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ON RINGS SATISFYING THE IDENTITY
(x+x2+ e +xn)(n):0

Yasuvuki HIRANO, Hisao TOMINAGA and ApiL YAQUB

Throughout the present paper, R will represent a ring with center C.
Let N be the set of nilpotents in R, N* the subset of N consisting of all
a with a® = 0, E the set of idempotents in R, and D the commutator ideal
of R. For x € R, we define inductively xV’ = x, " = x* Yoy, where
xoy =x+v+xy. We may write formally x*® = (1+x)*—

Let # be a positive integer, and consider the following properties :

(i)r (x+x24 - +x")" =0 for all x € R.

(ii) N is commutative.

(ii)* N* is commutative.

(ii) [[ax).x] =0 for all eE N and x € R.

(v) Ifae N xR and [ax]?=0 then [a,x] € C.

(%) For any x. yE R, (x+xy)e(y+yx) =0 if and only if x = y.
If R has 1, then (i), becomes

(i)p (Q+x+x%+ - +xM"=1for all xE R.

The present objective is to prove the following theorems.

Theorem 1. Let R be a left s-unital ring satisfying (i)n. If R is
normal (i.e., E is central) then N is a nil ideal and R/N is commutative.

Theorem 2. Let R be a left s-unital ring satisfying (i ).

(1) If R satisfies (ii)*, then N is a nil ideal and R/N is a commu-
tative regular ving.

(2) If R satisfies (ii). then N is a commutative nil zdeal and R/N is
a commutative vegular ring.

(3) If R satisfies (ii) and (iii) (or (iv)), then R is commutative and
R/N is a regular rving.

Theorem 3. Let R be a left s-unital ring satisfying (i ). Then N
is a nil ideal and R = R, @® R., where R, is either 0 or a commulative
vegular ving of odd characteristic, R» 2 N and R»/N is a Boolean ring.

Theorem 4. If R is a normal, left s-unital ring satisfving (i ) and
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(ii), then R is commutative and R = R, ® R,, where R, is either 0 or a
regulay ving of odd chavacteristic, R» 2 N and Ry/N is a Boolean ring.

Theorem 5 (cf. [4, Theorem 2]). A left s-unital ring R satisfies (%) if
and only if (a) R is commautative and R/N is a Boolean ring and (b)
a®? =0 for all a € N.

We start with the following lemma.

Lemma 1. Suppose that R satisfies (1 )n and p°R =0. where p is a
prime. Then there exists a positive integer m such that x™ = x®™ for all
xER.

Proof. Let y=x+x2+---+x" and n= p?t, where 8= 0 and (p.f)=1.
Then there exists #(4d) € Z[A] such that y¥ =(1+y)—1= tx+x2u(x).
Noting here that (pR)* = 0, we can easily see that (fx+x2u(x))”’® = 0.
Because (#,p) = 1, we readily obtain x*¢—x?%a+1 f(x) = 0 with some f(A) €
Z[A). Now, by making use of the argument emploved in the proof of [1,
Lemma), we can find a positive integer m such that x™ = x%™ for all x € R.

Remark 1. (1) Recently, Komatsu [ 5] proved that a ring R with
1 satisfies a polynomial identity x?™—x™ = 0 for some positive integer m
if and only if the addition of R is equationally definable in terms of the
multiplication and the successor operation.

(2) Let p be a prime. If (1+#)"=1 (mod p) and p—1|n, then
GF (p) satisfies (i )». For instance, GF(3) satisfies (i )a.

(3) Let R be a left s-unital ring satisfying (i )». Let x be an arbi-
trary non-zero element of R, and choose ¢ € R such that ex =x. Then,
by (i),

0={(1+tete*+ - +e")"—1lx={(n+1)"—1}x

This means that the characteristic of R is non-zero. Furthermore, »# has
to be even. In fact, if » is odd, then

0={(1-e+e®— -+ —e")"—1jx = —x,
which is a contradiction. In particular, if p is a prime and # = p* then
p=2.

Proof of Theorem 1. By Remark 1(3), the characteristic of R is non-
zero. Obviously, the hypothesis (i ). and the normality are inherited by
subrings, so we may assume that the additive group of R is a p-group, and
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therefore p*R = 0 for some prime p. Then, by Lemma 1, there exists a
positive integer m such that x™ = x?™ for all x € R, and so R satisfies the
polynomial identity [x™y]=0. Since [E\1.E1+E2]= E2#0 in (GF(g))2
(¢ a prime), D is a nil ideal by [3, Proposition 2].

Remark 2. For e &€ E, the following are equivalent :

1) e€C

2) lea]l=0 for all a € N*.

3) lele.a]l] =0 for all « € N*.

4) [(e+a)eele+a)] =0 for all a € N*.

5) [ef]=0 for all FEE.

In fact, it is clear that 1) implies 2)—5), and 2) does 3). In order to
see that each of 3)—5) implies 1), given x € R, we set a = ex(1—e) € N*.
It is easy to see that if 3) or 4) is satisfied then ¢ =0, i.e., ex = exe.
Similarly, we can see that xe = exe. Finally, if 3) is satisfied, then
e+a<S E and e+a = ele+a) =(e+a)e = e whence it follows again
a =10, ie., ex = exe; similarly xe = exe. In particular, R is normal if
and only if E is commutative, and (iii) implies the normality of /.
Furthermore, if N* is central then R is normal and N coincides with the
prime radical of R. In fact, if ¢ =0 and &" *(Ra)**=0 then
{@a" % Y(Ra)**'}2 € @ * 'Ra"*(Ra)**'=10. Hence " * Y Ra)**' <= C, and
so @ * ' (Ra)**? = Ra" *(Ra)**' =0. We get eventually (Ra)"*!' =0.

In advance of proving Theorem 2, we state the next lemma.

Lemma 2. (1) If R satisfies (ii)* then R/P is normal where P is
the prime radical of R.

(2) If a m-regular ving R satisfies (ii)*, then N coincides with the
Jacobson radical of R and R/N is strongly regular.

Proof (1) Let & be an arbitrary idempotent of # = R/P. Since P
is a nil ideal, we may assume from the beginning that e is in £. By hy-
pothesis, eR(1—e)+(1—e)Re=(1—e)Re-eR(1—e¢). and so eR(1—e)Re = 0.
Hence éR(1—¢é)Ré = 0. By the semiprimeness of R, we get éR(1—¢&)=0,
and therefore é% = éxé for all x € R. Furthermore, éR(1—¢&)R =0 yields
(1—é)Re = 0, and therefore %é = &%é for all x € R. Thus, we have seen
that & is central.

(2) Let J be the Jacobson radical of the n-regular ring R. Obviously,
J/P is a nil ideal of R/P. Since R/J = (R/P)/(J/P) and R/P is normal
by (1), it is easy to see that R/J is normal and any nilpotent element of
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R/] generates a nil right ideal. Hence, R/J is reduced and N coincides
with J. The reduced r-regular ring R/N is strongly regular (see, e.g. [2]).

Proof of Theorem 2. (1) As in the proof of Theorem 1, we may
assume that p*R = 0 with some prime p. Then, by Lemma 1, there exists
a positive integer s such that x™ = x?™ for all x € R. Hence, by Lemma
2 (2). N coincides with the Jacobson radical of R and R/N satisfies the
identity x—x™*'=0. By Jacobson’s commutativity theorem, R/N is
commutative.

(2) This is clear by (1).

(3) By the proof of (1) and [6. Theorem 1], R is commutative.

Lemma 3. If R satisfies (i) and 2°R =0, then N is a nil ideal and
R/N is a Boolean ring.

Proof Let n=2% Obviously, y=x+x?+--+x"EN, and so x—x"*!
= y—xy € N. Then, noting that x(1—x)"—(x—x"*') € 2R € N. we read-
ily see that x—x?=x(1—x)E N. Now, we claim that for any prime g,
(GF (q)); fails to satisfy (i)n. If ¢ #+ 2 then x = E» does not satisfy (i)x.
On the other hand, if (GF(2))., satisfies (i), then, as we have seen just
above, x—x? is nilpotent for all x € (GF(2)),. But this is not true for
x=En+E;2+Es. Thus, by [3, Proposition 2], D is a nil ideal, and so
R/N is a Boolean ring.

Proof of Theorem 3. By Remark 1 (3), 2R =0 for some positive
integer h=2%" (2, ")=1. Then, R = R @ R,. where # R, =0 and
29R, = 0. If g is an element of R, with a® = 0 then, by (i ), we can
easily see that 2%a = 0, and therefore @ = 0. This proves that R, is a
reduced ring and N © R.. Now, the assertion is an easy combination of
Theorem 2 (1) and Lemma 3.

Proof of Theorem 4. In view of Theorem 3, it remains only to prove
that R, is commutative. Obviously, every element of R is of the form
e+a, where e€ EN R; and a € N. Since E is central and N is commu-
tative, it is immediate that R, is commutative.

Remark 3. As the following example shows, Theorem 4 is not true
if we replace 2% by an arbitrary positive integer: Let

a b c
R=4{0 a2 0| a b c= GF(4)}.
0 0 a
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Then 12R =0 and R is a normal ring satisfying (i )iz and (ii). But &
is not commutative and R/N is not Boolean either.

Proof of Theorem 5. “Only if": Obviously, (%) implies (i), We
claim that R is normal. To see this, given ¢ € £ and x € R, we put
a=ex(l—e). Since

{la—e)—(a—e)e}o{—e—ela—e)} = a°(—a)= —a?>=0.

(*) shows that a—e = —e, and so ¢ =0, i.e., ex = exe. A similar argument
gives xe = exe, and hence ex = xe. It is easy to see that 8R =0, and
therefore R is a normal, left s-unital ring with 23R = 0 and satisfies (i )a.
We shall show that R satisfies (ii). Let x be an arbitrary element of &,
and let e be such that ex = x. Since (x+x2)? =0 = (—x+x2)? by (i),
we readily obtain 4(x+x3) = 0. i.e., 4x = 4x%. Replacing x by e+x in
the last, we get

dx+4x? =4dle+x)x =4(e+x)°x = dx+4x2+4x3—4x*

Combining this with 4x = 4x%, we see that 4x = 4x*=4x3x =4x%  Since
xt= —2x%—3x2—2x by (i) we get

x°=—2x*—=3x3—2x2= —2(—2x3—-3x2—2x) —3x3—2x2 = 2P+ 4x2—4x = x°
This implies that @3 = 0 for all a € N, and therefore
a+a®=(a+a*)?(-a)= —a, ie.. a®=0.
Noting that N is a nil ideal by Theorem 1, we get for any a. bE N
ach = ao(a=b)?eb = boa,

which shows that N is commutative. Thus, by Theorem 4, R is commu-
tative and R/N is a Boolean ring.

“If": First, we claim that every quasi-regular element of R is nilpotent.
In fact, if a is quasi-regular then the nilpotency of @+ a? yields that of a.
Obviously, (x+x2)® =0 for all x € R. Conversely, if (x+xy)e(y+3yx) =0
then x+xy is nilpotent, and hence y+xy = (x+x9)?(y+yx) = x+xv,
whence it follows that y = x.

Remark 4. In order to prove the only if part of Theorem 5, we quoted
Theorems 1 and 4. In case R has 1, we can prove it more directly. In
fact, x® = x3 yields that 2 =1 for every unit # in R. If %, v are units
in R then uv = (uz)' = v~'u~! = vu. In particular, if ¢ and b are in N
then [a,b]=[1+a,1+ 5] =0, and so N is commutative. Now, let a € N,
xE€ R. Since (x+x%)°= —8(x+x2)°*=10 and (x*+x*)*=0 by (i)> and x*
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is a central idempotent, we have [a.x] = [a.x—x'] = [a.x +x?]—[ax*+x*]
=(), and hence N € C. Therefore, x = (x+x?)— (x?+x*)+x* € C for all
x in R, and hence R is commutative,

[4] Y.
[5] H.

[6] H.
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