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ON GENERALIZED P.P. RINGS

YASUYUKI HIRANO

A commutative ring R is called a generalized p.p. ving or for short, a
g.b.p. ving if for each a in R there exists a positive integer n (depending
on a) such that a"R is projective. In this paper we shall generalize the
works of [1],[2]). [4]. For instance, we prove that a commutative ring
R is a g.p.p. ring if and only if R has a m-regular classical quotient ring @
and all idempotents in @ belong to R (Theorem 2); R is a g.p.p. ring if
and only if ® has a z-regular classical quotient ring and for each maximal
ideal M of R, Ry is primary (Theorem 5). Moreover, we shall treat with
formal power series rings over R and their classical quotient rings, and
prove that R is a g.p.p. ring (resp. p.p. ring) if and only if some (and every)
subring of the classical quotient ring of R[[Xi. -*, X»]] containing R is a
g.p.p. ring (resp. p.p. ring) (Theorem 8).

Before stating our results we introduce the notion and terminology
used in this paper. Throughout this paper R will denote a commutative
ring with 1. R is called m-regular if for each a in R there exists a positive
integer # and an element x in R such that a” = ¢*”x. By Q(R) we denote
the classical quotient ring of R. A ring R is said to be guasi-regular (resp.
guasi m-regular) provided Q(R) is regular (resp. mregular). If K is an
ideal of R, the radical of K, denoted by VK, consists of all elements a of
R such that ¢' € K for some positive integer £. Then K is called primary
if xy€ K, x & K implies y € yK, and R is said to be primary if (0) is
primary. By N(R) we denote the prime radical of R (i.e., N(R) = /{0)),
and by E(R) the set of all idempotents in R. Given a subset S of the ring
R, anng(S) denotes the annihilator of S in R.

We first consider the conditions for R to have a m-regular classical
quotient ring. :

Theorem 1. The following are equivalent :

1) R s a quasi n-regular ring.

2) For each zero-divisor x € R, there exists a positive inleger n such
that anng(x”) = anng(x"*') and the ring anng(x") contains a non-zero-
divisor.

3) For each x € R, there exists a positive integer n and a non-zevo-
divisor d € R such that x"d = x?".
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Proof. 1)= 2). Let x be an arbitrary zero-divisor in K. Since Q(R)
is mregular, x"Q(R) = x""'Q(R) for some positive integer #. Then
anng(x”) = anna(x" Q(R)) N R = anngm(x"' Q(R)) N R =anng(x"*!). By
the above, there is an element v € Q(R) such that x? = x*?y. Then e=
1—x"y is a non-zero idempotent and anngp(x™) = e@(R). Let e = cd ™!,
¢, d€ R. Then c is a non-zero-divisor of the ring anng{x™).

2)= 3). If x is a non-zero-divisor in R then we can take x” as 4 in
3), and so we assume that x is a zero-divisor. Choose a non-zero-divisor
z of anng(x™) = anng(x”*'). We shall show that x”+ z is a non-zero-divisor
in R. Let a<anng(x"+2z). Then ax?” = a(x"+2z)x" =0. Since
anngz(x"?) = anng(x?"), we see that ¢ € annz(x"*) and hence az=0. But z
is a non-zero-divisor of annz(x"), and so a = 0.

3)=> 1). Since 4 is invertible in Q(&), it holds that x"Q(R)=
x®"Q(R). This implies that Q(R) is w-rgular.

Next we shall generalize [2, Theorem 3.4] and [4, Theorem 1.3].

Theorem 2. The following are equivalent :
1) Risagpp. ving
2) R s quasi m-regular and E(Q(R))= E(R).

Proof. 1)= 2). Let x be an arbitrary zero-divisor in R. Then x”R
is projective for some positive integer ». It is easy to see that x"R is
projective if and only if annz(x") = eR for some e € E(R). We show
anng(x”**!). If @ € anng(x”*!), then ax € anngz(x”) = eR, and so ax = axe.
Thus x"a = x""'xa = x"'xae = x"ea= 0. Therefore by Theorem 1 R is
quasi m-regular. To prove E(Q(R))= E(R), let f€ E(Q(R)). Then We
can write f = ¢cd~! for some ¢, d € R. By hypothesis, anng(c™) = gR for
some m and for some g € E(R). Since fQ(R) = c*Q(R) for any positive
integer %, we can easily see f=1—g& E(R).

2)=>1). Let x € R. Since Q(R) is mregular, there is an element
v € Q(R) and a positive integer # such that x” = x*>”y. Then by hypoth-
esis the idempotent e = x"y is in R and hence anng(x”) = anngr)(x™) N R
=(1-e)R)NR=>10—e)R.

Corollary 3. The following are equivalent :

1) R is a g.p.p. ring which contains no infinite set of orthogonal
idempotents.

2) R s a finite divect sum of ;primary vings.
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We now consider the relationship between g.p.p. rings and p.p. rings.
It is not difficult to see that R is a p.p. ring if and only if R is a reduced
g.p.p. ring. More generally we have the following.

Proposition 4. If R is a g.p.p. ving then R/N(R) is a p.p. ring.

Proof. Let x be an arbitrary non-nilpotent element in X, By hypoth-
esis there exists a positive integer » and a non-zero-divisor of (1—e)R.
Let us set R = R/N(R). We shall show that #” = x”+ N(R) is a non-zero-
divisor of (1—&)R. If d €(1—e)R and dx" € N(R), then (dx™)” =0 for
some positive integer m. Since x" is a non-zero-divisor of (1—e)R, we see

m =), that is d € N(R). Thus %" is a non-zero-divisor of (1—&)R, which
implies that annz(%") = éR. Since R is reduced, we can easily see that
anng(x)=annz(%"). In consequence, we have proved annz(%) = éR.

Remark. Suppose R is quasi m-regular. Then, using Theorem 1, we
can also prove that R/N(R) is quasi-regular.

The next corresponds to [1, Proposition 1].

Theorem 5. The following are equivalent :

1) Risagpp ring

2) R is quasi m-regular and for each maximal ideal M of R, Ru is
a primary ring.

Proof 1)= 2). By Theorem 2, R is quasi n-regular and E(Q(R)) =
E(R). Let M be a maximal ideal of R, and set K = {a € R |sa = 0for
some s& R—M). For each e € E(Q(R)) (= E(R)), either e€ R—M or
l1-e€ R—M. Thus either 1—e € K or e € K. Since Q(R) is n-regular,
we can easily see that KQ(R) is a primary ideal of Q(R). Combining this
with KQ(R) N R = K, we also see that K is primary. If S denotes the
canonical image of R—M in R = R/K, each element of S is a non-zero-
divisor and Ry is isomorphic to the localization of R by S. Therefore,
since R is primary, Ry (= Rs) is primary.

2)=1). Let M be a maximal ideal of R, and define K in the same
way as above. We show that K is a primary ideal of R. Given a, bE R
such that ab € K. Then, by the definition of X, we see ab =0 in Ra.
Since Ry is primary, either @ =0 or b € N(Ry), and so either a € K
or b€ JK Thus we have shown that K is primary. Since KQ(R)N R
= K, we can easily see that KQ(R) is a primary ideal of Q(R). Therefore,
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for each e € E(Q(R)), either e € KQ or 1—e € KQ. If e € KQ. then
se=0 for some s € R—M. On the other hand, if 1—e € K@ then
s'(1—e) =0 for some s’€ R—M, that is, s’e =s’. Now we show that e
isin R. Let T=1{a< R|ae< R}. As we have just seen above, there is
no maximal ideal which contains 7. Thus 7 = R, and hence e € R,
proving our assertion. Therefore, by Thorem 2, R is a g.p.p. ring.

Finally, we shall investigate formal power series rings and their clas-
sical quotient rings. We begin with some preliminary results.

Lemma 6. Let R((X)) = {’gra,,X" la, €ER, r€ Z). Then it holds
that E(R((X))) = E(R).

Proof. We first show that if e = ap+ @, X+ -+ is an idempotent then
e € R. Suppose to the contrary e € R, and let # be the smallest positive
integer such that @, + 0. Then we obtain ¢ = ao and @, = 2apa,. From
these we see that 2aea, = (2a0)?a» = 4aoan. and hence a» = 2a¢a»=0, a
contradiction.

Next we shall prove that if e = a, X"+ - +ast+a X+ - (m<0) is
an idempotent then e is in K. We proceed by induction on n. As we
have done, our assertion is true for m =0. So we may assume that our
assertion is true for m = k+1. In case m = % we consider the ring
(R/(a))(X)) and the canonical image & of e. Then, by induction hypoth-
esis, we conclude that a; € (ax) for all i # 0. Since e is an idempotent,

0 -k
we get a% =0, and hence a,= _Z;zak_;a,- = 2axao and ao = %aia-;=a3.
i= i=

Therefore we have ar = 2a,, namely a, = 0, and hence a; = 0 for all 7 + 0.

Lemma 7. If R is quasi m-regular (vesp. quasi-regular), ‘then so is
every intermediate ving containing E(Q(R)) between R and Q(R)(X)).

Proof. First we show that @ = Q(R)((X)) is m-regular. Let P be an
arbitrary proper prime ideal of @ Then P"=P N Q(R) is a prime ideal
of Q(R) and Q(R)/P is a field. Hence, Q/P'Q = (Q(R)/P)(X)) is a
field, and so P coincides with the maximal ideal P'Q. Thus, @ is n-regular
(see, e.g., [3, Corollary 4]).

Next, let S be an intermediate ring between R and €. Then for each
s € S there exists a positive integer # and d € @ such that s*’d = s”.
By Lemma 6, e = s"d € Q(R). Then, s*+1—e is a non-zero-divisor of S
and s*(s"+1—e) =s?". Hence, S is quasi n-regular by Theorem 1.
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We can now prove the following

Theorem 8, Let m be a positive integer. A commutative ving R is a
g.b.p. ving (vesp. p.p. ving) if and only if E(Q(R))= E(R) and some (and
every) intermediate ring between R and Q(RY(Xh, -, Xn)) is a g.p.p. ring
(vesp. p.p. ring).

Proof. Suppose R is a g.p.p. ring, and let S be an intermediate ring
between R and @ = Q(R)(X,, -, Xu)). Then S is quasi z-regular by
(Theorem 2 and) Lemma 7, and E(Q(S)) = E(S) (= E(R)) by Lemma 6.
Therefore S is a g.p.p. ring by Theorem 2.

Conversely, assume that a subring S of ¢ containing R is a g.p.p. ring.
Let » be an arbitrary element of R. Then there exists a positive integer
»n and e € E(S) such that anns(#?) = eS. Since e € E(R) by Lemma 6,
we have anng(7”) = anns(»") N R = eS N R =eR. Therefore R isa g.p.p.
ring.

Acknowledgement. The author wishes to express his thanks to
Professor M. Ohori for his valuable comments in preparing this paper.

REFERENCES

[1] S.ENpO: Note on p.p. rings, Nagoya Math. J. 17 (1960), 167—170.

[2] M.W. Evans: On commutative p.p. rings, Pacific J. Math. 41 (1972), 687—697.

[3] Y. HirANO: Some studies on strongly 7-regular rings, Math. J. Okayama Univ. 20 (1978),
141—149.

[4] M.C. ViPERA: On some classes of quasi-regular rings, Boll. Un. Mat. Ital. A(5) 14 (1977),
556—563.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received December 2, 1982)



