ON AN INDIVIDUAL ERGODIC THEOREM

RYOTARO SATO

1. Introduction and the theorem. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let $L_{\mathcal{P}}(\mu) = L_{\mathcal{P}}(X, \mathcal{F}, \mu)$. $1 \le p \le \infty$, denote the (real or complex) Banach spaces defined as usual with respect to (X, \mathcal{F}, μ) . If T is a bounded linear operator on $L_1(\mu)$, we denote by τ its linear modulus [2]. In [5] (see also [6]) we have proved the following

Theorem A. If (X, \mathcal{F}, μ) is a finite measure space, and if the linear modulus τ of a bounded linear operator T on $L_1(\mu)$ satisfies the norm conditions:

(1)
$$\sup_{n} \| \frac{1}{n} \sum_{i=0}^{n-1} \tau^{i} \|_{1} < \infty,$$

(2)
$$\sup_{n} \|\frac{1}{n} \sum_{i=0}^{n-1} \tau^{i}\|_{\infty} < \infty.$$

then for any $f \in L_{\infty}(\mu)$ the individual ergodic limit

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^{i} f(x)$$

exists for almost all x in X.

On the other hand, Derriennic and Lin [3] have shown by an example that given an $\varepsilon > 0$ there exists a positive linear operator T on L_1 of a finite measure space, with T1=1 and $\|T^n\|_1=1+\varepsilon$ for all $n \geq 1$, such that for some f in L_1 the above individual ergodic limit does not exist for almost all x in a certain measurable subset of positive measure. This shows that Theorem A fails to hold if the function f in $L_{\infty}(\mu)$ is replaced by $f \in L_1(\mu)$. (So far it is not known whether the function $f \in L_{\infty}(\mu)$ can be replaced by $f \in L_p(\mu)$, with 1 .)

In this note, however, we shall prove the following

Theorem. Let T be a bounded linear operator on $L_1(\mu)$, where (X, \mathcal{F}, μ) is a σ -finite measure space. Assume that the linear modulus τ of T satisfies the above condition (1) and the next condition: For some constant M,

(2')
$$\sup_{n} \|\frac{1}{n} \sum_{i=0}^{n-1} \tau^{i} f\|_{\infty} \leq M \|f\|_{\infty} \text{ for all } f \in L_{1}(\mu) \cap L_{\infty}(\mu).$$

Assume, in addition, that for every $A \in \mathcal{F}$ with $0 < \mu(A) < \infty$

154 R. SATO

(3)
$$\lim_{n} \sup_{n} \frac{1}{n} \sum_{i=0}^{n-1} \tau^{i} 1_{A}(x) \neq 0.$$

Then for any $f \in L_1(\mu)$ the limit

(4)
$$\lim \frac{1}{n} \sum_{i=0}^{n-1} T^{i} f(x)$$

exists for almost all x in X.

As an immediate corollary to the Theorem we have the

Corollary. If T is an invertible positive linear operator on $L_1(\mu)$, with μ finite, such that

$$\sup_{-\infty < n < \infty} \|T^n\|_1 < \infty \quad and \quad \sup_{n \ge 1} \|T^n\|_\infty < \infty,$$

then for any $f \in L_1(\mu)$ the ergodic limit (4) exists for almost all x in X.

2. **Proof of the Theorem.** Let T^* and τ^* denote the adjoint operators of T and τ , respectively. Recalling that $\tau f = \sup\{|Tg|: g \in L_1(\mu) \text{ with } |g| \leq f\}$ for every $0 \leq f \in L_1(\mu)$, we get $|T^*f| \leq \tau^*|f|$ for every $f \in L_{\infty}(\mu)$. Furthermore, choosing a sequence g_1, g_2, \cdots in $L_1(\mu)$, with $0 \leq g_n \leq g_{n+1}$ and $\lim_{n \to \infty} g_n = 1$, we get, by (2'),

$$\int \tau^* |f| \ d\mu = \lim_n \int g_n \tau^* |f| \ d\mu = \lim_n \int (\tau g_n) |f| \ d\mu$$

$$\leq M \int |f| \ d\mu \quad (f \in L_1(\mu) \cap L_{\infty}(\mu)).$$

Thus T^* and τ^* can be extended to bounded linear operators R and ρ on $L_1(\mu)$, respectively. It is then easily seen that

(5)
$$\sup_{n} \|\frac{1}{n} \sum_{i=0}^{n-1} \rho^{i}\|_{1} \le M,$$

(6)
$$R^* = T \text{ and } \rho^* = \tau \text{ on } L_1(\mu) \cap L_{\infty}(\mu),$$

and hence that the linear modulus of R is ρ .

Next, take a function w in $L_1(\mu)$ with $\int w \ d\mu = 1$ and w > 0 a.e. on X, and put

$$Pf = w^{-1}\rho(fw) \qquad (f \in L_1(w \ d\mu)).$$

Since $L_1(w d\mu)$ is isomorphic to $L_1(\mu)$ by the mapping : $f \longrightarrow fw$, P on $L_1(w d\mu)$ is a representation of ρ on $L_1(\mu)$. Since

$$\int (Pf)gw \ d\mu = \int \rho(fw)g \ d\mu = \int f(\rho^*g)w \ d\mu$$

for $f \in L_1(w d\mu)$ and $g \in L_{\infty}(w d\mu) = L_{\infty}(\mu)$, it follows that

$$P^* = \rho^*$$
 on $L_{\infty}(w d\mu) = L_{\infty}(\mu)$.

Therefore we may apply Theorem 3.2 in [3], together with (5), (6) and (3), to infer that there exists a strictly positive P-invariant function in $L_1(w \ d\mu)$, which, in turn, implies that there exists a function v in $L_1(\mu)$ with v > 0 a.e. on X and $\rho v = v$.

Define

$$g_0(x) = \min \{v(x), 1\}$$
 $(x \in X).$

By a mean ergodic theorem (see e.g. [4], Theorem VII.5.1) it follows that

$$\lim_{n} \| \frac{1}{n} \sum_{i=0}^{n-1} \rho^{i} g_{0} - h \|_{1} = 0$$

for some $0 \le h \in L_1(\mu)$, with $\rho h = h$. Since $\rho = \tau^*$ on $L_{\infty}(\mu)$, we deduce from (1) that $h \in L_{\infty}(\mu)$. Further h > 0 a.e. on X because $\rho v = v$ and v > 0 a.e. on X.

To complete the proof, let us fix an $f \in L_1(\mu)$. Then we have

$$\int |Tf|h \ d\mu \le \int (\tau|f|)h \ d\mu = \int |f|\tau^*h \ d\mu$$
$$= \int |f|\rho h \ d\mu = \int |f|h \ d\mu < \infty;$$

therefore T can be regarded as a contraction operator on $L_1(h d\mu)$. Since $L_1(\mu) \subset L_1(h d\mu)$ and since $\frac{1}{n} \sum_{i=0}^{n-1} \rho^i u$ converges in the norm topology of $L_1(\mu)$ for every $u \in L_1(\mu)$, we finally apply Chacon's general ratio theorem [1] and Theorem [1] to infer that the limit

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^{i} f(x) = \left(\lim_{n} \frac{\sum_{i=0}^{n-1} T^{i} f(x)}{\sum_{i=0}^{n-1} \tau^{i} h(x)} \right) \left(\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} \tau^{i} h(x) \right)$$

$$= \left(\lim_{n} \frac{\sum_{i=0}^{n-1} T^{i} f(x)}{\sum_{i=0}^{n-1} \tau^{i} h(x)} \right) \left(\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} \rho^{*i} h(x) \right)$$

exists for almost all x in X with respect to the measure $h d\mu$, which is equivalent to μ because h > 0 a.e. on X. This establishes the Theorem.

3. Proof of the Corollary. By the Theorem it suffices to show that T satisfies condition (3). To do this, fix an $A \in \mathcal{F}$ with $\mu(A) > 0$. Then

156 R. SATO

we get $\inf_{-\infty, n < \infty} ||T^n 1_A||_1 > 0$, because $\sup_{-\infty, n < \infty} ||T^n||_1 < \infty$. Therefore

$$\lim_{n} \inf \int \frac{1}{n} \sum_{i=0}^{n-1} T^{i} 1_{A} d\mu > 0,$$

and since μ is finite, we then apply Fatou's lemma and get

$$\lim_{n} \sup \frac{1}{n} \sum_{i=0}^{n-1} T^{i} 1_{A}(x) \neq 0.$$

This completes the proof.

4. Remark. Lef T be as in the Theorem. By (6). T can be extended to a bounded linear operator on $L_{\infty}(\mu)$. Then by the Riesz convexity theorem T is again extended to a bounded linear operator on each $L_p(\mu)$, with 1 . Let <math>h be the function in the proof of the Theorem. Since $h \in L_1(\mu) \cap L_{\infty}(\mu)$ it follows that $L_p(\mu) \subset L_1(h d\mu)$ for every $1 \le p \le \infty$. Thus the proof of the Theorem shows that for every $1 \le p \le \infty$ and every $f \in L_p(\mu)$ the ergodic limit

$$\lim \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x)$$

exists for almost all x in X.

REFERENCES

- [1] R.V. CHACOH: Operator averages, Bull. Amer. Math. Soc. 68 (1962), 351-353.
- [2] R.V. CHACON and U. KRENGEL: Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), 553—559.
- [3] Y. DERRIENNIC and M. LIN: On invariant measures and ergodic theorems for positive operators, J. Functional Analysis 13 (1973), 252—267.
- [4] N. DUNFORD and J.T. SCHWARTZ, Linear Operators, Part 1: General Theory, Interscience, New York, 1958.
- [5] R. SATO: An individual ergodic theorem, Proc. Amer. Math. Soc. 65 (1977), 235-241.
- [6] R. SATO: Positive operators and the ergodic theorem, Pacific J. Math. 76 (1978), 215—219.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERITY

(Received March 1, 1982)