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ON AN INDIVIDUAL ERGODIC THEOREM

RYOTARO SATO

1. Introduction and the theorem. Let (X, 7. x)be a o-finite measure
space and let Lo(p)=Lp(X, F. p1). 1 < p < o0, denote the (real or complex)
Banach spaces defined as usual with respect to (X, 7. x). If T is a bounded
linear operator on L,(x), we denote by r its linear modulus [2]. In [5]
(see also [6]) we have proved the following

Theorem A. [If (X F. 1) is a finite measure space, and if the linear
modulus © of a bounded linear operator T on L\(1) satisfies the norm
conditions :
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then for any f € Lo(p) the individual evgodic limit
1l
lim — 3 Tif(x)
n =0
exists for almost all x in X.

On the other hand, Derriennic and Lin [ 3] have shown by an example
that given an € > 0 there exists a positive linear operator T on L, of a
finite measure space, with 71=1 and | 7"|;=14+¢ for all » > 1, such that
for some f in L, the above individual ergodic limit does not exist for
almost all x in a certain measurable subset of positive measure. This
shows that Theorem A fails to hold if the function f in L.{z) is replaced
by f€ L (g). (So far it is not known whether the function f € L.(z) can
be replaced by f < Lp(y). with 1 < p < 0.)

In this note, however, we shall prove the following

Theorem. Let T be a bounded linear operator on Li(u), where
(X, F. ) is a o-finite measure space. Assume that the linear modulus t©
of T satisfies the above condition (1) and the next condition: For some
constant M,

@) sw |y B e < MIfla for all £ € Ly N Ll

Assume, in addition, that for every A€ F with 0 < p(A) < oo
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(3) lim sup }—ZHZ_;] ila(x) = 0.
Then for any f € Li\(y) the limit
=1
(4) lim ,—1,20 Tif(x)

exists for almost all x in X.

As an immediate corollary to the Theorem we have the

Corollary. If T is an invertible positive linear operator on L.(p),
with p finite, such that

sup |77, < o and sup | T"|. < oo,
—®< Lo nzl

then for any f € L\(p) the ergodic limit (4) exists for almost all x in X.

2. Proof of the Theorem. Let 7*and r* denote the adjoint operators
of T and r, respectively. Recalling that tf=sup{|7Tg|: g € Li(x) with
lg] < £} for every 0 < f € L,(u), we get | T*f| < r*|f| for every f € Lo(p).
Furthermore, choosing a sequence g, &, =+ in L(x), with 0 < g» < gnsa
and li’rtn g.=1, we get, by (2",

[ 2411 du=tim [ gu*isl du=1im [ (egullf| du
<M[lfl due (FE€ Li(w) N Loe).

Thus 7* and r* can be extended to bounded linear operators R and p on
L(p), respectively. [t is then easily seen that
n-1
(5) sup | & ol < M,
n =0

(6) R*=T and p*=r1 on Li(p) N L.(),
and hence that the linear modulus of R is p.

Next, take a function w in L,(z) with / wdp=1 and w > 0 a.e. on
X, and put

Pr=w"o(fw) (f € L(w dw)).

Since L,(w dp) is isomorphic to L,(x) by the mapping : f — fw, P on

L,(w dp) is a representation of o on Li(z). Since

f (Pgw du= / ofw)g du= f flo*g)w du
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for € Li(w dp) and g € L{w di)=Lo(z), it follows that
P*=p* on Lo(w du)=L(p).

Therefore we may apply Theorem 3.2 in [3], together with (5), (6) and
(3), to infer that there exists a strictly positive P-invariant function in
L{(w dy), which, in turn, implies that there exists a function v in L,(z)
with » > 0 a.e. on X and pvr=v.

Define

go{lx)=min {v(x). 1} (x € X).
By a mean ergodic theorem (see e.g. [4], Theorem VI.5.1) it follows that

. ln—] ; . .
lim I 2 P& h|=0

for some 0 < h € L,(y), with ph=#h. Since p=r* on L.(x), we deduce
from (1) that # € L.(x). Further # >0 a.e. on X because pv=v and
v >0 a.e. on X.

To complete the proof, let us fix an f € Li(z). Then we have

[17Ak du < [k du= [1A1e*h d
Iflflph du=f|f|h dpy < o

therefore 7 can be regarded as a contraction operator on Li(% du). Since

n-1 .
L\(y) C Li(hdy) and since % _2_30 o'u converges in the norm topology of

L(p) for every # € L\(u), we finally apply Chacon's general ratio theorem
[1] and Theorem 1 in [6] to infer that the limit

1 E}l Tif(x) ( e
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noi=o g ' h(x) i i=0
n=1
Z Tif(x) n—
= ]imf,%olf (lim;—11 21 p*z‘h(x))
n Z:'] Z"IZ(X) n N iZ0

exists for almost all x in X with respect to the measure % du, which is
equivalent to ¢ because £ >0 a.e. on X. This establishes the Theorem.

3. Proof of the Corollary. By the Theorem it suffices to show that
T satisfies condition (3). To do this, fix an A€ F with #(A) > 0. Then
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we get inf [|[771a > 0, because sup | 7”| < oo. Therefore
-—eL<>

—oL <o

R . 1 n-1 3

lim inf f— 2 Tla die >0,
n noi=o

and since u is finite, we then apply Fatou's lemma and get

. 1 n-1 .

lim sup - _ZO Ti14(x) = 0.

n i=

This completes the proof.

4. Remark. Lef 7 be as in the Theorem. By (6). 7 can be
extended to a bounded linear operator on L.(#). Then by the Riesz
convexity theorem 7 is again extended to a bounded linear operator on
each Lp(y), with 1 < p < oo, Let 4 be the function in the proof of the
Theorem. Since # € L\(x) N Lo(s). it follows that Lp(r) C L, (4 dp) for
every 1 < p < oo, Thus the proof of the Theorem shows that for evebry
1 < p< oo and every f € Lp(y) the ergodic limit

lim L”Z_!] Ti7(x)

=0
exists for almost all x in X.
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