ON GENERALIZED P.P. RINGS

YASUYUKI HIRANO

A commutative ring R is called a *generalized p.p. ring* or for short, a g.p.p. ring if for each a in R there exists a positive integer n (depending on a) such that a^nR is projective. In this paper we shall generalize the works of [1], [2], [4]. For instance, we prove that a commutative ring R is a g.p.p. ring if and only if R has a π -regular classical quotient ring Q and all idempotents in Q belong to R (Theorem 2); R is a g.p.p. ring if and only if R has a π -regular classical quotient ring and for each maximal ideal R of R, R is primary (Theorem 5). Moreover, we shall treat with formal power series rings over R and their classical quotient rings, and prove that R is a g.p.p. ring (resp. p.p. ring) if and only if some (and every) subring of the classical quotient ring of $R[[X_1, \dots, X_m]]$ containing R is a g.p.p. ring (resp. p.p. ring) (Theorem 8).

Before stating our results we introduce the notion and terminology used in this paper. Throughout this paper R will denote a commutative ring with 1. R is called π -regular if for each a in R there exists a positive integer n and an element x in R such that $a^n = a^{2n}x$. By Q(R) we denote the classical quotient ring of R. A ring R is said to be quasi-regular (resp. quasi π -regular) provided Q(R) is regular (resp. π -regular). If K is an ideal of R, the radical of K, denoted by \sqrt{K} , consists of all elements a of R such that $a^t \in K$ for some positive integer t. Then K is called primary if $xy \in K$, $x \notin K$ implies $y \in \sqrt{K}$, and R is said to be primary if (0) is primary. By N(R) we denote the prime radical of R (i.e., $N(R) = \sqrt{(0)}$), and by E(R) the set of all idempotents in R. Given a subset S of the ring R, ann R(S) denotes the annihilator of S in R.

We first consider the conditions for R to have a π -regular classical quotient ring.

Theorem 1. The following are equivalent:

- 1) R is a quasi π -regular ring.
- 2) For each zero-divisor $x \in R$, there exists a positive integer n such that $\operatorname{ann}_R(x^n) = \operatorname{ann}_R(x^{n+1})$ and the ring $\operatorname{ann}_R(x^n)$ contains a non-zero-divisor.
- 3) For each $x \in R$, there exists a positive integer n and a non-zero-divisor $d \in R$ such that $x^n d = x^{2n}$.

8 Y. HIRANO

Proof. $1) \Rightarrow 2$). Let x be an arbitrary zero-divisor in R. Since Q(R) is π -regular, $x^nQ(R) = x^{n+1}Q(R)$ for some positive integer n. Then $\operatorname{ann}_R(x^n) = \operatorname{ann}_{Q(R)}(x^nQ(R)) \cap R = \operatorname{ann}_{Q(R)}(x^{n+1}Q(R)) \cap R = \operatorname{ann}_R(x^{n+1})$. By the above, there is an element $y \in Q(R)$ such that $x^n = x^{2n}y$. Then $e = 1-x^ny$ is a non-zero idempotent and $\operatorname{ann}_{Q(R)}(x^n) = eQ(R)$. Let $e = cd^{-1}$, $c, d \in R$. Then c is a non-zero-divisor of the ring $\operatorname{ann}_R(x^n)$.

- $2) \Rightarrow 3$). If x is a non-zero-divisor in R then we can take x^n as d in 3), and so we assume that x is a zero-divisor. Choose a non-zero-divisor z of $\operatorname{ann}_R(x^n) = \operatorname{ann}_R(x^{n+1})$. We shall show that $x^n + z$ is a non-zero-divisor in R. Let $a \in \operatorname{ann}_R(x^n + z)$. Then $ax^{2n} = a(x^n + z)x^n = 0$. Since $\operatorname{ann}_R(x^n) = \operatorname{ann}_R(x^{2n})$, we see that $a \in \operatorname{ann}_R(x^n)$ and hence az = 0. But z is a non-zero-divisor of $\operatorname{ann}_R(x^n)$, and so a = 0.
- $3) \Rightarrow 1$). Since d is invertible in Q(R), it holds that $x^nQ(R) = x^{2n}Q(R)$. This implies that Q(R) is π -regular.

Next we shall generalize [2, Theorem 3.4] and [4, Theorem 1.3].

Theorem 2. The following are equivalent:

- 1) R is a g.p.p. ring.
- 2) R is quasi π -regular and E(Q(R)) = E(R).

Proof. $1) \Rightarrow 2$). Let x be an arbitrary zero-divisor in R. Then x^nR is projective for some positive integer n. It is easy to see that x^nR is projective if and only if $\operatorname{ann}_R(x^n) = eR$ for some $e \in E(R)$. We show $\operatorname{ann}_R(x^{n+1})$. If $a \in \operatorname{ann}_R(x^{n+1})$, then $ax \in \operatorname{ann}_R(x^n) = eR$, and so ax = axe. Thus $x^na = x^{n-1}xa = x^{n-1}xae = x^nea = 0$. Therefore by Theorem 1 R is quasi π -regular. To prove E(Q(R)) = E(R), let $f \in E(Q(R))$. Then We can write $f = cd^{-1}$ for some c, $d \in R$. By hypothesis, $\operatorname{ann}_R(c^m) = gR$ for some m and for some $g \in E(R)$. Since $fQ(R) = c^kQ(R)$ for any positive integer k, we can easily see $f = 1 - g \in E(R)$.

 $2) \Rightarrow 1$). Let $x \in R$. Since Q(R) is π -regular, there is an element $y \in Q(R)$ and a positive integer n such that $x^n = x^{2n}y$. Then by hypothesis the idempotent $e = x^n y$ is in R and hence $\operatorname{ann}_R(x^n) = \operatorname{ann}_{Q(R)}(x^n) \cap R = (1-e)Q(R) \cap R = (1-e)R$.

Corollary 3. The following are equivalent:

- 1) R is a g.p.p. ring which contains no infinite set of orthogonal idempotents.
 - 2) R is a finite direct sum of primary rings.

We now consider the relationship between g.p.p. rings and p.p. rings. It is not difficult to see that R is a p.p. ring if and only if R is a reduced g.p.p. ring. More generally we have the following.

Proposition 4. If R is a g.p.p. ring then R/N(R) is a p.p. ring.

Proof. Let x be an arbitrary non-nilpotent element in R. By hypothesis there exists a positive integer n and a non-zero-divisor of (1-e)R. Let us set $\overline{R} = R/N(R)$. We shall show that $\overline{x}^n = x^n + N(R)$ is a non-zero-divisor of $(1-\bar{e})\overline{R}$. If $d \in (1-e)R$ and $dx^n \in N(R)$, then $(dx^n)^m = 0$ for some positive integer m. Since x^n is a non-zero-divisor of (1-e)R, we see $d^m = 0$, that is $d \in N(R)$. Thus \overline{x}^n is a non-zero-divisor of $(1-\bar{e})\overline{R}$, which implies that $\operatorname{ann}_{\overline{R}}(\overline{x}^n) = \bar{e}\overline{R}$. Since \overline{R} is reduced, we can easily see that $\operatorname{ann}_{\overline{R}}(\overline{x}) = \operatorname{ann}_{\overline{R}}(\overline{x}^n)$. In consequence, we have proved $\operatorname{ann}_{\overline{R}}(\overline{x}) = \bar{e}\overline{R}$.

Remark. Suppose R is quasi π -regular. Then, using Theorem 1, we can also prove that R/N(R) is quasi-regular.

The next corresponds to [1, Proposition 1].

Theorem 5. The following are equivalent:

- 1) R is a g.p.p. ring.
- 2) R is quasi π -regular and for each maximal ideal M of R, R_M is a primary ring.
- *Proof.* 1) \Rightarrow 2). By Theorem 2, R is quasi π -regular and E(Q(R)) = E(R). Let M be a maximal ideal of R, and set $K = \{a \in R \mid sa = 0 \text{ for some } s \in R-M\}$. For each $e \in E(Q(R))$ (= E(R)), either $e \in R-M$ or $1-e \in R-M$. Thus either $1-e \in K$ or $e \in K$. Since Q(R) is π -regular, we can easily see that KQ(R) is a primary ideal of Q(R). Combining this with $KQ(R) \cap R = K$, we also see that K is primary. If S denotes the canonical image of R-M in $\overline{R} = R/K$, each element of S is a non-zero-divisor and R_M is isomorphic to the localization of \overline{R} by S. Therefore, since \overline{R} is primary, R_M ($\cong \overline{R}_S$) is primary.
- $2) \Rightarrow 1$). Let M be a maximal ideal of R, and define K in the same way as above. We show that K is a primary ideal of R. Given a, $b \in R$ such that $ab \in K$. Then, by the definition of K, we see $\bar{a}\bar{b} = 0$ in R_M . Since R_M is primary, either $\bar{a} = 0$ or $\bar{b} \in N(R_M)$, and so either $a \in K$ or $b \in \sqrt{K}$. Thus we have shown that K is primary. Since $KQ(R) \cap R = K$, we can easily see that KQ(R) is a primary ideal of Q(R). Therefore,

10 Y. HIRANO

for each $e \in E(Q(R))$, either $e \in KQ$ or $1-e \in KQ$. If $e \in KQ$, then se=0 for some $s \in R-M$. On the other hand, if $1-e \in KQ$ then s'(1-e)=0 for some $s' \in R-M$, that is, s'e=s'. Now we show that e is in R. Let $T=\{a \in R \mid ae \in R\}$. As we have just seen above, there is no maximal ideal which contains T. Thus T=R, and hence $e \in R$, proving our assertion. Therefore, by Thorem 2, R is a g.p.p. ring.

Finally, we shall investigate formal power series rings and their classical quotient rings. We begin with some preliminary results.

Lemma 6. Let $R((X)) = \{ \sum_{n=r}^{\infty} a_n X^n \mid a_n \in R, r \in \mathbb{Z} \}$. Then it holds that E(R((X))) = E(R).

Proof. We first show that if $e = a_0 + a_1 X + \cdots$ is an idempotent then $e \in R$. Suppose to the contrary $e \notin R$, and let n be the smallest positive integer such that $a_n \neq 0$. Then we obtain $a_0^2 = a_0$ and $a_n = 2a_0a_n$. From these we see that $2a_0a_n = (2a_0)^2a_n = 4a_0a_n$, and hence $a_n = 2a_0a_n = 0$, a contradiction.

Next we shall prove that if $e = a_m X^m + \cdots + a_0 + a_1 X + \cdots (m \le 0)$ is an idempotent then e is in R. We proceed by induction on m. As we have done, our assertion is true for m = 0. So we may assume that our assertion is true for $m \ge k+1$. In case m = k, we consider the ring $(R/(a_k))((X))$ and the canonical image \bar{e} of e. Then, by induction hypothesis, we conclude that $a_i \in (a_k)$ for all $i \ne 0$. Since e is an idempotent, we get $a_k^2 = 0$, and hence $a_k = \sum_{i=k}^0 a_{k-i}a_i = 2a_k a_0$ and $a_0 = \sum_{i=k}^k a_i a_{-i} = a_0^2$. Therefore we have $a_k = 2a_k$, namely $a_k = 0$, and hence $a_i = 0$ for all $i \ne 0$.

Lemma 7. If R is quasi π -regular (resp. quasi-regular), 'then so is every intermediate ring containing E(Q(R)) between R and Q(R)((X)).

Proof. First we show that Q = Q(R)((X)) is π -regular. Let P be an arbitrary proper prime ideal of Q. Then $P' = P \cap Q(R)$ is a prime ideal of Q(R) and Q(R)/P' is a field. Hence, $Q/P'Q \simeq (Q(R)/P')((X))$ is a field, and so P coincides with the maximal ideal P'Q. Thus, Q is π -regular (see, e.g., [3, Corollary 4]).

Next, let S be an intermediate ring between R and Q. Then for each $s \in S$ there exists a positive integer n and $d \in Q$ such that $s^{2n}d = s^n$. By Lemma 6, $e = s^n d \in Q(R)$. Then, $s^n + 1 - e$ is a non-zero-divisor of S and $s^n(s^n + 1 - e) = s^{2n}$. Hence, S is quasi π -regular by Theorem 1.

We can now prove the following

Theorem 8. Let m be a positive integer. A commutative ring R is a g.p.p. ring (resp. p.p. ring) if and only if E(Q(R)) = E(R) and some (and every) intermediate ring between R and $Q(R)((X_1, \dots, X_m))$ is a g.p.p. ring (resp. p.p. ring).

Proof. Suppose R is a g.p.p. ring, and let S be an intermediate ring between R and $Q = Q(R)((X_1, \dots, X_m))$. Then S is quasi π -regular by (Theorem 2 and) Lemma 7, and E(Q(S)) = E(S) (= E(R)) by Lemma 6. Therefore S is a g.p.p. ring by Theorem 2.

Conversely, assume that a subring S of Q containing R is a g.p.p. ring. Let r be an arbitrary element of R. Then there exists a positive integer n and $e \in E(S)$ such that $\operatorname{ann}_s(r^n) = eS$. Since $e \in E(R)$ by Lemma 6, we have $\operatorname{ann}_R(r^n) = \operatorname{ann}_S(r^n) \cap R = eS \cap R = eR$. Therefore R is a g.p.p. ring.

Acknowledgement. The author wishes to express his thanks to Professor M. Ôhori for his valuable comments in preparing this paper.

REFERENCES

- [1] S. Endo: Note on p.p. rings, Nagoya Math. J. 17 (1960), 167—170.
- [2] M.W. EVANS: On commutative p.p. rings, Pacific J. Math. 41 (1972), 687—697.
- [3] Y. HIRANO: Some studies on strongly π-regular rings, Math. J. Okayama Univ. 20 (1978), 141—149.
- [4] M.C. VIPERA: On some classes of quasi-regular rings, Boll. Un. Mat. Ital. A(5) 14 (1977), 556—563.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received December 2, 1982)