N}$.

Proof. We may assume, in the usual way, that K is algebraically closed. If e is not equal to $|N|^{-1}\hat{N}$, then H=N implies that $KG\tilde{e}$ is simple (see [3, the proof of (25.4)]). Thus we obtain the assertion.

As an application of Lemma 1, we have the following

Proposition 9. $J(KHe) = J(KH)e \subseteq J(KG)$.

Proof. Setting A = KG, B = KH, $I = \{e\}$ and J = J(KH), we have $IAI = eKGe = \sum_{i=1}^{s} KHea_iea_i^{-1}a_i = KHe = eKHe = IBI$. Also, it is easy to check other assumptions of Lemma 1. Thus we have $J(KH)e \subseteq J(KG)$.

The next shows that the converse of Corollary 7 holds.

Corollary 10. If N = H and $KG\tilde{e}$ is simple, then KNe is simple.

38 K. MOTOSE

Proof. By Proposition 9, $0 = J(KG)\tilde{e} \supseteq J(KN)e\tilde{e} = J(KN)e = J(KNe)$. Thus KNe is simple.

- 3. Throughout this section, let G be a group of the minimal order which satisfies the following conditions:
 - 1. G is a p-solvable group.
 - 2. P is not elementary abelian.
 - 3. $t(G) = \alpha(p-1)+1$.

We show that G possesses the properties listed in the following lemma.

Lemma 11. (1) $O_{p'}(G) = 1$.

- (2) $U = O_p(G) \ (\neq 1)$ is elementary abelian and $G = O_{p,p',p}(G)$.
- (3) $|G| \le p^{p+1}(p^p-1)/(p-1)$.
- (4) $U = [U, V], C_U(V) = 1$ and G is a semi-direct product of U by $N_G(V)$ where V is a p'-subgroup such that $O_{P,P'}(G) = UV$.
 - (5) V = [W, V] where W is a p-Sylow subgroup of $N_G(V)$.
 - (6) $N_G(V) = WV$ is isomorphic to a subgroup of Aut(U) = GL(U).
 - (7) U is a minimal normal subgroup of UV.
- *Proof.* (1) We have $t(G) \ge t(G/O_{p'}(G)) \ge \alpha(p-1)+1$ (see [12]). Thus $O_{p'}(G) = 1$ by the minimality of the order of G.
- (2) From the inequality $t(G) \ge t(G/U) + t(U) 1$ (see [12]) we see that both U and P/U are elementary abelian. Hence G/U is of p-length 1, and so $H = O_{P,P',P}(G)$ is a normal subgroup of G whose index is a p'-number. Since t(G) = t(H) (see [11]), we get $G = H = O_{P,P',P}(G)$.
- (3) It is known that there exists a group H of order $p^{p+1}(p^p-1)/(p-1)$ such that $t(H)=p^2$ and a p-Sylow subgroup of H is nonabelian (see [8]). Hence, we have $p^{p+1}(p^p-1)/(p-1) \ge |G|$.
- (4) We can see that $G = N_G(V)U$ by Frattini argument, and $N_U(V) = C_U(V)$. Thus, to prove the last assertion, it suffices to show that $C_U(V)$ is trivial. In view of $C_G(U) = U$ (see [4, Theorem 3.2, p.228]), V can be regarded as an automorphism group of U by conjugation, and consequently $U = C_U(V) \times [V, U]$ (see [4, Theorem 2.3, p.177]). Clearly, [V, U] = [UV, U] is a non-trivial normal subgroup by $O_P(G) = 1$. If $C_U(V)$ is non-trivial, then P must be elementary abelian since $C_U(V) = C_U(UV)$ is normal and so G can be embedded in $(G/C_U(V)) \times (G/[V, U])$. This contradiction shows that $C_U(V)$ is trivial.
- (5) Set $V_1 = [V, W]$. Then $H = WV_1U$ is a normal subgroup of G whose index is a p-number. Since t(G) = t(H) (see [11]) and P = WU.

we have G = H and so V = [V, W].

- (6) The assertion follows from $C_G(U) = U$.
- We prove first that U_1 is normal in G. Assume that $U_1^{\sigma} \neq U_1$ for some $\sigma \in W$. Then $U_1^{\sigma} \cap U_1 = 1$ since $U_1^{\sigma} \cap U_1$ is normal in U. Noting that V is a p-group and U is elementary abelian, we can easily see that there exists a normal subgroup U_2 of UV such that $U = U_1 \times U_1^{\sigma} \times U_2$. Since J(KG) contains the kernel of the natural homomorphism $KG \to KG/U$, we obtain $J(KG) \supseteq J(KW) \widehat{V} + J(KU)KG$ (see [8]). We set $U_3 = U_1^{\sigma} \times U_2$. Then, in view of $t(G) = \alpha(p-1)+1$, we have $0 = \widehat{W} \widehat{V} \widehat{U}_1 (1-\sigma) \widehat{V} \widehat{U}_3 = \widehat{W} \widehat{V} (\widehat{U}_1 \widehat{U}_1^{\sigma}) \widehat{V} \widehat{U}_3 = |V| \widehat{W} \widehat{V} (\widehat{U}_1 \widehat{U}_1^{\sigma}) \widehat{U}_3 = |V| \widehat{W} \widehat{V} \widehat{U}_1 \widehat{U}_3 = |V| \widehat{G}$, which is impossible. Hence U_1 is normal in G. Since V is a p-group, we have $U = U_1 \times U_2 \times \cdots \times U_t$ where every U_i is a minimal normal subgroup of UV. Then, by the preceding argument, every U_i is a normal subgroup of G. If $t \ge 2$, then P must be elementary abelian since G can be embedded in $G/U_1 \times G/U_2 \times \cdots \times G/U_t$. This contradiction shows that t = 1 and so U is a minimal normal subgroup of G.

In the remainder of this section, we preserve the notations used in Lemma 11. The next is the main result of this section.

Theorem 12. If V is abelian, then G can be regarded as a permutation group on $GF(p^p)$ such that $U = \{x \to x + b \mid b \in GF(p^p)\}$, W is the Galois group of $GF(p^p)$ over GF(p) and that $V \subseteq \{x \to tx \mid t \in \langle \lambda^{p-1} \rangle \}$ where λ is a generator of the multiplicative group of $GF(p^p)$.

Proof. By virture of Lemma 11 (7) and the proofs of [9, Proposition 19.8 and Theorem 19.11], we can regard G as a permutation group on some $GF(p^n)$ such that $U = \{x \to x + b \mid b \in GF(p^n)\}$, W is a subgroup of the Galois group of $GF(p^n)$ over GF(p) and that V is a subgroup of $\{x \to ax \mid a \in GF(p^n)^*\}$. Since W is elementary abelian and cyclic, it follows that W is of order p. Thus n = pr with some integer r, and $p^{2p+1} > p^{p+1}(p^p-1)/(p-1) \ge |G| > |W| |U| = p^{rp+1}$, which implies r = 1. Now, by Lemma 11 (5), we can easily see that the order of V divides $(p^p-1)/(p-1)$. This completes the proof.

In [10], Y. Tsushima stated that if H is a p-solvable group with a regualr p-Sylow subgroup S of order p^{θ} and $t(H) = \beta(p-1)+1$, then S is elementary abelian. On page 37, line 11 [10], he claimed that since P is of exponent p, G is of p-length 1 by Hall Higman's theorem. However,

40 K. MOTOSE

unfortunately, Tsushima's argument is unjustifiable for Fermat primes. The next shows that Tsushima's result holds under extra assumption that $O_{P',P,P'}(H)/O_{P',P}(H)$ is abelian.

Corollary 13. Let H be a p-solvable group with a p-Sylow subgroup S of order p^{β} and $O_{p',p,p'}(H)/O_{p',p}(H)$ abelian. If $t(H) = \beta(p-1)+1$ and S is regular, then S is elementary abelian.

Proof. Let H be a counter example of the minimal order. Then S is not regular by Theorem 12 and [8, Lemma 4]. Hence S is elementary abelian.

4. In this section, for p = 3, we shall give an example of a group H which possesses all the properties listed in Lemma 11 but satisfies $t(H) > \beta(p-1)+1$ where p^{β} is the order of a p-Sylow subgroup of H.

We set $a=\begin{pmatrix}0&2\\1&0\end{pmatrix}$, $b=\begin{pmatrix}1&2\\2&2\end{pmatrix}$, and $c=\begin{pmatrix}1&0\\1&1\end{pmatrix}$ in M=SL(2,3). Then $a^4=1$, $b^2=a^2$, $b^a(=a^{-1}ba)=b^{-1}$, $c^3=1$, $a^c=a^3b$, $b^c=a$, and $Q=\langle a,b\rangle$ is a normal 3'-subgroup of M. Let H be a semi-direct product of $U=\langle x,y\mid x^3=y^3=1,\ xy=yx\rangle$ by M with respect to the identity map of M. Then we have the following relations:

$$x^a = y^2$$
, $y^a = x$, $x^b = xy^2$, $y^b = x^2y^2$, $x^c = x$, $y^c = xy$.

It is easy to see that H possesses all the properties listed in Lemma 11. We set $a \circ b = a + b - ab$, $\chi = 1 + x + x^2$, $\nu = 1 + y + y^2$, $f = a^2 - 1$ and $\tau = c(1 + a \circ b)f$ in the group algebra KH. Then we have the following

Lemma 14. (1) f is a central idempotent in KM.

- (2) $a^2f = -f$, $fyf = fy^2f$, and $f\chi = \chi f$.
- (3) τ is central in KM. In paticular, c commutes with $(a \circ b)f$.
- (4) $\tau^2 = c^2(1-a \circ b)f$ and $\tau^3 = f$.
- (5) $J(KH) \supseteq J(KT)$ where KT is the group algebra of a cyclic group $T = \{f, \tau, \tau^2\}$ over K.

Proof. (1)—(4) can be proved by direct verification.

(5) It follows from (3) that KT is contained in the center of KM. Since J(KH) contains the kernel of the natural homomorphism $KH \rightarrow KH/U = KM$, we obtain $J(KH) \supseteq J(KM) \supseteq J(KT)$.

Lemma 15.
$$\chi f(y + \tau y \tau^2 + \tau^2 y \tau) f = -\widehat{U} f(1 + b + ab).$$

Proof. By making use of Lemma 14, we obtain the following equations:

$$\chi f \tau y \tau^{2} f = \chi c (1 + a \circ b) f y c^{2} (1 - a \circ b) f
= \chi (1 + a \circ b) f c^{-2} y c^{2} (1 - a \circ b) f
= \chi f (1 - b^{-1} \circ a^{-1}) x^{2} y f (1 - a \circ b)
= \chi f (x^{2} y + (x^{2} y)^{a} a + (x^{2} y)^{b} b - (x^{2} y)^{ab} a b) f (1 - a \circ b)
= f \chi (x^{2} y + xya + xb - yab) f (1 - a \circ b)
= \chi f (y + ya + b - yab) (1 - a - b + ab) f
= \chi f (1 + a + b + ab - ya - yb - yab) f.
$$\chi f \tau^{2} y \tau f = \chi c^{2} (1 - a \circ b) f y c (1 + a \circ b) f
= \chi (1 - a \circ b) f y^{c} (1 + a \circ b) f
= \chi f (1 + b^{-1} \circ a^{-1}) x y f (1 + a \circ b)
= \chi f (xy - (xy)^{a} a - (xy)^{b} b + (xy)^{ab} a b) f (1 + a \circ b)
= f \chi (xy - xy^{2} a - yb + x^{2} a b) f (1 + a \circ b)
= \chi f (y - y^{2} a - yb + ab) f (1 + a \circ b)
= \chi f (y - ya - yb + ab) f (1 + a \circ b)
= \chi f (1 - a + b + ab + ya - yb - yab) f.$$$$

Thus, from those above we get

$$\chi f(y + \tau y \tau^2 + \tau^2 y \tau) f = \chi f(y - 1)(1 + b + ab) f$$

= $-\chi f \nu f (1 + b + ab) = -\widehat{U} f (1 + b + ab).$

We are now ready to establish t(H) > 7 = 3(3-1)+1.

Proposition 16. $t(H) \ge 9$.

Proof. It follows from Lemma 14 (5) that $J(KH)^8$ contains an element $\chi \widehat{T} \nu \widehat{T}$ where $\widehat{T} = f + \tau + \tau^2$. By Lemma 15, we have

$$\chi \widehat{T} \nu \widehat{T} = \chi \widehat{T} (fyf + fy^2 f) \widehat{T} = -\chi \widehat{T} fyf \widehat{T} = -\chi f \widehat{T} y \widehat{T} f$$

$$= -\chi f (y + ryr^2 + r^2 yr) \widehat{T} f = \widehat{U} f (1 + b + ab) \widehat{T}$$

$$= \widehat{U} \widehat{T} (1 + b + ab) = \widehat{U} (1 + c + c^2) (1 + b + ab) f \neq 0.$$

This completes the proof.

- 5. In this section, we shall prove that there exist no finite rings R satisfying the following conditions:
 - 1) R is a finte ring of characteristic p.
 - 2) R admits an automorphism σ of order p.
- 3) $\operatorname{Tr}(a)=0$ for every $a\in R$ where $\operatorname{Tr}(a)$ means the $\langle\sigma\rangle$ -trace of a.
 - 4) There exists a p'-subgroup T of the unit group of R such that T

42 K. MOTOSE

is abelian, $\sigma(T) \subseteq T$, $T \cap R^{\sigma} = 1$ and $R = \{tc \mid t \in T, c \in R^{\sigma}\}$, where $R^{\sigma} = \{c \in R \mid \sigma(c) = c\}$.

Suppose to the contrary that there exists such a ring, and consider a permutation group $H = \langle U, V, W \rangle$ on R (acting on the left), where $U = \{u_r : x \to x + r \mid r \in R\}$, $V = \{v_t : x \to tx \mid t \in T\}$ and $W = \langle \sigma \rangle$. Since the condition $T \cap R^{\sigma} = 1$ implies that WV is a Frobenius group, we get $J(KH) = J(KW) \hat{V}KH + J(KU)KH$ (see Corollary 8 and [8, Proposition 3]). On the other hand, $R = \{tc \mid t \in T, c \in R^{\sigma}\}$ gives $H = VC_G(W)V$ (see Example 3). Thus $(J(KW) \hat{V}KH)^p = 0$ by Theorem 2 and hence $t(G) = \beta(p-1)+1$ where $|U| = p^{\beta-1}$. The condition 3) implies that $(\sigma^k u_a)^p = \sigma^{kp} u_{Tr(a)} = 1$, and so S = WU is of exponent p. Hence a p-Sylow subgroup S of H is regular. Then, since V is abelian, it follows from Corollary 13 that S is elementary abelian, which contradicts the fact that S is not abelian.

REFERENCES

- C.W. CURTIS: Modular representations of finite groups with split (B, N)-pairs, Lecture Notes in Math. 131, Springer, Berlin-Heidelberg-New York, 1970, 57—95.
- [2] E.C. DADE: Blocks with cyclic defect groups, Ann. of Math. 84 (1966), 20-48.
- [3] W. Feit: Characters of Finite Groups, Benjamin, New York, 1967.
- [4] D. GORENSTEIN: Finite Groups, Harper & Row, New York-Evanston-London, 1967.
- [5] K. MORITA: On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku 4 (1951), 177—194.
- [6] K. MOTOSE: On radicals of group rings of Frobenius groups, Hokkaido Math. J. 3 (1974), 23-34.
- [7] K. MOTOSE: On radicals of principal blocks, Hokkaido Math. J. 6 (1977), 255-259.
- [8] K. MOTOSE: On the nilpotency index of the radical of a group algebra, III, J. London Math. Soc. 25 (1982), 39—42.
- [9] D.S. PASSMAN: Permutation Groups, Benjamin, New York, 1968.
- [10] Y. TSUSHIMA: Some notes on the radical of a finite group ring II, Osaka J. Math. 16 (1979), 35—38.
- [11] O.E. VILLAMAYOR: On the semi-simplicity of group algebras, II, Proc. Amer. Math. Soc. 10 (1959), 27—31.
- [12] D.A.R. WALLACE: Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968/69), 127—134.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received December 2, 1982)