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THE S'-TRANSFER MAP AND HOMOTOPY GROUPS
OF SUSPENDED COMPLEX PROJECTIVE SPACES

Juno MUKAI

1. Introduction. We denote by P” the complex #-dimensional pro-
jective space. Let SU(n) and SO(3) be the special unitary and rotation
groups, respectively. As is well known, the suspended space EP"7! is
canonically embedded in SU(#) [17). We consider the composition of the
canonical mappings

EP"-'— SU(n) — SO(2n) — £275?",

where £22752" denotes the space of base point preserving maps from S2%"
to S?". We define the S!-transfer map

gn : E2n+1Pn—l > SZH

by taking the adjoint of the above.
We denote by Bpg» the image of the induced homomorphism

Bnx : 7T2n+k(E2n+‘Pn_l)—’ 7r2n+h(szn)
and

Bk=11m Bk.n.

n-w

The purpose of the present paper is to determine the group structure
of By for £ < 11.

Our method is essentially to compute stable homotopy groups of EP"!
from the unstable viewpoint. The main tools are the works on the
homotopy groups of SU(x) [13] and the composition methods in the
homotopy groups of S” [15].

Our main result is stated as follows:

Theorem 1.1. B. for k<11 and generators of their 2-primary
components ave listed in the following table.

k= 1,2 3 4,5 6 7 8 9 10 11
Bk = 0 Zg4 0 Zg leo Zz Zz + Z2 Z3 Z504
gen. of 2 -~ 2 3
2-comp, v v 20 v 720, v &
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Let 7, : S?”*! — P be the natural projection. The following theorem
plays an important role in proving Theorem 1.1.

Theorem 1.2. The homotopy class of E**'m,— is of order n! for
k=0

The result about the A-th stable homotopy group of EP~ for £ < 11
will be stated as Theorem 1.3 in the last section.

2. The S!-transfer map and the complex J homomorphism. Let
S27-1 be the unit sphere in the complex n-dimensional space C” and let
U(n) be the unitary group. Let ¢: S?""!XS!'—— U(n) be a mapping
defined as follows: ¢(u,q)v=v+ u(g—1)<u,v> for u € S?*"!, ¢ € S' and
vE C", where <u,v>=%_,@rVrfor u=(u,+,un) and v=_21,**,vn). Then
it gives the matrix form @(u.q)=(8;+(g—1)it;u;) for 1 < i, j < n.

According to [5], the complex quasi-projective space EP?~! is the space
obtained from S27-!X S! by imposing the equivalence relation: (u,¢) ~
(ugq) for g€ S! and (u,1) ~ a point for u € S?"~!. The generalized
reflection

F =i EP}'— U(n)
is defined as the mapping induced from ¢.

Let e;=(1,0,---,0) € S§27-! and take-[e;] € P"! as the base point of
P7=!, Then we define

j=Jjn: EP"'— SU(n)
by
q7! 0

1
0 1
where [u] A g€ P! A S'=EP"!. Obviously, ;j and j are
homeomorphisms into.

According to [17], SU(#n) is a cell complex composed of 277! cells:
0-dim. cell & and {2(k\+ /ot - +kn) — n}-dim. cells g2k~ "2k ben2km-l
forn>k >k >-2k,=22and m=1. In particular, e**7! is identified
with the (26—1)-dim. cell of EP""! by jn, where £=2, ---, n.

The S!'-transfer map

8n: EZ"“P"_I——’ Szn

i[e] A @)=7"([u.q))
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is defined by taking the adjoint of the composition

EP™' L1 SU(n) € Un)—— SO@2n) —— Q2n52n,
where r is the realization and 7 is the canonical inclusion.
It follows from the definition that
( 1) gnIEanPn_z:Ezgn—l-

Let J: 7, (SO(n)) — 7n+r(S?) (resp. Jo: 7(SU(n)) — Monsr(S27))
be the / homomorphism (resp. complex / homomorphism). Then it is easy
to prove

Proposition 2.1. The following diagram is commutative for k < n:

- En*
7T2n+2k—1(52"+lP" l)

@] -
Tanszn ( 2+ pre E2n-mBg, .

7F2n+2k-1(52")

Je /
E?n Toxr(SU(1)) 2+ 7a1-1(SO@21))
: 2] ,
Ton-1(EP*1) T Toa1(SU(R)) —5 1o 1(SO2R)).

We recall that 7.(SU(n)) is isomorphic to Z (resp. 0) for £ < 2n if &
is odd (resp. even) by [4 ].

3. The characteristic map of a unitary bundle. We regard S?” as -
a subspace of S2"*! consisting of points z=(2p,***,2,) such that Re(z,)=0
and >%-0lze/?=1. According to §24.2 of [11], the characteristic map
Tn: S?* — U(n) for the normal form of a unitary bundle is given by

Trn(2)=(0:5—22:2;/(1+2,)?), 0< 7, < n—1.
Put wura=zx/Vy1+2z% for 0< k< n—1, where z,+#++/—1. Put

u=(w1, ", un) € S?*! and g=—(1—2,)2/(1+2,)2 € S'. Then it follows
immediately that Tn(2)=j{[«#.q]). So we have the following

Lemma 3.1. The characteristic map Trn: S*" —— U(n) is homotopic
to the composition

* Emny ]
R ————

s2n EP—", sU(n) € Un).
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From now on, we use often the same letter for a map and its homotopy
class.

As is well known, m,(SU(#)) = Z,, for n =2 2. So Theorem 25.2 of
[11] and Lemma 3.1 lead us to the following

Proposition 3.2. j,Em.-) generates mn(SUR)) = Za, and
jx i Mon (EP"Y) — mn(SU(n)) is an epimorphism for n = 2.

4. The Toda map ¢™". According to [13] and [14], there exists a
cellular mapping ¢: E3P*—— EP* such that the degree of

G H2i+1(E3P°°)_—' H2i+1(EP°°)
is i for i =2 2. We define a mapping
{m,n : E2m+]Pﬂ.__, EPm+7!

as the composition &£oE2foe---e f2m-Dy . E2m+lpn_, pem-Ipntl — ... —
E3pmn-l—, ppm+n  (¢On=the identity map). In particular, we denote

éfn:érn—].l . SZm—l —_ EPn
Hideyuki Kachi pointed the author out the following [13]:

Theorem 4.1 (Toda). Jjue1&n generates mon(SU(n+1)) = Z and
Jx : Mone1(EP?) — man(SU(n+1)) is a split epimorphism for n = 1.

By Proposition 3.2 and Theorem 4.1, we have a split exact sequence
for n =2 1:

2 o) :
( ) 0— 7f2n+2(SU(il+1),EP")‘—“*'7T2n+1(EP")i’7f2n+|(SU(7l+1))—”0-

Proposition 4.2. Let H be the infinite cyclic subgroup of men.(EP™)
generated by &n. Then, the restriction homomorphism

E*H : H— mpira(E*'P)
is a split monomorphism for k = 1.
Proof Let wm be an integer such that % < 2m. Consider the
composition of the homomorphisms jmen+1xSP"E?™ 1 mon (EP?) —

Tomezns1(SU(m+n+1)) = Z. Then this is a split epimorphism by Theorem
4.1, since {™"E?™ ¢, = ¢men. This completes the proof.

Professor Hirosi Toda suggested the present form of Proposition 4.2
to the author.
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By Theorem 4.1, Propositions 2.1 and 4.2, we have the following

Theorem 4.3. Jo(mr-1(SUR))={E¥*""® g0 E?"{,_1} © Bar-1n  for
k< n

Let pn: PP—— P"/P7""1=S%" be the collapsing map and let ¢, be the
identity class of m,(S™) = Z for n > 1. From the definition, we have

(3) Epnoln=wn'tans1 for n =2 1.

5. Proof of Theorem 1.2. Let i,: P*!'—— P" and i: SU(n—1)
—— SU(#) be the inclusions and let p,: SU(n)—— SU(n)/SU(n—1)=
S27-1 be the projection. Then we have a commutative diagram

Epn-2 _h, EpPn-t Epn- , G2n-1
(4 ) ljn—l . l jﬂ ,
SU(n—1) In SU(n) 2 S2n-t,

where the upper sequence is the cofibering and the lower is the fibering.
Hereafter we use simply ¢ and p to denote the natural inclusion and
the collapsing map respectively, unless otherwise stated.
Now we give a proof of Theorem 1.2. Let p: (EP" EP?1)— (S?"*! %)
be the collapsing map. Then px: m,(EP" EP"')— m,(S?"*!) for » <2n+2
is an isomorphism by [3]. So we have an exact sequence for n = 2:

Epn* Eln*

4
7T2n+l(EPn) 752n+1(52"+1)__’ Ton( EP?Y) WZn(EPn)y

where A=80pz': Mans1(S2"*Y) —— My i( EP? EP™Y) — m(EPPY),
Obviously, (Ein)«(Emn-1)=0, and so En,—1=4(aten-1) for some integer
a. By (3), #'Enn.1=ad(Epnxtx)=0. By Proposition 3.2, juxEnn-1 is of
order »n!. This concludes the assertion of Theorem 1.2 for £=0. It is
noted that (a.n!)=1.
Next assume that 2 = 1 and let m be an integer such that 2m = 4.
We consider homomorphisms between the exact sequences

Epn
7f2n+1(EPn)__p*—' 7f2n+l(Szn+l) JTZn(EPn-l)
lEZm 2 JEZ"’ l Ezm
E2m+1p . A
m(E2melpny — —~ —, 7(S7) Hrql(EZm-HPn—l)’

where »=2m+2n+1. Using the case that £#=0, we have

E?™ gy =ad (tzmeznsr)-
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So it is sufficient to prove that 4°(tam+2n+1) is of order z!.

Let x be the order of the above element . Assume that x< »! and
put y=n!/x = 2. Then there exists an element &« € ,(E?*"*!'P") such
that E?"*!pea=xt, for r=2m+2n+1. By (3), there exists an element
B € m,(E2m+! Pn-1) quch that E2™ ¢, = ya+ ix 3. where i=E2?™*1,. Consider
the commutative diagram

mn—1 -

a(E2m+1 pn-l) ar(EP™ "~ ‘)—~ 1 (SU(m+ n))

li* mn lz* ; l T
xo( B2+ pr) s A (EP™ ) —2 2 (SU(m+ n+1).
Then, jx&f"ixB=i%jx 8" 'B=0, since Mmran+1(SU(m+n)) = Zz or 0 by
Theorem 4.4 of [13]. Therefore, jxlm-n=jxEP"E*™y=yixtF"a. This
contradicts Theorem 4.1. Hence J4'(tzms2n+1) is of order #!. This com-
pletes the proof of Theorem 1.2.

6. A characterization of ¢, and Ex,. We shall prepare a lemma
concerning the Toda bracket. Let X, Y and Z be spaces with base points.
Let [ X, Y] be the set of homotopy classes of base point preserving maps
from X to Y. We denote by W=2Z U,CY the mapping cone of e € [Y,Z].
Let :: Z—— W be the inclusion and let p: W—— EY be the mapping
which shrinks Z to a point. We denote by ¢x the homotopy class of the
identity map of X.

Lemma 6.1. i) vy E{p 7, a} mod p«[EY W]+ (Ea)*[EZEY] if
Y=EY".

ii) Assume that 0€ {p, i, a} and aB=0, where B [X. Y] and
X=EX'. Suppose given an element B € [EXW) such that p«B=—EB.
Then

a) BE{i a B} mod Ker p«+(ER*[EY,W].

Furthermovre assume that the sequence

[EX.Z] 25 [EXw]-25 P EXEY]

s exact. Then
b) BE (i a B} mod ix[EXZ]+(EB*[EY,W].

Proof By (1.14) and Lemma 1.1 of [15], we have i).
By Proposition 1.4 of [15], p«li, @ B}=—{p, i, a}°cEB. So, by i) and
the assumption, there exists an element y € {7, @, 8} such that p«y= —EB.
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Therefore, 3—y € Ker px. By the definition, {7, @ B} is a double coset
of i«[EX.Z] C Ker px and (EB)*[EY.W]. This completes the proof.

Lemma 6.2. t2n41 € {Epn. Ein, Ean_\} mod nlene, for n > 2.
Proof. The bracket is a coset of the subgroup

EpnsTanii(EP?)+(E2qn- ) ¥ E2 P! 5271

By (3), (4) and Theorem 4.1, Epnsmns1\(EP?)={n!t24+1}. On the other
hand, [E2P71,S?7+!] = 0. This completes the proof.

By Theorem 1.2, (3), Lemmas 6.1 and 6.2, we have the following

Proposition 6.3. For n = 2,
&n € —(Ein, Entne1, nltan) mod EinsMona (EP" )+ 5! mon (EP?).
Hereafter we use the following [15]:
Tne1(SM)={9,} = Z (resp. Z) for n = 3 (resp. n=2).
By Theorem 24.3 of [11], (4) and Proposition 3.2, we have the following

Lemma 6.4, ppan=nnen for n = 1.

Proposition 6.5. i) For odd n =3,
En, € {Ein, Entn-1. 72n) M0d EinkMans2( EP" )+ ans1 (EP™)° 2ns 1.
ii) There exists an element An € man+2( EP*Y) such that
Einoin=Enn (vesp. 2Em,)
for even (resp. odd) n = 2.
Proof By Lemma 6.4, Enp_1°n20 = Emn_1°(pnnn) = (Eftn-10pn)entn =0
for odd » = 3. Obviously, the sequence

Ei, E,
Hr(EPn—l)_L, m_(EPn) p”* /Tr(SZ"H)
is exact for r=2n+2. So we have i) by Lemmas 6.1 and 6.2. We have
also ii) by Lemma 6.4 and the above exact sequence. This completes the
proof.

7. Generators of mn+x(SU(n)) for 1 < B <3. We consider the
exact sequence
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(5) 10152 L 2 SUG) - 1 (SUG+ 1) 22 1y (S52741) Lo 2 (ST,

By (2.2)of [9], 4'(a-EB)=4'(2)f for a € ms1(S?**') and B € 7alSY),
where 27 <t < g and g=» or »—1. Using the proof of Theorem 1.2 for
£=0, we have an integer b with (6,n!)=1 such that

( 5 )’ A’(52n+l):ban7fn—l-

Using [4], Theorem 4.4 of [13]. (5) and (5)" for »=2n+1, we see that
4’2 Monea(S2MY) — 7,1 (SU(n)) is an epimorphism and 4'(72n+1) =
JjneEmn_1om2n.  This leads us to the following

Proposition 7.1. 1) mns (SU@)=jnoEn_1om20) = Z» (resp. 0)
for even (resp. odd) n = 2.
ii) Jx: Mens1(EP"Y) — mns(SU(R)) is an epimorphism for n = 2.

By Theorem 1.2, Propositions 3.2 and 7.1, we have a split exact sequence
for n =22

s .
(5) 0— 7r2n+1(SU(n),EP"‘1)—’ 71'2n(EP"_l) ﬁ' Nzn(SU(n))—’ 0.

Hereafter we use the following ([13] and [15]) : men+2(SU(R)) =
Zinein+Zs (resp. Zineinn) for even (resp.odd) # 23, moS™)={ni} = Z:
for n > 2 and m(S?) = Z)..

Proposition 7.2. 1) Jjnx : Tons2(EP? 1) — mn2(SU(n)) is an epi-
morphism for n = 2.

1) mns2(SU))=inAn, jn°Exn1°Wn} = Zinsvn+ 22 for even n 2 4
and 7(SU(2))={pA} = Z..

i) Mne2(SUR))={indAn} = Zins1iiz for odd n = 3.

Proof By inspecting the proof of Theorem 4.3 of [13], we have a

commutative diagram for # = 3:

é
ans3( EP™  EP"™') —— mons2( EP™')

| »s

7f2n+3(EPnH/EP"_1) Tk

?El

Tomes(SUG+2)/SUO) ~2 Tamsa SU()).

By [4]. mns+2{SU(2+2)) = 0, and so 4 is an epimorphism. By [3], p« is
an epimorphism. This leads us to 1).
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Using Proposition 7.1. 1), (5) and (5) for »=2#1n+2, we see that
% 1 Mans2( SU(N)) — man2(SU(n+1))

is an epimorphism for even # = 2. By considering the group structure of
Tan+2(SU(R)) for k=n and n+1, 4 (73n41)=jn° Efn_1° 98, %0 (resp.=0) for
even (resp. odd) #» = 3. So, ix is a monomorphism for odd » = 3. Hence
(4), Propositions 3.2 and 6.5.ii) lead us to ii) and iii). This completes
the proof.

By Propositions 7.1 and 7.2, we have a split exact sequence for even
n=2:

5 .
(7) 0— Tonaa( SU(R).EP"™) > Ty ir( EP™) 25 20 (SU(n)) — 0.

We have also an isomorphism for odd » = 3:

(7Y 8 Tonso(SU(n).EP™) — mynui(EPY).

From now on, we use the same symbol to denote generators of
Tz+2(S™) and its 2-primary component.

Hereafter we use the following ([ 8] and [15]) : mns3(SU(#)) = Zawn),
where a(n)=(24,%) (resp. (24,n+3)/2) for even (resp. odd) #n=2. (S?) =
(v} = Zia, 7(SY={vs, EV} = Z+Z15.and 7n.3(S")={vn} = Zsy for-n =5.
6v' =53 and 2v,=FE""3) for n = 5.

Proposition 7.3. i) maa(SUR))={jnoErmn_1°van} = Zawm for n = 2.
i) jx: Mmns3(EP ) — mna(SU(R)) is an epimorphism for n = 2.

Proof. We consider the exact sequence (5) for r=2n+3:

4 ¥ .
Tr 1 (S27+Y) = 7 (SU(n)) I, 7 (SU(n+1)) b 7(S2n+1),

By Proposition 7.1. 1), (4) and Lemma 6.4, p% is a monomorphism for » = 1.
So 4 is an epimorphism for # = 1. By (5), 4'(vens1)=00n° Emn_1°von)
for n =2 2. This completes the proof.

By Propositions 7.2 and 7.3, we have a short exact sequence for n >2:

5 )
(8) 0— Zanss(SUR)EP™ )~ 2y un EP™™) 255 1t34o(SU(32)) — 0.

8. Determination of m.+:(E"'P™) for B < 7. We consider an exact
sequence
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5 .
Tuenn (B PR ET PR s 1y (B PR 2 1 (B4 PT)
_]i, ”n+k(En+1Pm’En+1Pm—l).

By [3] pk: Tnean(EMH PR EMIPAY) —— gy (S™274) s an
isomorphism for n = k—2m—1 and m =2. So we have the exact sequence
for n=2k—2m—1and m=2:

y )
(Dmn Tonenr1(S™2m) S o EP1 Py 2 (B P)
&, /.[n+k(sn+2m+l)‘
where d=4dn=238px"".

We have also the exact sequence for # = k—2m—2 and m 2 2:
i
( 9 )'m.k /Tn+k(En+1Pm”) N 7Tn+k(E"+le) ﬁ, Hn+k(sn+2m+l)

A’ Tnsn(E"F1 P,

As is well known, d(a°EB)=d(a)°8. where a € mi(S"*?7*1) and
BE mn:n(SY) for n = k—-2m—1 and m = 2. By inspecting the proof of
Theorem 1.2, d(tnszme1)=bE"*'mpn_y, and so A(Ea)=b(E™*'mn_1ca) for
@ E Tnen(S™2™), where b is an integer such that (b,#!)=1. For the
simplicity, we use the following expression, because it makes no difference
to continuation of the subsequent arguments.

(10) dn(E@)=E" 'y 1o for n = k—2m—1 and m = 2.

Now, we start to compute . (E"P™).
By Lemma 6.4, we have

(11) m=1n2.
By (10), and (11); we have

(12) o(tn5)=1m+3 and do(7nss)=1njiss for n = 0.
Using (3), (12) and (9 )., for =4 and 5, we have the following
Proposition 8.1. i) mux(E™'P) =0 for k<2 and n = 0.
i) Tuea(ETIPY={E"G} = Z for n= 0.

i) ma(E™IP) =0 for n=0.
V) Tnes(E"PO)={E"G} = Z for n 2 0.

By [17], SU(3)=EP? U €°2 and so jsx: me{ EP?)— m(SU(3)) is an
isomorphism for # < 6. Therefore, by Proposition 3.2, .(EP?)={Em}=~ Z.
By (9)s6 for =0 and by (12). 7x: m(S%) — m(EP?) is an epimorphism,
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where i=FEi,: S*—— EP?2. By (11), i53=0. Hence we have
(13) En=+i.
By (10)2 and (12), we have
(14) o(7%+5)=12vn+3 (resp. 6EY’) for n = 2 (resp. n=1).
Using (9)2.6, (9)2:6, (14) and the above argument, we have the following

Proposition 8.2. i) m(EP?))={Em} = Z;.
iit) m(E2P%)={ivs, iEV'} =~ Z+ Zs.
iii) 7nre(E™* ' PE)={ivnsst = Z12 for n = 2.

Proposition 8.3. Let £ be a generator of m(EP?), and i’=Eis: EP?
— EP3,

i) m(EP)={¢)=~ Z.

i) m(EP3)={i¢ &Gl=Z+2Z.

Proof. By [3] and [17], m(SU(k),EP* ')~ m(S8) =~ Z for k£ > 3.
So, by (2) and (7) for =3, we have the assertion.

Hereafter we use the following [15] : m(S*) ={vsns, Ev'ir} = Zy+ 2Z,,
m(S%)={vsns} = Z» and 7,+4(S") = 0 for = 6. V' 76=73vs, Jn¥ns1=0 and
Vn+1n+4=0 for » = 5.

By (10); and (11), d2(vn+s)=17n+3vn+a=0 for n 2 2. So we have
(15) Lo(vnes)=0 for n > 2.
By (9 )27, (9)27, (14) and (15), we have the following

Proposition 8.4. 1) Zuir(E™'P)={iv,ssnnse} = Z2 for n=0 or 1.
1) mu?(E"'PH =0 for n>3.

Lemma 8.5. Ef=iv4ys.

Proof. Using the EHP-sequence (cf. Theorem 2.2 of [16, Chap. 12]),
we have the exact sequence

E H P
7[7(EP2) a— 71'8(E2P2) — Fs(EPz * EP2) — TIG(EPZ),
where EP? % EP? denotes the reduced join.
Clearly, m(EP? % EP?) = m(E3(P2A P?)) = m(ESP? V S%) = m( E5P?)
=~ 0 by Proposition 8.1.iii). So E is an epimorphism. Hence we have the
assertion by Propositions 8.3 and 84.
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Lemma 8.6. i) i(tns7)=12ivns3 (resp. £iE™Y) for n 2 2 (resp.
n=0 or 1).
i) da(nns7)=0 for n = 0.

Proof. By (10)3 and (13), we have i). So, 43(71+7)=2Vn+37n+6=0
for =2 and ds(pue7)=iE™V 95)=iE"(73vs)=0 for n=0 or 1. This
completes the proof.

Using (9 )a, (9)a.7. Lemma 8.6, (3). Propositions 8.2 and 8.4, we have
the following

Proposition 8.7. i) m(EP?) = 0.

i) m(E2P3)={ivs} = Z.

i]l) 7[n+6(En+]P3)={iVn+3} X Zs fOI’ nz=2.

1\) ”n+7(En+lP3):{En§3v Z.Vn+377n+6} xZ+2Z, fO?’ n=1 or 2.
V) 7fn+7(En+lP3):{En§3} =Z f07’ n=3.

9. Determination of wy(EP™) for m=2 and 3. In this section we
use the following [15]: 3v' € {73, 2¢s. 74} mod 6v°, m(S3)={v' 7} = Z, and
w(S®)={v'n¢} = Z.

By (11), Propositions 6.3 and 8.1. iv), we have the following

Lemma 9.1. &€ {7, s, 2¢4} mod 2&.

Proposition 9.2. i) A= *&vs mod &ps.
1) m(EP?)={Lvs, &pr} = Z12t+ 2.
Proof. By (4), we have the commutative diagram

. ms(EP?)

i . b

* l]* %

3 I s s 4 3

1(S3) —— m(SU(3)) — m(S®) —— m(S?),

where the horizontal sequence is exact.

Since 7xms(S®)={jx(7xv' 78)}=0, p% is a monomorphism. Therefore,
Ker p«s=Ker jx. By (5Y and (11), 4 (vs)=nsvs, and so Im px={2vs).
Therefore, by (3) and Proposition 7.2,

D(Eovs)=2vs=ps(E A3).

On the other hand, we consider the exact sequence (8) for n=3:

0— m(SU(3).EP?) -2 m(EP?) 2% 2a(SU(3)) — 0.
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By [3] and [17], m(SU(3)EP?) = m(S®) = Z,. By inspecting the proof
of Proposition 8.3, we obtain that Im 6={&7;}. This leads us to i).

~ By Proposition 14 of [15] and by Lemma 9.1, 12{us=878 €
{7, 73, 2eatomd=—1{n3, 2¢s, na}ond=1v78=0 mod 2¢78=0. So the order of
tavs is 12 by i) and by Proposition 7.2. iii). This completes the proof.

Lemma 9.3. i) &€ {7, &, 66} mod (i€ 6&).
ii) Eme (i, o 7} mod {i'Gys, 'éns}.

Proof. By Proposition 1.2 of [15] and by (13). Propositions 6.3 and
8.3, we have i).

By Proposition 1.4 of [153] and by i), &Gup € {7, v/, 6wlenp=
—i{iv’, 6t6, 76} C 1xms(EP?). By Proposition 1.2 of [15],(13) and Proposition
65.1), Eme (i, x4, 5} D {7, &', 76} mod ixm(EP?)+ m(EP3)eoy;,. So
we have ii) by Propositions 8.3.1i) and 9.2.ii). This completes the proof.

To determine the group structure of m(EP?), we need the following

Lemma 9.4. The 10-skeleton of the complex SU(n)/EP™ ! for n > 4
is S8v S

Proof. As is well known, the cohomology ring H*(SU(#n); Z,) is

isomorphic to the exterior algebra Ez,[xs, -, x»]," where deg. x,=2k—1.
By abuse of notation, we denote by &3, &%, :+-, e2"~! the cohomology classes
corresponding to the generators xz, xs, ***, Xn.

Let Sq?: H*(X:Z,)— H*(X;Z,) be the squaring operation [12]. Since
the 7-skeleton of SU(n) is EP3, Sg?e®*=e’ and Sg?e®=0. By the Cartan
formula, Sg?(e®e®)=(e%)?=0. This completes the proof.

Proposition 9.5. i) 2Em = xi'{vs mod i'Epr.
ii) m(EP®)={Em, i'én} = Zyu+Z..

Proof. By [3] and Lemma 9.4, ns(SU(4 ),EP?) = ns(SU(4)/EP3) =
7o(SBV S = Z,. So, by (6) for n=4, n3(EP%) =~ Z»,+Z,. Hence, by
Theorem 1.2, Propositions 6.5. ii) and 9.2, we have the assertion.

10. Determination of .+ »(E"*'P™) for £=8,9 and n = 3. Hereafter
we use the following [15]: mo(S®)={vs78} =~ Z, m1(S®)={[s, ]} * Z and
Tnes(S™) = 0 for » > 7, where [¢, ¢) denotes the Whitehead product.

We consider the exact sequence (9 )35 for n > 2:
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] 4
7[n+3(8"+3) _l_*_' 7rn+8(En+lP2) ﬁ’ 7fn+8(Sn+5) — Tna7(S™3).

By (15), p« is an epimorphism. So there exists an element o € m o E3P?)
such that pxa=—v7. We write Jpo7=E"a for » 2 0. By Lemmas 6.1,
6.2 and Proposition 8.1.iii), we have

DiVnss= —Vnis for n = 2,
(16) o7 € {i, 75, vs} mod {7vs78, E*(&vys)}, and
Vnas € {Z, Tn+3, Vn+4} mod En(ngS) for n = 4.

Lemma 10.1. U, s of order 24 jfor n > 17.

Proof. 1t is sufficient to show that 245,=0. By Proposition 1.4 of [15)]
and by (16), 245; € {7, 75, ve}°24c10=—i{7s, ve, 24t9). By Proposition 1.2 of
(15], {75, ve, 24¢o} C {ns, 12v6, 20} =1{7s, 78, 2¢a} D {93, 78, 2¢a}={12vs, 78, 2¢0}
D 2{6vs, 78, 20} C 2mo(S%)=0. So we have {7s, vs, 24t} 2 0 mod 750 m10(S®)
+2mo(S®)=0. Therefore 245,=0. This completes the proof.

By (9)2s, (16) and Lemma 10.1, we have the following

Proposition 10.2. i) mi(E‘P?)={i[w, ¢, U8} = Z+ Zaa.
i) Znaa(E*P))={Dyys} = Zoy for n 2 4.

Lemma 10.3. i) 2E%m = *2:J; mod ivsn3.
ii) 2E™lm=%27{"Vn.s for n > 3.

Proof. By (3) and (16), p«(20:+ E?*(Lus))=0. So, by (9)2s for
n=2, 2v; = — E*({,vs) mod ivsn§. Therefore, by Proposition.9.5. i) and
Lemma 8.5, we have the assertion.

By Lemma 8.6. ii), we have
an As(9247)=0 for n = 1.

By (9)ss (9)3s Lemma 86. ii) and (17), we have a short exact
sequence for # = 1:

,

0— ”n+8(En+lP2)i’ 7[."+3(En+1133)_p_*,, 7Tn+8(Sn+7)_’ 0,

where p’=E”*'p;. So, by Proposition 10.2 and Lemma 10.3, we have the
following

Proposition 10.4. i ) 7(11(E4P3)={i[t6, ls], l”Dg, E47Z'3} X Z+ 2+ 2.
ll) 7['"+8(E"+1P3)={l”)7n+5, E"“Tl’3} x Zoy+ 2o fO?’ n =4,
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Hereafter we use the following [15] : m,46(S?)={13} = Z, for n = 5.
By (9)2.0 and (9 )20, we have the following

Proposition 10.5. mn.ol E**'P?)={iv3.3)} = Z, for n = 3.
By Lemma 8.6. i), we have
(18) D3(vns7)=0 for n = 2.

By (9)3s, (9)39, (17) and (18), we have a short exact sequence for
n=2:

0— uso EM1 P~ 1 o(Enr P LX, 1 (57—,

So, by Lemma 6.4 and Proposition 10.5, we have the following

Proposition 10.6. 7n.o(E™" ' P)=(ivi,3, E"*'monnis} = Zo+2Z, for
n=3.

By (10);, we have
(19) di(tnee)=E™*'7ty and dy(pn+9)=E"* ' m3onn4s for n = 0.

Using (9 )8, (9)a9, (19), Lemma 10.3, (3), Propositions 9.5. ii), 10.4
and 10.6, we have the following

Proposition 10.7. i) m(EPY)={i'ép:} = Z,.

i) mi(E‘PY={ile, t], i'Vs} = Z+ Z>.

1) Znea(E"HPY={i"Dpss} = Zo for n> 4.

IV) 7l'n+g(E"+lP4)={E"§4, iV;zz+3} = Z+Z2 fOY n=3.

11. Determination of m,.10(E"*'P™) for n > 4. Hereafter we use
the following [15]: m(S®)={a(3)a1(6)} = Zs, where a1(3)=41" and ai(n)=
E™3a(3) for n 23, Vs=a(3)a(6). mo(S)={a(3), 4i(3)} = Zs,
where a»(3) (resp. &(3)) denotes the generator of the direct summand
Z5 (resp. Zs) of mo(S®).

Lemma 11.1. i) pidi==13us.
ii) A€ {7, v, 3ve} mod {3&Gu:}+Ker ph.
iii) 84s =0 mod 8(Ker p4).

Proof. We consider the commutative daiagram
i
FAO(EPZ)’—*’WIO(Eps)

Jax ) Jax

123

0— mo(SU(3)) 5 mo(SU(4)) 25 7o(57) -2 m(SU(3)),
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where the horizontal sequence is exact.

By [8], m(SU(3)) = Z; and mo(SU(3)) = Zs. By the proof of
Proposition 7.3, by (5) and (13), 4'(v7)=tj3iv'vs generates m(SU(3)).
So, by Proposition 7.2, we have i).

Using Proposition 1.2 of [15], (13), Lemmas 6.1, 6.2 and Proposition 8.3.
ii), we have ii).

By Propositions 1.2 and 14 of [15], *8A, € {7, &', 3ve}°8uo=
— {3V, 3ve, 8ta} D —i'i{V, 3us, 8t} T ixmo(S3)=87xmo(S?) C 8(Ker p).
This leads us to iii). This completes the proof.

Hereafter we use the following [15]: m4(S7)={0'} = Z120. ms(S?)=
{O's, Eo'} = Z+ Z,3 and 7Tn+7(S”):{O'n} = Zago for n 2 9. 400’1202(7) and
240'=6,(7), where axn)=E"3@x(3) and &(n)=E"3#(3) for n = 3.
20,=E"7¢ for =2 9. an) € 2{a(n), ai(n+3), 3ense} for # =5 (cf.
(13.8) of [15]).

By (15), we have

(20) do(V345)=0 for n =5,
By (9)z2.10, (9)2,10 and (20), we have the following

Proposition 11.2. i) m(EP?)={ic’} = Zian.
ll) 7[15(E6P2)={2l0'3, Z.EO"} x~ Z+Z2.
iii) 7[n+10(E"+1P2)={iUn+3} X Zog for n = 6.

We consider the exact sequence (9)310 for n = 2:

) , y
Tnr1o B P =2 1 o B P) L5 1o S74T) 2 1o E71PR),

By (18), p% is an epimorphism. So there exists an element 8 € m(E3P?)
such that px8=—vs. We write Un9=FE"S for » = 0. Using Proposition
1.2 of [15], Lemmas 6.1, 6.2, (13) and Proposition 8.7, we have

(21) p;ﬁ;,+7:—u,,+7, and
Une1 € i{lyy 21Vn+3, Vn+6} mod {E"(§3V7)}+l.;l<7Tn+10(En+1P2) for n > 2.

Lemma 11.3. i) 30,.7,= +E"A mod (E" ¢’ for n = 4.
1) 240n7 = Tia(n+3) mod id(n+3) for n = 4.

Proof By (21) and Lemma 11.1, 3401, =px(= E*As)=—3v11. So, by
Proposition 11.2, 301, % E*A € Ker pie=1tems(E5P?)={io’}. This leads us
to i) ’

By Proposition 1.4 of [15] and by (21), £240y.7 € {1, 2ivn43, Vn+e}
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U tne10=—1{20Vn+3. Vneo, 24¢n-0} mod 247xmnc10( E**'P?) for n 2 2. By
Proposition 1.2 of [15]. {2ivns3, Vnss. 24cnes} C (200nes. Bunss. 3tnso)=
{2ia1(n+3), @ (3+6), 3tnse) D 2i{lar(n+3), a(n+6), 3tn-s} D iax(n+3) mod
3mario( EM'P2). Therefore, 240p47 = tiaa(n+3) mod 357 10( E™' P?) for
n > 2. On the other hand, 245, = 0 mod 8/¢’ by i), Lemma 11.1. iii) and
Proposition 11.2. i). This leads us to ii).

By (9)s.10, (9)3.10. Proposition 11.2, (21) and Lemma 11.3, we have the
following

Proposition 11.4. 1) 7[14(E5P3):{l.0", gfl} x Zs+ Zseo.
ii) ms(ESP3)={ios, iEc’. D12} = Z+ Zs+ Zseo.
lll) 7[n+1o(E"+1P3):{i0n+3. );;H.?} = Zig+ Zseo fOI' 3n=6.

Lemma 11.5. i) dud7k-9)=E""'meonis for n 2 1.

ii) En+lir3°;7?l+8:180();;1+7+aiEn_4OJ) for n 24‘ ulhere a:O or 1.

Proof. By (10),, we have i). By Lemma 6.4 and (21),
Elmen?.s— 1205, € Ker py=kmne10{ £ P?)

for n = 2. So, by Proposition 11.2 and Lemma 11.3, E%305f» = 125, mod
4i¢’. Therefore, E®mepf = 18057, mod 60/0'=180i¢". This completes the
proof.

Let "=E"*Y,: EMP3—— E"1PY for 4w =2 0. Then we have the
following

Proposition 11.6. i) m4(E>P*)={ico", i"01\} = Zs+ Zs0.
ii) ms(ESPY)={ios, iEc’, i"Via} = Z+ Zs+ Zs0.
ili) 7l'n+1o(En+lP4)={Z'0'n+3, lwg;u‘/} x Zis+ Ziso fO?’ n=6.

Proof.  Using (9).10. (9)1.10, (19). Proposition 10.6 and Lemma 11.5.1),
we have a short exact sequence for #» = 1:
n+9 4 n+1 p3 l:': 1 p4
00— mpe11(S™*%) — Trna1o( "1 P3) — Zparo E"*1 P — 0.
Hence, by Proposition 11.4 and Lemma 11.5. ii ), we have the assertion.
Lemma 1L7. i) 4ds(cnsn)=E™'m for n = 0.

i) E™'m==x3({"Unrt+@E"*0 )+ 156iE™ 40" for n = 4, where a is
same as in Lemwma 11.5 and b s an odd integer.

Proof. By (10)s. we have 1). By Proposition 6.5. ii) and Lemma 11.3.
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i), we have
E"lpy = £3{"0per mod (E" 40’

for n 2 4. By Theorem 1.2, E"*!'n, is of order 120. Hence, by Lemma
11.5. ii), Proposition 11.6 and its proof, we have ii). This completes the
proof.

By (9 )s,10, Proposition 11.6 and Lemma 11.7, we have the following

Proposition 11.8. i) m(ESP®)={ic’, i"0i1} = Zi..
ll) 7[15(E6P5)={ids, iEo’, ZWDIZ} = Z+Z,.
iii) 7["+[0(En+lP5)={i0n+3, illﬁ;l+7} = Zz4 for n 2 6.

12. Determination of w.«u(E"*'P™) for n > 6. Hereafter we use
the following [15] : mn+8(S”)={en} = Z, for 3 < n <5, m(S®)={0oms, €9, Do}
x Z,+2Z>+2Z, and 7r,,+8(S")={e,,, Un} = Zs+Z, for n = 10. 0'Mmater+ v
=770 and €p+ Un=1n0Ons1 fOr n=9. Up={vn, 7nsas, Vnsa} for n =17,

The following secondary compositions contain &, : {7n, E* 2V, 3unsa}
for n 2 3; {nn, 2tnsr, Vi+1} and {(7n, 2vna1, Vnea) fOr 2 245 (g, Vner 2Vnea}
and {2vn, Vn+s, nss} for m =5.

Lemma 12.1. 2Up45vpia=1i€ns+s for n = 2.
Proof. By Proposition 1.4 of [15] and by (16),
207010 € {7, 75, ve}o2v10=—1{75. vs, 2vs} D ies

mod (75)xm3(S®)+ ixmo(S)e2v10=0. So we have the assertion for n=2.
This completes the proof.

By (10); and (11), we have
(22) A2(0'n+5)=77n+30'n+4 for n = 6.

Using (9 )21, (9 )21, (16), (20), (22) and Lem.::a 12.1, we have the
following

Proposition 12.2. i) m/E"P?)={icome, tntis} = Z2+ Zs.
ii) 7tn+[1(En+1P2)={ﬁn+5l/n+8} = Z4 for n 2 7.
By (9 )s.1;1 and Proposition 12.2, we have the following

Proposition 12.3. i) m#E"P3)={icene, i'Vr1v1s} = Zo+Z,.
1) Zner1(E™PY)={7"Unisvnes} = Z;s for n 217.
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Lemma 124. i) Emous € i'{i, 73, v#} mod {ies, i’&1E}
11) AS(Vn+9)=En+l7r3°Un+8=i'ill}n+5Vn+8 fOT n=2.

Proof. By Proposition 1.4 of [15] and by Lemma 9.3. ii),
Emevs € (&', ', ne}ovs=—1i{iv', 76, v1)
mod 7 &uE. By Proposition 1.2 of [15], {iv, 7, vi} C{i, v'5s, vi}=
{7, navs, v2} D {i, 73, v3} mod 2xm1(S?)+ m(EP?)ovs. So, by Proposition 9.2.
ii), we have i).
By (10)4, we have the first equality of ii). By Proposition 1.2 of [15],
by (16) and Proposition 8.1. iv),
vrvi0 € i, 15, velovio C {7, 75, 18}
mod Zxm3(S®%) + m(E®P?)evi=lies, E*(&18)}.  So, by Proposition 1.3 of [15]
and by i),
E37T3ol/10 = Z"!j7l/10 mod (Z'Es, l.'E2(§2l/=‘_32 }
By Propositions 1.3, 1.4 of [15] and by Lemma 9.1,
E(%18) € —{i, 74, 2¢s}ovE=ilns, 2¢s, v3} D ie4 mod 0.
So we obtain that E(18)=ies. Therefore, by Lemma 12.1, we have the
second equality of ii) for #=2. This completes the proof.

Using (9 )41, (9)4.11. Lemmas 11.5, 12.4 and Proposition 12.3, we have
the following

Proposition 12.5. i) m(E"P*)={icoms} = Z,.
i) Znen(E™PY =0 for n21.

Lemma 12.6. i) 4ds(7ne1))=E™'monns10 for n 2 0.
ii) ESmems=0 mod io' 7.
iit) EP'monne10=0 for n = 6.

Proof. By (10)s, we have i). By Lemma 11.7. ii),
E’moms = i"0Ui114 mod 0" s,
By Propositions 1.2, 1.4 of [15] and by (21),

viimas € {7, 2dv, violeia
=—17"{2ivs, vi0, M3}
D —i'i{2vs, vio, M3}
> iE7 mod Z.a’oz7I'14(E5P2)°7714~



198 J. MUKAI

So, by Proposition 11.2. i), E®men4 = ie; mod i6'715. By Lemmas 12.1,
124. ii) and by the exact sequence (9 )i for n=2, ies=2i"i'S7v10=
20" dy(v11)=0. This completes the proof.

Using (9 )51, (9 )51, Lemmas 11.7. i), 12.6, (3), Theorem 1.2 and
Proposition 12.5, we have the following

Proposition 12.7. i) m:(E"P5)={E%&, icone} =~ Z+ Z».
11) 7fn+11(En+lP5)={E"§5} =~ 7 f07' n=17.

13. Proof of Theorem 1.1. In this section we use the following ([1],
[4] and [15]) : ]cﬂa(SU(n))Z7T2n+3(52")={?/2n} X Zy for n =3, fc71’7(SU(71))
:27[2n+7(52n):{262n} x=Zsforn= 5,]@/7'3(SU(72)) x0forn= 5,]07[9(8(](71))
=(73102n42) = Z> for n =6, fcifll(SU(n)):7T2n+11(52n):{§n} X Zsos for
n=T7. o ST)={9k0n+2, V3. ttn} = Zo+Zot Z, for n = 11 and mp+10(S?)=
{Unﬂn-t-ly Bl(ﬂ)} & Zsfor n=212. VnOnis=0nva-7=0 and {vn, 6Vnss Vn+6} =0
for n =212 (cf. (7.13) and (7.14) of [15]). Ai(n) € {a(n), a1(n+3), e(2+6)}
for n =5.

Let ¢ be an integer such that (¢, 24)=1. Then, by Theorem 4.3, we
have the following

Proposition 13.1. i) E?*"Pg,=cy,, for n=3.
i) E2"3goFE2n8,=0 for n > 4.

lll) {EZ‘"‘4’g4oE2”§3}={262n} fO?’ n =5,

iv) EXnSgoE2nE =08 Gonsa for n = 6.

v) {E*"9 goE2ril={5n) for n 2T

Now, we are ready to prove Theorem 1.1.
It is trivial that B, = 0 for 2=1, 2, 4 or 5.
By (1), Propositions 8.1. ii) and 13.1. i),

B3,,,:gn*z'*7r2n+3(E2"“Pl)={Ez‘"‘mgz}={y2n} X Zys for n 2 3.

Using (1), Propositions 8.7, 10.7. iv), 12.7.ii) and 13.1, we have the
following : Be..={v8n} = Zs for n =4, B7.,={202n} = Z150 for # 25, Bg,n=
{78n02ns2, V3n} = Zo+Z> for n =6 and Biy,n={&n} = Zsas for n 2 7.

By (1) and Proposition 10.7. iii), Bs,» is generated by

EZ(n—S)gsoi’g2n+5=E2("_3)g30172n+5 for n = 5.

By (1) and Proposition 13.1. 1), E2"~3g|S27+3=),, for # = 3. By
Propositions 1.2, 1.7 of [15], by (11) and (16),
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EZ(”_3)g30 Vanss E {CVZn, 2n+3, V2n+4}=772n mod 0 for n =4.

Thereofore, Bs,n=1{V2n} = Z, for n = 5.
Next we shall prove that Bio.,=1{51(2#)} = Z3 for n = 6.
By (1) and Prpopsition 11.8.1ii), Bio.n is generated by

E?" 2 gy063,.5 and EX"9gioUsn.s

for n = 6. By Proposition 13.1. i), E*" 2 gy002,43= CV2n02n+3=0 for n = 6.
Using Propositions 1.2, 1.7 of [15], (1), (13), (21) and Proposition 13.1. i),
we see that for n =4
E2n =9 giobin,g € {E2"¥g3, +2iVon4s. Vanss)

D{E2"3g0i, 202n43, Vanse)

) iC{Vzn, 2von+a, V2n+5}

=+c{a(2n), 20:(21+3), ®(2n+6)}

S +2ch1(2n)

mod Ezm_s)gB*71'2n+10(E2n+1P2)+7T2n+7(82n)°"/2n+7~

By (1), Propositions 11.2.1ii) and 13.1, the indeterminacy is equal to
{v2nO2ns3} +{02nv2n+7}=0 for » = 6. Therefore we have

E?"9go5;, a=12c81(2n) for n = 6.

Hence, Bio.,={81(2#)} =~ Z; for n=6. Thus the proof of Theorem 1.1
is complete.

Remark. The result of Theorems 1.1 and 4.3 overlaps with the ones
of Becker-Schultz [2] and Knapp [6].

Finally, we state the result about generators of the stable homotopy
groups of EP*. We set

ﬂ;‘?(EP”)Ilni:I:n 7fn+k(En+1Pm)~

By summarizing Propositions 8.1, 8.7, 10.7, 11.8 and 12.7, we have the
following

Theorem 1.3. #i(EP>) for k <11 and generators of them are listed
i the following table.

k= 12134 5 6 7 8 9 10 11
mEP)=| 0 |Z|0| Z |Z.| Z |Z.| Z+2Z, Z4 z
gen. ! tE=8 | v | iE®8s | iV | IE*8, 2P| do, iV | iE™&
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Remark. The above result about the group structure of aZ(EP>)
overlaps with the results of Liulevicius [ 7] and Mosher [10].

REFERENCES

[1] J.F. ApaMs: On the groups J(X)—IV, Topology 5 (1966), 21—71.

[2] J.C. BECKER and R.E. ScHULTZ: Equivariant function spaces and stable homotopy theory
I, Comment. Math. Helv. 49 (1974), 1—34.

[3] A.L.BLAKERs and W.S. MASSEY: The homotopy groups of a triad. II, Ann. of Math.
55 (1952), 192—201.

[4] R.BoTT: The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313—337.

[5] LM. JAMES: The Topology of Stiefel Manifolds, London Math. Soc. Lecture Note 24,
Cambridge, 1976.

[6] K. Knapp: Some Applications of K-Theory to Framed Bordism : e-Invariant and Transfer,
Habilitationsschrift, Bonn, 1979.

[7] A. LiuLevicius: A theorem in homological algebra and stable homotopy of projective
spaces, Trans. Amer. Math. Soc. 109 (1963), 540—552.

[8] H. MATSUNAGA: The homotopy groups m..A{U(n)) for i=3, 4 and 5, Mem. Fac. Sci.
Kyushu Univ. 15 (1961), 72—81.

[9] M. MiMURA and H. TopA: Homotopy groups of SU(3), SU(4) and Sp(2), J. Math,
Kyoto Univ. 3 (1964), 217—250.

[10] R.E. MOSHER: Some stable homotopy of complex projective space, Topology 7 (1968),
179—193.

[11] N.E. STeenrop: The Topology of Fibre Bundles, Princeton, 1951.

[12) N.E. STEENRODand D.B.A. EPsTEIN: Cohomology Operations, Ann. of Math. Studies 50,
Princeton, 1962.

[13] H. Toba:- A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy
groups of unitary groups, Mem. Coll. Sci. Kyoto Univ. 32 (1959), 103—119.

[14] H. Topa: On unstable homotopy of spheres and classical groups, .roc. Nat. Acad. Sci.
46 (1960), 1102—1105.

[15] H. Topa: Composition Methods in Homotopy Groups of Spheres;*Ann. of Math. Studies
49, Princeton, 1962.

[16] G.W. WHITEHEAD: Elements of Homotopy Theory, Graduate Texts in Math. 61, Springer-
Verlag, 1978.

[17] I YoxoTa: On the homology of classical Lie groups, J. Inst. Poly. Osaka City Univ. 8
(1957), 93—120.

SHINSHU UNIVERSITY

(Received February 3, 1982)

Additional remark, _added in proof. Using the notion of the
C-projectivity, Hideaki Oshima obtained the following: Bis=7%(S°) and
Bi5=275%(S%+ H, where H=0 or {7«} = Z,.



