Math. J. Okayama Univ. 25 (1983), 35—42

ON THE NILPOTENCY INDEX OF THE RADICAL
OF A GROUP ALGEBRA. IV

Dedicated to Professor Kentaro Murata on his 60th birthday

Kaoru MOTOSE

Throughout this paper, we shall use the following notations: Let p be
a fixed prime number, let G be a finite group with a p-Sylow subgroup P
of order p% let KG be a group algebra of G over a field K of characteristic
p and let #(G) be the nilpotency index of the radical J(XG) of KG. Further,
given a finite subset S of KG, S denotes the sum of all elements of S.

First, in § 1, we shall investigate #{(G) of a group G with a split
(B, N)-pair. Next, in § 2, we shall state some remarks concerning a theorem
of Morita [5]. § 3 is devoted to studying a p-solvable group G with #(G)
= a(p—1)+1. Unfortunately, we have not characterized yet a group G
of minimal order such that G is p-solvable, #(G) = a(p—1)+1 and P is not
elementary abelian. However, we can establish the structure of such a
group under certain extra conditions (Theorem 12). § 4 contains an exam-
ple of a group H satisfying the following conditions :

(1) H possesses all the conclusions of Lemma 11.

(2) t(H)> B(p—1)+1 where p° is the order of a p-Sylow subgroup
of H.
Finally, by making use of results in § 3, we shall prove that there exist no
finite rings satisfying certain conditions (§ 5).

1. We begin with stating a lemma which is efficient in studying the
nilpotency index of the radical of a group algebra.

Lemma 1. Let A be a ving. Let B, I and J be subsets of A satisfving
the following conditions :

(1) 1AI=1IBI, (2) »J=]JI. (3) BJ<JB
Then (JIA)* < J"IA. Moreover, if J* =0 then JIA is contained in the
radical of A.

Proof. Clearly, the result holds for # =1. Assume the result for .
Then we conclude that (JIA)**!' < J"IAJIA = J"IAIJA = J"IBIJA =
J"IBJIA € J"IJBIA = J"*'IBIA < J"*'IA.
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Theorem 2. Suppose that a group G has finite subgroup;s H and U
such that G = UNcg(H)U and H € Ne(U). Then (J(KH)UKG)*'H =0
and J(KH)U < J(KG).

Proof. Taking A to be KG, B to be KN¢(H), I to be {U}, and J to
be J(KH) in Lemma 1, we readily obtain the conclusion.

We suggest the effectiveness of Theorem 2 by giving the following
example which played a fundamental role in [ 8 ].

Example 3. Let ¢ = p% r a divisor of ¢g—1, and s a multiple of p
with (s, ¢g—1) = 1. Let H be the Galois group of R = GF(g®) over S =
GF(g) and let T be <b™> where b is a generator of the multiplicative
group of K. We consider the following permutation groups on R: V =
{ta: x> x+ala€ R} and U={w:x->tx|te€ T}, and put G=
<H, U V>. Since g—1 and (¢°—1)/(¢—1) are relatively prime, every
element of R is a product of an element of T and an element of S. This
shows that G = UC¢(H)U since Cg(H) contains {ve | a € S} and uivoui
= p. Noting -that hwui™! = uwy) for all € H, by Theorem 2, we
obtain that J(KH)U < J(KG) and the nilpotency index of J(KH)UKG is
the p-part of s.

Theorem 2 is also applicable to finite groups of Lie type (see [1]).

Proposition 4. Suppose that a finite group G has a split (B, N)-pair
of characteristic r such that B is a semi-divect product of a normal r-subgroup
U and an abelian v -subgroup H= BN N (see [1)). Then J(KH)U <
J(KG).

Proof Since G = UNU by Bruhat decomposition and H is a normal
subgroup of N, the assertion follows from Theorem 2.

Although the next is stated for a special type of a finite group, similar
observation is possible for finite groups of Lie type, too.

Proposition 5. Let r be a prime number, q = r%, p an odd prime
divisor of q—1, and G = SL(2, q). Then t(G) is the p-part p™ of q—1.

Proof. Obviously, G has a split (B, N)-pair, where B is the subgroup
of upper triangular matrices and N is the subgroup of monomial matrices.
Thus /# = B N N is the subgroup of diagonal matrices which is isomorphic
to the multiplicative group of the finite field of ¢ elements. Thus, by
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Proposition 4, we have p™ = t(H) < t(G). Since the order of G is g{g—1)+
(g+1), a p-Sylow subgroup of G is a cyclic group of order p™ and so
t(G) = p™ by Dade's theorem [2] (see also [7]).

2. Throughout this section, we shall use the following notations:
Let N be a normal subgroup (not necessarily a p’-subgroup) of a finite
group G and let e be a centrally primitive idempotent of KN, We set
H={x€e G|xex? = ¢} and é= 2§ a:ea;!, where {a;} (e, =1) is a set
of representatives of the right cosets of H in G.

The following interesting theorem has been proved by K. Morita.

Theorem 6 (Morita [5]). If K is algebraically closed and KNe is
simple, then KGé is isomorphic to a complete matrix algebra over a twisted
group algebra of H/N.

The next is immeadiate from the preceding theorem.

Corollary 7. Assume that K is algebraically closed. If N=H and
KNe is simple, then KGé is simple.

This result applies especially to the radical of a group algebra of a
Frobenius group.

Corollary 8 ([6]). Let G be a Frobenius group with kernel N and
complement W. If p divides the order of W then J(KG) = J(KW)N.

Proof. We may assume, in the usual way, that K is algebraically
closed. If e is not equal to |N|!N, then H = N implies that KGé is simple
(see [3, the proof of (25.4)]). Thus we obtain the assertion.

As an application of Lemma 1, we have the following

Proposition 9. J(KHe) = J(KH)e < J(KG).

Proof Setting A= KG, B=KH, I ={e} and J = ](KH), we have
IAI = eKGe = 2%, KHea;ea7'a; = KHe = eKHe = IBl. Also, it is easy
to check other assumptions of Lemma 1. Thus we have J(KH)e < J(KG).

The next shows that the converse of Corollary 7 holds.

Corollary 10. If N = H and KGé is simple, then KNe is simple.
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Proof. By Proposition 9, 0 =J(KG)é 2 J(KN)eé = J(KN)e = J(KNe).
Thus KNe is simple.

3. Throughout this section, let G be a group of the minimal order
which satisfies the following conditions:

1. G is a p-solvable group.

2. P is not elementary abelian.

3. HG)=ralp—1)+1.

We show that G possesses the properties listed in the following lemma.

Lemma 11. (1) Ox(G)=1.

(2) U = 0p(G) (1) is elementary abelian and G = Op,p,s(G).

(3) |Gl < pP*'(p*—1)/(p—1).

(4) U=[U V], CAV)=1 and G is a semi-direct product of U by
N( V) where V is a p'-subgroup such that Op,»(G) = UV.

(5) V=[W. V] where W is a p-Sylow subgroup of Ne(V).

(6) Ng(V)=WYV is isomorphic to a subgroup of Aut(U) = GL(U).

(7) U is a minimal normal subgroup of UV.

Proof (1) We have t(G) 2 t{(G/0s(G)) = a(p—1)+1 (see [12]).
Thus Op(G) = 1-by the minimality of the order of G.

(2) From the inequality t(G) = t(G/U)+t(U)—1 (see [12]) we see
that both U and P/U are elementary abelian. Hence G/U is of p-length
1. and so H = Op,0p(G) is a normal subgroup of G whose index is a p*-
number. Since H{G) = ((H) (see [11]), we get G= H = Oppp(G).

(3) Itis known that there exists a group H of order p**'(p*—1)/(p—1)
such that +(H)= p? and a p-Sylow subgroup of H is nonabelian (see [8 ]).
Hence, we have p?*'(p*—1)/(p—1) = |Gl.

(4) We can see that G = Ng(V)U by Frattini argument, and Ny( V)
= Cy{V). Thus, to prove the last assertion, it suffices to show that Cy( V)
is trivial. In view of Ce(U)= U (see [4, Theorem 3.2, p.228]). V can be
regarded as an automorphism group of U by conjugation, and consequently
U= CylV)X[V, U] (see [4, Theorem 2.3, p.177]). Clearly, [V, U] =
[UV, U] is a non-trivial normal subgroup by Op(G)=1. If Cu(V) is
non-trivial, then P must be elementary abelian since Cy(V) = Cy(UV) is
normal and so G can be embedded in (G/CAV))X(G/[V, U]). This
contradiction shows that Cy( V) is trivial.

(5) Set Vi=[V,W]. Then H=WW U is a normal subgroup of G
whose index is a p-number. Since #(G) = t(H) (see [11]) and P = WU,
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we have G=H andso V=[V, W].

(6) The assertion follows from Cg(U) = U.

(7) Let U, be a minimal normal subgroup of UV contained in U.
We prove first that U; is normal in G. Assume that U # U, for some
cEW. ThenU? N U, =1since UF N U, is normal in UV. Noting that
V is a p-group and U is elementary abelian, we can easily see that there
exists a normal subgroup U. of UV such that U = U, X Uf X U,. Since
J(KG) contains the kernel of the natural homomorphism KG— KG/U, we
obtain J(KG) 2 J(KW)V+J(KU)KG (see [8]). We set Us = UZX Us.
Then, in view of #(G) = a(p—1)+1, we have 0 = WVI,(1—0)VUs =
WV(U[“ Ald) 1703 = |V|WV((71— qlo‘)Us = |V|WVL71 Ua = IV‘G which is
impossible. Hence U, is normal in G. Since V is a p-group, we have
U= UXU;X -+ XU, where every U; is a minimal normal subgroup of
UV. Then, by the preceding argument, every U; is a normal subgroup of
G. If t =2, then P must be elementary abelian since G can be embedded
in G/U,XG/U, X - X G/U,. This contradiction shows that f =1 and so
U is a minimal normal subgroup of G.

In the remainder of this section, we preserve the notations used in
Lemma 11. The next is the main result of this section.

Theorem 12. If V is abelian, then G can be regavded as a permulation
group on GE(p®) such that U = {x— x+b| b GF(»®)}, W is the Galois
group of GF(p?) over GF(p) and that V S {x— tx |t € AP} where A
s a generator of the multiplicative group of GF(p®).

Proof. By virture of Lemma 11 (7) and the proofs of [9, Proposition
19.8 and Theorem 19.11], we can regard G as a permutation group on some
GF(p™) such that U ={x—x+b|b& GF(p™)}, W is a subgroup of the
Galois group of GF(p™) over GF(p) and that V is a subgroup of {x — ax |
a<€ GF(p™)*). Since W is elementary abelian and cyclic, it follows
that W is of order p. Thus » = pr with some integer », and p?°*! >
PP p?—1)/(p—1) = |G| > |[W| |U| = p™*!, which implies » =1. Now, by
Lemma 11(5), we can easily see that the order of V divides (p*—1)/(p—1).
This completes the proof.

In [10], Y. Tsushima stated that if H is a p-solvable group with a
regualr p-Sylow subgroup S of order p® and t(H) = f(p—1)+1, then S is
elementary abelian. On page 37, line 11 [10], he claimed that since P is
of exponent p, G is of p-length 1 by Hall Higman’'s theorem. However,
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unfortunately, Tsushima's argument is unjustifiable for Fermat primes.
The next shows that Tsushima'’s result holds under extra assumption that
Op,p.o(H)/ Op,po(H) is abelian.

Corollary 13. Let H be a p-solvable group with a p-Sylow subgroup S
of order p* and Op,p,o(H)/Opp(H) abelian. If t(H) = B(p—1)+1 and
S is regular, then S is elementary abelian.

Proof. Let H be a counter example of the minimal order. Then S
is not regular by Theorem 12 and [8, Lemma 4]. Hence S is elementary
abelian.

4. In this section, for p = 3, we shall give an example of a group H
which possesses all the properties listed in Lemma 11 but satisfies #(H) >
B(p—1)+1 where p? is the order of a p-Sylow subgroup of H.

We set ¢ = ((1) (2)) b= (; g) and ¢ = (i (1)) in M =SL( 3). Then
a*=1 b*=a? b(=a'ba)=0b"" 3 =1, a° = a®b, b*=a, and Q = <a, b>
is a normal 3-subgroup of M. Let H be a semi-direct product of U =
&, y|x® =¥ =1, xy = yx> by M with respect to the identity map of M.
Then we have the following relations:

xt=y% yo=x x"=2xy% y° =2 x¢=2x y° =2V

It is easy to see that H possesses all the properties listed in Lemma 11.
We set geb=a+b—ab, y =1+x+x% v=1+y+y% f=a*’—1landr =
c(1+a-b)f in the group algebra KH. Then we have the following

Lemma 14. (1) fis a central idempotent in KM.

(2) a*f = —f Hf =5 and fx = 2/

(3) 1 is central in KM. In paticular, ¢ commutes with (a-b)f.

(4) 2= c*(1—aeb)f and * = f.

(5) J(KH)2 J(KT) where KT is the group algebra of a cyclic group
T =1{f t, 2} over K.

Proof. (1)—(4) can be proved by direct verification.

(5) It follows from (3) that KT is contained in the center of KM.
Since J(KH) contains the kernel of the natural homomorphism KH — KH/U
= KM, we obtain J(KH) 2 J(KM) 2 J(KT).

Lemma 15. xf(y+ ryr2+2yr)f = — Uf(1+ b+ ab).
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Proof. By making use of Lemma 14, we obtain the following equations :

2frvrif = xc(1+ asb)fyc¥(1—aob)f
= x(1+aeb)fc?vc*(1—a-b)f
= xf(1—=b"toa " )x2yf(1—acb)
= 2 (x2y+(x2y)?a+(x*y)°b—(x%y)?®ab)f(1—a-b)
= fr(x®y+xya+xb—yvab)f(1—aob)
= xf(y+yva+b—yabY1—a—b+ab)f
= xf(14+a+ b+ ab—ya— vb—yab)f.

1frtytf = xc*(1—aob)fyc(l1+a-b)f
= x(1—a-b)y(1+a-b)f
= 2f(1+btea xyf(1+a-b)
= xf(xy—(xy)*a—(xy)°b+(xy)?®ab)f(1+ a-b)
= fx(xy—xy?a—yb+x*ab)f(1+a-b)
= xf(y—y*a—yb+ab)f(1+a=b)
= xf(y—ya—yb+ab)l+a+b—abd)f
= xf(1—a+b+ab+ya—yb—yab)f.

Thus, from those above we get

f (y+oye+2yr)f = xf(y=1)(1+b+ab)f
= —xfif(1+b+ab) = — Uf(1+ b+ ab).

We are now ready to establish ¢(H) >7=3(3—1)+1.

Proposition 16. ¢(H) =9.

Proof. It follows from Lemma 14 (5) that J(KXH)? contains an element
xTvT where T = f+r+172 By Lemma 15, we have

ADVT = 2TWf+*NT = =xTHIT = -/ TyTf
= - +o?+ ) Tf = Uf(1+b+ab) T
=0UTQ+b+ab) = UQl+c+c®)1+b+ab)f + 0.

This completes the proof.

5. In this section, we shall prove that there exist no finite rings R
satisfying the following conditions:

1) R is'a finte ring of characteristic p.

2) R admits an automorphism ¢ of order p.

3) Tr(g) =0 for every a = R where Tr(a) means the {o)-trace of

4) There exists a p’-subgroup T of the unit group of R such that T
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is abelian, o(7T)S 7, TN R°=1 and R={tc|t< T, c €E R}, where
R ={ce R|dlc) = c}.

Suppose to the contrary that there exists such a ring, and consider a
permutation group H = <U, V, W> on R (acting on the left), where U =
{ur:x—>x+r|rER), V={vi:x— x|t € T} and W =<o¢>. Since the
condition 7 N R =1 implies that WV is a Frobenius group, we get J(KH)
= J(KW)VKH+ J(KU)KH (see Corollary 8 and [8, Proposition 3]). On
the other hand, R={tc|tE T, c € R} gives H = VCs(W)V (see Example
3). Thus (J(KW)VKH)? = 0 by Theorem 2 and hence #(G) = 8(p—1)+1
where |U| = p*~'. The condition 3) implies that (6%u¢)”= 6" urray = 1,
and so S=WU is of exponent p. Hence a p-Sylow subgroup S of H is
regular. Then, since V is abelian, it follows from Corollary 13 that S is
elementary abelian, which contradicts the fact that S is not abelian.
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