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A CONSTRUCTION OF SPACES WITH GENERAL
CONNECTIONS WHICH HAVE POINTS
SWALLOWING GEODESICS

ToMINOSUKE OTSUKI

Introduction. The purpose of this paper is to show some way hy
which we can construct examples of spaces admitting the existence of
points which have neighborhoods such that if any one going on along a
geodesic enters these neighborhoods, he will be finally swallowed at these
points. It is well known that any space with a classical affine connection
does not admit the existence of points as mentioned above. We mean
here geometrical spaces as differentiable manifolds with general connections
introduced by the present author in 1958 [1]. which include affine connec-
tions as special ones. The property of these neighborhoods will be illus-
trated by the following typical example: Let £? be the Euclidean plane.
Any straight line diverges to the point at infinity. Considering E* as the
complex z-plane and bringing the point at infinity to the origin by the
inversion w=1/2 then straight lines of E? are represented by circles or
straight lines through the origin w=0. The point w=0 does not belong
to E£? originally. [If we annex w=0 to E2 then any circular neighborhood
of the origin w=0 has the property mentioned above. Here, it must be
noticed that the flat affine connection of E? loses its meaning at w=0,
since its line element is

ds’=dzdz= AL dwdim.

[}t

1. General connections and geodesics. Let /" be a smooth manifold
of dimension »# and I’ be a general connection on M” which is a cross-
section of the tensor product bundle T(M") Q@ D?(M™) of the tangent bundle
of order 1 7(M") and the co-tangent bundle of order 2 D*(M") of M" and
is represented in local coordinates u? of M" as
__0

du’
with local components (P}, I%). If (Pi, I'j) are the local components in
another local coordinate system (i), then we obtain

(1.1) r

R (Pid?*u’ + Tiudiu’ & du*)
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(1.2) Pi=3 o
P2ul du' ou™
pp2U
(1.3) 1’1 auh( R TLY Y7t n,;"au’ 3u")

since we have the rule on the differential of order 2 by definition as

4 '—al‘ - d?u J+aa,(; T8 15 ® du*.

We see easily from (1.2) and (1.3) that P=3—27 ® Pjdu’ is a tensor field of
type (1, 1) and I is a classical affine connection if P=I (the Kronecker's 8).
Now, for any tangent vector field X =a—fl7X ‘ on M” its covariant
differential DX with respect to I" is given by
— i .i J
DX=X B & du’.,

where

(14) Xi,=Pj %XJ F XA

For a given vector field Y(¢)= Y’“(t)gfp along a curve y(¢): u’=u'(t),
a < t < b, its covariant derivative DY/dt with respect to I" is given by

DY_DY 3§
dt dt ou®
where
DY!_ .. dY’ sdu®
(1.5) dt B dr WY dt

For any tensor field Q:W® Qidu’ of M" we can define two general

connections QI and I'Q derived from I' with local components in %! as
follows:

(1.6)

Qr=(QIP}, QITk),
ro=(PiQs, Pi%+riQ

([7]). From (1.6) we see that if P=A(I") is isomorphic on each tangent
space of M", then P~'I" and I'P-! become classical affine connections.

A curve »(¢) is called a geodesic with respect to I if it satisfies the
equation :

1.7) dt(du ) b ’l
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for a suitable function ¢ of £, The parameter s for a geodesic such that
D (dz#')_
(1.8) ds\ ds =0

is called an affine parameter of the geodesic. We can easily see that for
a geodesic y(¢) satisfying

P}%#:O

at any point, its affine parameter is determined uniquely except affine
transformations as in the case of classical affine connections.
From (1.5), (1.6) and (1.7) we obtain immediately

Lemma 1. Let y be a geodesic with respect to a general connection I
of M", then y is also a geodesic with respect to the geneval connection QI
where Q is any tensor field of type (1, 1) on M", and the affine parameters
of v with respect to I' become so for QI

2. Special cases in which appear points swallowing geodesics. Let
I" be a general connection defined on a neighborhood of the origin in R”
with the canonical coordinates #? and (P}, I'jy) the components of I
Now, suppose that

2.1) Pj=pd

and [}, the Christoffel symbols made by a symmetric tensor g;;=00:;
(6+0) as

Ju* ou'
_%(550{" Skos— 35/:@').

=L g2 Sy 32)
(22)

where ¢;= g -, Then the equation (1.8) of a geodesic with respect to I’

becomes
d2 i (a’u du* 1  <«du*du* )
T\l TS d ds )=
Now, regarding «*‘ as Euclidean coordinates we denote its inner product
by < , >. Then the above equation can be expressed as

dzu du du, 1. ,du du
(2.3) okt (dsw duy 1pade ds) 0,



160 T. OTSUKI

where [7o is the gradient vector field of o with respect to the Euclidean
connection of R”.
Furthermore we put the conditions for p and o as

(2.4) p=p(r) and o=a(r)
where

<u, wd=r: (r 20).
and
(2.5) po(r)=0 for r > 0.

Then. since we have
o\ U
76=0'(r)7 for wu=+0,

(2.3) becomes
d*u + o dr du o |du

2

ds? Tpods ds 2007 ' d

(2.6) | 24=0,

from which we see that any geodesic lies on a Euclidean plane of R”
through the origin. Therefore, we may consider (2.6) as the equation on
R?  We represent (2.6) by the polar coordinates (», 8) of R%. We have
easily

e ) R ()
(L (Y] (00 O)+ (o 2 —sn 2
and
W =%+ F)

Substituting these into (2.6). we obtain

o () (101 2) () =0
e R r et

In order to see the behavior of a geodesic near the origin, we consider
the angle w between the position vector «(s) and its tangent vector. Then
we have easily
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e =g,_ & o
(2.8) N@‘ sin w—; u(s)
Lt a’r
dS‘ dS [’]

0

Differentiating the first equality of (2.8) and using (2.7) and (2.8), we have

du do__ _ d*r l
Ismw & +cosa)

G ey

=_d2r+coszco[a'rd2 N d_( ) zdﬁd 0}
ds? dr \ds ds2 " "ds Y ds ds?
ds

— a2, 41 2 (@ 2 7% cos’w dfd?8
=—sin“w a,52+rcos w a’s) + dr  ds ds?
ds

st [ 1352 )

_2r cos’w (H_r_o’)ﬂ(a’ﬁy
ar 2p0/ds\ ds
ds

—ain2, O (drY?
S @ ZPO'(dS)

ool ez e )£

{sm 1) m+ltan w(—1—(sinfw+2 cosza)) )}(‘(Z)
Lo 1 22)( %
P tan w 1+9p0_ (15 y
hence
dw tan® w ( )(a’r
gw_ _ tan o 1+—
ds %lr sin 200 ds)
__sinw ro 1 dr\2_ 1 ro”\| du
o _c_igl r(1+2pa)(cos w a’s) (1+Zp0)| ds ,sm @
ds

ie.
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2.9) o L(14+3Z)|% sin 0= —(1+52)%.

Remark. Consider E? near the point at infinity which is represented
as w=0 in the complex w-plane and let its line element be
1 _ .
2— — 4,1 2
ds dedw, w=u'+iu’.
Then, we can put

1

6=r4! p=1

for E?, even though the origin is outside of E2. (2.7) and (2.9) become

d’r_ 2 (dr\? doN? _

52 r(ds)+’(ds> =0, .~
d’0_2drdf_

& T dsds= u(s)
dw_do 0

dsds

Now, we suppose the following condition for o(») and o(r) as

(2.10) 1+%< 0 for 0< 7 < »n

for a positive constant 7.
If a geodesic enters in the disk » £ 7, at a point (»,, &), we may put
for w=wop at this point

(2.11) S Ew,ST
and put s=sg at this point in the following.

If wo=m, then from (2.8) and (2.9) we have at this point

df_do_
ds ds

and we can obtain from (2.7) the equalities
6= 00

0

and
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a? (r)  (dr\*_
Fg+2p€7’)<77(r)(3§) =0,

which implies the equality :
(2.12) frm e_ffruﬁ})%‘)(_ﬁdy dt = ko(s — so)

where ko=—% ls=so- In the w-plane, the trace of this geodesic is a
straight line through the origin w=0.

Next, if % < wo < x, then we see from (2.9) that w is increasing for
s 2 sp and by the argument above it follows

il ar
(2.13) y<wo<n and a’s<0'

Now, suppose that this geodesic is defined maximally for s < s; (£ +0)
and a point (7, 8,) is a cluster point of the geodesic for s —» s;. If » >0,
this geodesic is also a geodesic with respect to the affine connection P~'I"
and s is also its affine parameter by Lemma 1. This contradicts the well-
known fact for affine connections. Thus we see that

n= 0

which shows that this geodesic must be swallowed by the origin.
Finally, we show that we can give o(») and o(») so that they satisfy
(2.10). First we take a smooth function o(¢) as

2 t=0,
214) G(t)_{l t = 27

and o(¢#) is decreasing for 0 < t < 27, for example if we take

-1/t —-1/(27r0-t)
e Mi+2e

for 0 27
-t o~ KZro=D < t < 2y,

P —
2 Y 0~
Uf(t):_ t (27’0 t

(o1t F o 1MEro-D)2 <0

o(t)=

Second, we determine e¢(7) by the equality

ro
1+555=— 1.

ie.

(2.15) o(r)= —%(f%.
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Then, we have
(2.16) o(0)=0, p(r)> 0 for 0 < » = ro.

3. A way to construct spaces for any M”" which have points
swallowing geodesics. In this section we show a way by which we can
construct certain spaces with suitable general connections for any given
manifolds which admit the points swallowing geodesics of the spaces as
treated in §2.

First of all, we prepare an auxiliary funcfion of one variable. Take
a positive constant 7o, we define ¢,,(¢) by

1 for t < n,
(3.1) br(t)= e V@ro=0 [{g=1lt=Ta) L p=li2T0=0)  for 30 < f < 2y,
0 for t = 22’().

Let M” be any #n-dimensional smooth manifold and g be any Riemannian
metric on M". Let I's be the Riemannian connection on M" determined
by & Now, take a fixed point po of M” and let {#!, ---, #™} be a geodesic
normal coordinate system with p, as its center defined on a neighborhood
U of po. Setting A

r=JXuiu’ on U,

we suppose that the points such that » < 27, are included in U. Now, we
change the Riemannian metric g to another one & as follows. Setting

g=g::du’' ® du’ and g=5;;,du’* ® du’ on U,
we put
(3.2) Gi=(1— ¢r(r))gis+dr(r)o(¥)8:; on U,

where o(¢) is the auxiliary function defined by (2.14) and §=g outside of
U. By (3.1) and (3.2), we see

.§z'j=d(r)8,-j for ¥ = o

and

gi;=gi; for r = 2r.

Let I'=TI% be the Riemannian connection of M” determined by &.

Next, we consider I' as a general connection on M” and construct
another general connection 1" as follows.

We put

I'=I"  outside of U,
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and, denoting them by the local components with respect to the coordinates
ul, -, u" as

r=(Pj, I'iy) and I'=(8} [
inside of U, we put

(3.3) {Ilia‘;::{}!‘q;:(r)p(r)+(l — (7))} 65,

where o{(7) is the function defined by (2.15) with o(#) by (2;14). It is clear
that we have also I'=1I"for » = 2%, in U and I'=(0é}, I'},) for » £ .
Thus, we see that if any geodesic with respect to the general connection
I enters into the neighborhood

ru) < 7

then it must be swallowed finally by the point po by means of the argument
in §2.
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