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NOTES ON STABLE EQUIVARIANT MAPS

SHyYuIcHI IZUMIYA

0. Introduction. Stable equivariant maps have been studied by many
authors ([1].[7),[8]). In these papers, “the stability theorem” has been
established. We say that the stablility theorem holds if the algebraic notion
of “infinitesimal stability” is equivalent to the notion of “stability”.

In this paper, we will study some properties of stable equivariant maps.
In sections 1—4, we study the finite determinacy of stable equivariant map-
germs. In section 5, we construct the canonical G-stratification for a stable
equivariant maps when both G-manifolds have only a single orbit type.
Our main results are Theorems A, B and C. We will formulate A and B
in section 1, C in section 5. Since the proof of Theorem A is a direct
analogy of the non-equivariant case (cf [4]), we shall omit it. The proof
of Theorem B will be given in sections 2—4, in which we will give the
notion of G-contact equivalence for equivariant map-germs. All maps
should be of class C*

1. Formulation of Theorems A and B. Let G be a compact Lie
group which acts linearly on R” and R”. We shall denote by C§(R",R?)
the set of all germs at 0 in R” of smooth G-equivariant maps R” — R?,
and we shall set C&(n.p)={f € C§(R"R*)|f(0)=0}. If p=1 and the
action of G on R is trivial, we shall simply write C§(R) for C§(R"™ R?)
and M for C&(n1).

Then C§(R™) is an R-algebra in the usual way, and M5 is its unique
maximal ideal. We can make C§(R” R?) a C§(R)-module in a canonical
way. Let Ls(#) be the group of origin preserving equivariant diffeomor-
phism germs on R” at 0.

Definition 1.1. Let f and % be in C2(n,p). We shall say that £ is
G-isomorphic to h (we write f ~¢ &) if there is a pair of maps (¢,¢) €
Le(n)x Le(p) such that gof=ho.

If f& C&(n,p), we denote by sff the k-jet of f at 0.

Definition 1.2. Let f &€ C&(np). We say that f is G-k-determined
relative to Le(n)X Le(p) if for any k€ C&(n,p) such that jff=jifh we
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have f~¢ h. We say that f is G-finitely determined relative to Lc(n)X
Le(p) if f is G-kdetermined relative to L¢(#)X Le(p) for some integer k.

In this paper, we always have a natural G-action on TR” which is
induced by the action on R?. For f€ Cg(n,p), let (/) be the set of
smooth G-equivariant section germs of f*TR? —— R” at 0. Then, it has
the natural C§(R")-module structure. Let 8c(n)=0:(1z-). Define maps

tf + c(n) — 6c(f) by H(&)=df°&
wf @ Oc(p)— 6c(f) by wf(9)=n-f.

Then ¢f is a homomorphism of C§(R”)-modules and wf is a homomorphism
of f¥(C§(RP))-modules. We now define

d(f .G)=dimr(8c(f)/ tf(8c(n)) + wf(6c(D))).

Then we have the following theorem.

Theorem A. Let f&€ Cg(n.p). Then f is G-finitely determined
relative to Le(n)X Lo(p) if and only if d(f,G) < +o0.

In order to formulate Theorem B, we need the following propositions.

Proposition 1.3 (Hilbert's finitude theorem ). We denote by
Ro[ Xy, Xn) the ring of G-invariant polynomials. Then there exist
Sfinitely many homogeneous G-invariant polynomials 1, *-.0m which
generate Re[ X, . X»] as an R-algebra. (These polynomials will be called a
Hilbert homogeneous basis over R”).

Proposition 1.4. There exists a finite set of polynomial maps Py, -, P
which generates C§(R™R?) (resp. C§(R"XR,R®)) over CE(R™) (resp.
§(R"X R)), where G acts trivially on R™.

The proof of Proposition 1.4 is straightforward, using a parametrized
version of Schwartz’s finitude theorem in [9]. Throughout the remainder
of this paper, we fix a generating set of homogeneous polynomial maps,
{o1.***.0m} and {P,,--,Ps} in the above propositions. We now define the
following :

a) degree(P;)=min{degree(P?) |1 < j < p} for i=1,--,h (where P;=
(P},---,PP) is the coordinate representation).

b) r=max{degree(P:;)|1 < i < hj,

c) s=dimg(0c(p)/MS (),

d) D=max{degree(o;) |1 < i < m).
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Definition 1.5. Let f€ C&n.p). We say that f is infinitesimally
stable if 0c(f)=tf(6c(n))+ wf(6c(D)).

Remark. In[8], F. Ronga has defined the notion of a stable equivariant
map germ and shown that it is equivalent to the notion of infinitesimally
stable map germ. Then, we will take "stable” as a shorthand expression
for infinitesimally stable.

Then we have the following theorem.

Theorem B. Let f € Cg(n,p) be stable. Then f is G-{(s+1)D+r}-
determined relative to Lc(n)X Lg(p).

Remark. This theorem reduces to Proposition (3.6) in [5], when G=1.

2. G-contact equivalence. In this section, we introduce some impor-
tant tools in order to prove Theorem B. Let 0,,--*,0, be a Hilbert homoge-
neous basis over R® and ¢ be the map defined by o(x)=(0(x),"--,0:(x))
for x € R?.

Definition 2.1. a) A triple (¢ @ ¥) consisting of germs of equiva-
riant diffeomorphisms ¢ : (R?,0)— (R",0), @ : (R*X R?,0)— (R"X R*0)
and ¥ :(R"X R'0)— (R"X R'0) (where G acts on R trivially) such that
the following diagrams commute:

(R"0) —~— (R"X R"0) —Z— (R"0)

¢ | |o $ |
(R"0) —-— (R"XR?0) —Z— (R"0)

and
(R"0) —-— (R"XR'0) —"— (R"0)

¢ | | v ¢ |
(R"0) —*— (R"X R"0) T, (R"0)

(where ¢ is the canonical inclusion and 7 is the canonical projection) is
called a G-confact equivalence with rvespect to o (or X &-equivalence). If
¢=1, we call it a G%-equivalence.

b) Equivariant map germs f and %4 : (R”0)— (R”,0) are G-contact
equivalent with respect to o (resp. K ¢-equivalent, 6 ¢-equivalent) if there
exists a G-contact equivalence with respect to o (resp. X &-equivalence,
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6&-equivalence) (¢ @ ¢¥) such that (1,f)ep=0@(1,h) and (1,00f)edp=
¥o(1,00h) where (1.f) (x)=(xf(x)).

If f€ Ca(n,p), we let Ic(f)=,r*(M§)CE(R™). By Schwartz’s finitude
theorem in [9], /() is the ideal in C§(R") generated by oi°f,.-*,00/. We
also introduce the following ideal in C§(R"X R*):

Ze(f)={u| u|graph(cef)=0}.
Let ¢: (R*,0)— (R*X R*0) be the canonical inclusion.

Lemma 2.2. Ic(f)=c*(Z:()).

Proof. Let (z,-,2)) be the canonical coordinates on R‘. Then Zs(f)
is generated by m*(z;)—xi*(o:of)(i=1,--,1), where m:(R"X R',0)— (R".0)
and m : (R*"X R'0)— (R'0) are canonical projections. Hence, ¢*(Zs(f))
is the ideal generated by aof,:**,0:0f.

Proposition 2.3. Iff, h € C&n.p) are 6%-equivalent, then Ic(f)=1c(h).

Proof. By the definition, there exists an'invertible equivariant germ
¢ (R*"XR'0)— (R"X R'0) such that y(R"x0,0)=1 and y(graph(gsf))
=graph(cok). We have ¥*(Zs(h)=2Zc(f) and *oy*=¢*. Hence, Ic(h)
=M Zc(h)=* ¥ (Zc(f))=*Zc(f)=Ic(f).

By the definition and Proposition 2.3, we have the following theorem.

Theorem 2.4. If f, h € C&n.p) are H&-equivalent, then there is an
invertible equivariant map germ ¢:(R".0)—— (R".0) such that ¢*(Ic(f))

Remark. We can define “G-k-determined relative to X&' in the same
way as in the case of L¢(n)X Le(p).

3. The tangent space of an orbit of Ls(n)X Lgs(p). If k is a non-
negative integer we denote by J*(#,p) the space of all k-jets at 0 of germs
(R™,0)— (R*,0). We see that J%(n,p) is a finite dimensional real vector
space. The set of &-jets at 0 of equivariant map germs will be denoted by
J&(n,p). It is clear that J&(u,p) is a linear subspace of J*(n,p).

Definition 3.1. L#(#) is the Lie group consisting of %-jets of elements
of L¢(n).
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We have an analytic action of L&(»n)X L&(p) on J&(n.p): G&d.jEd)7&f
=j8(¢gofed™!). We now define an R-linear mapping
7% Oc(f) — T:JE(n,p)=J&(n,p)

by 7% (&)=j¢£, whose kernel is MET'O(F) N G:(f). Here we set
Oc(f)={€ € 0c(f/)| £(0)=0} and z=j§/. When G=1, 6c(f) and M§ are
deroted by 8(f) and M, respectively.

Proposition 3.2. Let f € C&(n.p) and j¢f=2  Then
To(L&(n) x LE(pX2))=n*(tf(8c(n)) + wf (8c(p)).
The proof is parallel to the non-equivariant case ([4 ]).

The projection from J&(n.p) to J&(n,p) is denoted by n& » for any
integer-» > k. For z=j§f. we set E¢.=(n& x)'(2). Then, we have
T:AEc.z) =n"(MEO(F) N 6:(f)). Hence, we have the following theorem.

Proposition 3.3. Let f &€ C&n,p) be G-r-determined vrelative to
Le(n)X Le(p). For any integer k < 7, the following conditions are
equivalent :

1) fis G-k-determined relative to Lc(n)X Le(p).

2) For any h € C&n,p) such that j&f=jkh. we have

th(0c(n))+ wh(8c(p))+ME+10(h) N Bc(k) D MEFO(R) N Go(h).

Proof. Since Eg.z(where z2=j§k) is an affine subspace of J&(n,p), we
can apply Proposition 3.2 and Lemma (3.1) in [5].

4. The proof of Theorem B. By Theorem A and the definition of
stability, the stable equivariant map germ is G-finitely determined relative
to Le(n)X Le(p). By Proposition 3.3, it is enough to show the following
theorem in order to prove Theorem B.

Theorem 4.1. Let f € C&(n,p) be stable. For any h € C&n,p) such
fhdt j&s+l)D+rh:]'(ss+l)D+rf, we have
th(8c(n))+ wh(8c(p)) D MF+VP+7+19(h) N G(h).

For the proof of Theorem 4.1, we need the following algebraic tool
and some lemmas. For f € C&(n,p), we define an R-homomorphism

S 1 0c(P)/MEOc(p) — Oc(F)/(tf (Gc(n)) + f*(ME) 6c(f))
by Src{ED=[wf(&)].
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Lemma 4.2. f is stable if and only if Ssc is onto.

Proof. “Only if” is clear. If Src is surjective, then ()= t/(6c(n))+
wf(0c(P)+*(ME)O:(f). Then, by the equivariant preparation theorem
(cf.[4]), we have 6c(f)=tf(0c(n))+ w/(6s(p)).

Next, we need some results about X &-equivalences.

Lemma 4.3. Let (¢ @ ¥) be a H&-equivalence between equivariant
map germs f and hand co o: 0c(f)— 6c(h) be the C§(R)-module
isomorphism defined by coo o(E)=d®io(1 &) ¢~ (where @(x,y)= (¢(x).
Oi(x,v). Then co o induces an R-vector space isomorphism

Oc(N)/tf(0c(n))+ /X (MME) 06(F)) = Oc(h)/(th(8c(n))+ R*(ME) Bc(h)).

Proof. We may write ¢ o)=Co #x1°Cu o), where @' =(071Xx1)°Q,
and so it is sufficient to show that ¢ ox1) and ¢u o, are well defined.

1) <o oxn; we have h=fo¢™!, and ce oxn=w¢~!. Then ce exnif
(6c(n)) C th(8c(n)) and  cio oxy(F*(ME) () C A*(ME)Oc(h).  Thus,
Cl¢ ¢x1) is well defined.

2) ca ¢); we have cu ov=10110c(f), where t@;: 6c(1.1) — bc(h)
is defined by @1(£)=d®i°£. By Proposition 2.3, Ig(f)=Ic(%), so that
ca on(F*(ME)6c(F))=h*(ME)O:(h). Also, we have cu o(tf(8c(n)) C
th(Bc(n))+ B*(ME)Gc(h). So cu ¢ is well defined.

We have the following theorem about G-finitely determined map germs
relative to X&.

Theorem 4.4. Let f < C&(n,p) be such that
*) (ME)=0c(f) C tf (8o(n)) +*(ME)6c(f)
Jor some integer k. Then f is G-{(k+1)D+r}-determined relative to ¥¢E.

The structure of the proof is an equivariant extension of Mather’s
method (cf. Mather [4 ], Section 5). We will give an outline of the proof
in the last of this section.

Next, we have an estimate of the order of A'€-determinacy of stable
map germs.

Lemma 4.5. Let f € C&(n.,p) be stable. Then we have (MG)S0:(f)
C tf(0c(n))+*(ME)6c(f). Hence, fis G-{(s+1)D+ r}-determined relative



NOTES ON STABLE EQUIVARIANT MAPS 173

to K&

Proof. Since f is stable, #(8¢(n))+ wf(8s(p)) has a CE(R™)-module
structure. Let

V=(t/(6c(n))+ f (0c(p))+ /*(ME) 0c(/)/ (tf(0c(n)) + *(M5) 6c(f)
+(MF)s+1 6 ().

Then
dimg V < dimg(wf(8c(p))/ of(MEOc(p)) < dime(c(p)/MEOc(D))=s.

By Nakayama's lemma, we have the required result.

We must study relations between C§(R" R*?) and Cs(R™ R*). Here,
Cs(R”,R*”) is the set of all germs at 0 of smooth mappings R — R”.
This set is also a module over the local algebra C§(R"). Let p1,***,0m be
a Hilbert homogeneous basis over R”. Set d =min{degree(p;)|i=1, -, m}.

Lemma 4.6 (Ronga [8]). i) M§C M.
i) M N CE(R") C (MG)? for any positive integer q.

Corollary 4.7. i) MGCF(R™R?) C MICF(R™,R®) N C§(R™.R?).
ii) M+ Ce(R™,R") N C§(R™ R?) C (MS)CE(R™ R?) for any posi-
tive integer q.

Proof i) Trivial.

ii) If fe M+ C§(R™ R?) N C§(R™ R?), then f may be written as
Fx)=2" H{x)P{x), where Hi(x) € C§(R") N M% for some integer ;.
Let d;=degree (P/x)). Since D is the maximum of &; then h;+d: =
gD+ r. Hence, f(x) € (M§ N M3P) C§(R™ R?). By Lemma 4.6, the proof is
completed.

Then, we have tools in order to prove Theorem 4.1.

Proof of Theorem 4.1. Let hE C&(n,p) be such’ that j+VP*" h=
jis*vD+7f Then f and h are ¥ €-equivalent, because f is G-{(s+1)D+7}-
determined relative to X&. If £€ 6:(n), then (&) — th(€) € ME+V P+ 6(f)
N 0c(f). If vE CE(RP), then f*(v)— h*(v) € MFHVP++1Ce(R")NCE(R™).
Hence, by Lemma 4.5 and Corollary 4.7, th(8c(%))+ h*(ME) (k) C t/(8c(n))
+/*(ME)G:(f). Here, we identify :(f) with C§(R™,R*). Since f and %
are A 8-equivalent, by Lemma 4.3,

#(8c(n)) + F*(ME) 6 (f) = th(Gc(n)) + h*(IME) (k).



174 S. IZUMIYA

So Ss¢ and Skc can be identified. Because f is stable, by Lemma 4.2,
Ssc=Snc are surjective, and hence % is stable.

By Lemma 4.5, (MS$)58c(h) C th(8c(n))+ h*(ME)Hc(k), so that (IMF)S+!
Oc(h) C th(MG Oc(n)) + K*(MEMG(th(6c(n)) + wh(Oc(p)) T th(MF Gc(n))+
wh(MEOc(p)). Therefore, by Corollary 4.7, MSH2+76c(h) N B(h) C th
(MG 6c( 1))+ wh(IME O5(p)) T th(8c(n))+ wh(Be(p)). This completes the proof.

Outline of the proof of Theovem 44. Letf h&€ C&(n,p). Welet H:
(R"X R0OX R)— (R"X R,0X R) be given by H(x,#)=((1—#)f(x)+#/(x),1).
For each a € R, we define H*=H|(R" X R.(0,a)) and H,= H4|(R" X a,(0,a)).
Let 7. be the germ of the canonical projection R*X R— R". By Prop.
1.4, (MS)#0:(f) generates (MG)*Oc(mpe H?) as C§(R™ X R)-module. By (*),
if jiErUPHTf=jiRr00+ T then (MG)*Oe(mpo H?) C (HO*MEYMS Oc(mpe H)
+ tlH“(iU?SHG(frn))+(9ﬁ,‘f)k“Hg(ﬂpOH"). Here, we set f]Ha(E):dHta"f.
By Nakayama’s lemma and multiplying both sides by I§, we obtain

(MG 21 Gg(7Po H?) C (H)(ME)MS Oc(mpe HE) + 1 H (MG O (7r)).
We now have

3([9—;’0 € MpHD+7+1G (0 FH9) N G(mpe HE) C (ME)%+ G (7p0 H).

It follows that there are 7 € (H2)*(ME)MS fc(7po H?) and & € M§O¢(7r)
such that 8_1(;1;: 7+t H(E). Since  (H%)*(ME) MG Gc(mpo H?) C
(H2*(Mp) M, 8(mpo H?), there exist ui; € MnCP(R™X R) such that p=
D2 (HA* (v5) ui,-(%o moo H “), where (y1,"*,¥») denotes the canonical
coordinates for R?. We now define a C§(R" X R)-homomorphism

to: Oc(mpe H?) — Bc(oeonpe H®) by to(&)=do-¢.

Then we have

ad;f{a=f0(a§a)= ta(n)+ t(oo H)(E).

Since (H2)*(M§) is generated by oc1°H?,-,0,°H?%, then there are wy €
MECE(R™ X R) such that

1'0'(77)=25’,;‘=1(05°Ha)wﬁ(a%j° oo ﬂpOH“),

where (z1,-:+,z;) denotes the canonical coordinates for R’ Hence, we
have the following formulas:
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oH®
5= S (H i o mn H )+ 1 HOE),
° a
ada{{ = f.j:l(61°Ha)wif(aia°0°7fp°Ha)+t1(0°Ha)(5)-

Let mpip: (R*"XRPXR,(0.0,a))— (R"X R”(0,0)), Tnss: (R*"X R*X R,(0,0,2))
— (R"X R*(0,0)) denote projections. Let A € 8(mn+p) and x € (7mns))
be given by

d_ - 0
A=2Emyittig—& and p=Zhiazwig, —E

Let @ be the integral of A (resp. & be the integral of #) and ¢ be the
integral of & Using the standard method of the non-equivariant case ([5 ].
Section 5 ), there are local diffeomorphisms @, ¥ and ¢ such that the
diagrams in Definition 2.1 are commutative and satisfy @°(1,/)e¢'=(1,4)
and ¥o(l,00f)e¢ ' =(1,00k). But, in this case, ® may not be equivariant.
We can avoid this situation by integrating over the group G. (i.e. @(x,v)

=(¢(x), f g7 '0\(gx.gv)dg). where O(x.y)=(¢(x).O:1(x.))).

5. Canonical stratification for stable equivariant maps. The nice
range for stable equivariant maps may be variable with respect to group
actions. Hence, there is a natural reason that we consider. topologically
stable equivariant maps, whose definition is the direct analogy of the non-
equivariant case (cf. [6]).

Problem. Is the set of topologically stable equivariant maps open and
dense in C&(X,Y)?

In relation to this problem, we shall show that every C*-stable equiva-
riant map have an “equivariant canonical stratification” when X and Y
have only one orbit type respectively. In this situation, the definition of
G-transversality is the same as in the non-equivariant case.

Definition 5.1. Let f: X —— Y be a smooth equivariant mapping.
We call (£.%) a G-Thom stratification of f if the following conditions hold :

(1) % % are Whitney stratifications of X, Y respectively whose
strata are G-submanifolds.

(2) For any stratum U € ¥, there exists a stratum V € ¥ such that
AU)C V and fIU: U— V is a submersion.

(3) For any strata U, V € Z, these satisfy the condition (as) (see
Mather [6 ).
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Now, the definition of the orbit type at x is the conjugacy class (Gx)
of the isotropy subgroup at x € X. If X has only one orbit type (H), by
the differentiable slice theorem, the invariant tubular neighbourhood about
any orbit is G-isomorphic to G/H X V. Here, V denotes an open neigh-
bourhood of the origin in the normal space of the orbit at the point and H
acts trivially on V. In this case, the canonical projection X — X/G has
a fibre bundle structure whose local triviality is given by G/HX V — V.
For f€ Ca&(X,Y), we define a smooth mapping

f: X/G— Y/G
by A{x)=[F(x)].

Lemma 5.2. Let X, Y be G-manifolds which have only one orbit type
(H), (H’) respectively. The mapping II: CAXY)—— C(X/G, Y/G)
defined by II(f)=f is the open mapping.

The proof is given by the fact that JE(X, Y) — J(X/G,Y/G) is the
fibre bundle in this case. Here, JE(X,Y) denotes the set of jets which are
represented by local equivariant mappings.

Corollary 5.3. Let X, Y be same as in the above lemma. If
€ CaXY) is a C=-stable equivariant mapping, then f: X/G— Y/G
is a C>-stable mapping.

Corollary 5.4. Let Y, Y be same as in the above lemma. If
fE CHX)Y) is a C=-stable equivariant mapping, then there is a Thom
stratification (£.%Y) of .

Proof By Corollary 5.3, f is a C>-stable mapping. Hence, by a
theorem of Mather ([6]), 7 has a Thom stratification.

We now have the following theorem.

Theorem C. Let X, Y be same as in Lemma 5.2. If f € CEX,Y) s
a C=-stable equivariant mapping, then theve is a G-Thom stratification

(X.Y) of f.

Proof. We have open coverings {G/H X U} and {G/H’X V} of X and
Y respectively which have the following properties :

(1) G/HXU and G/H'X V are tubular neighbourhoods of orbits.

(2) For any G/H X U, there is a G/H'X V such that f(G/HXU) C
G/H' X V.
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If G/JHXU and G/H XV have the property (2), then f(U) C V.
We now define

Xu={G/HX(SNU)|S€ X} ¥ ={G/H'X(S' N V)| S5 € ¥}
Then, (£v.¥y) is a G-Thom stratification of f| G/H X U. Hence,
(32{9 G/HX(SNU)|Se ZF}, fy={LVJ G/HX(SNWV)Se¥)

is a G-Thom stratification of f.

Remark. This theorem has been announced in [ 3].

If X and Y have several orbit types, the situation is more complicated
as the following example shows:

Example. Let p;: Zo—— GL{2,R) (i=1,2) be group representations
defined by

pn(—1)=(_(1)2) and pz(—l)Z(_(l) _?)

We denote by (R?,0,) and A = (R?p») the Z.-spaces given by the above
representations. Now, we consider the map germ f : (R0)—— (A0)
defined by f(x.v)=(x,xy). By Malgrange’s preparation theorem, it is easy
to show that f is an infinitesimally stable Z,-map germ. But, f is the famous
example which cannot have Thom stratifications. If we get an unfolding
of f as follows, we have same examples between higher dimensional
Z>-spaces :

F:(RXR%0)— (AXRS0)

by F(x,y,u1,us)=(x,y),u1.--.us), where Z, acts trivially on RS.
This example indicates that we carinot have the “generic” set of (usual
or direct analogous) Thom mappings in C%(R X RS, AX RS).
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