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A CERTAIN TYPE OF COMMUTATIVE HOPF
GALOIS EXTENSIONS AND THEIR GROUPS

ATsusHl NAKAJIMA

Let R be a commutative ring with identity, H a finite Hopf algebra
over R, and H*=Homg(H. R). In [1]. Chase and Sweedler introduced
the notion of a Galois H-object of R as a generalization of a commutative
Galois extension of R. A Galois H-object is nothing but an H*-Hopf Galois
extension of R in the sense of [8]. In this paper we consider a certain
type of Hopf algebra /. We shall characterize commutative H-Hopf Galois
extensions of R and determine the group of isomorphism classes of such
extensions for some special cases.

Now, let R be a commutative algebra over the prime field GF(p)
(p#0), « an element in R, and m a positive integer. We denote by H(u,p™),
the free Hopf algebra over R with basis {1, 8, ---, 8°" !} whose Hopf algebra
structure is defined by

8°"=0, 4(8)=0R1+1Q6+ u(6®38). &(8)=0 and
A= (— )i w167,

where 4, € and A are the comultiplication, counit and antipode of H(z,p™),
respectively. In §1. we characterize commutative H(x,p™)-Hopf Galois
extensions of R. Using this characterization, we show that a commutative
H{u.p™)-Hopf Galois extension is a cyclic p™-extension [2], a purely
inseparable extension 6], or a strongly radicial extension [7] according
as u is invertible, or # =0, or « is nilpotent. In §2, for H(u,p?)-Hopf Galois
extensions A and B of R, we determine H(u,p?)-module algebra isomor-
phisms from A to B and give a system of generators of the H(z,p?)-Hopf
Galois extension A: B of R. In §3, using results in §1 and §2, we determine
the group of H(z.p™)-Hopf Galois extensions in the following two cases:
(1) p is an arbitrary prime and m=1. (2) p=2 and m=2.

Throughout the following, R is a commutative algebra over GF(p)
(p#0), each ®, Hom, etc. is taken over R and each map is R-linear unless
otherwise stated. By an R-algebra A we always assume that A is a ring
extension of R with the same identity. All R-algebra homomorphisms
are unitary. We freely use the notations, terminologies and the results of
Hopf algebras and Galois H-objects in Sweedler [5] and Chase-Sweedler

(1]
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0. Preliminaries. Let H be a finite cocommutative Hopf algebra
over R. Let A be an H-module. Then A®A and R are H-modules via,
respectively,

(0-1) h(d® b) =2mh na®hab, where A(h)Z E(h)h(1)®h(2)
and
(0.2) Wr)y=e(h)r.

An R-algebra A is called an H-module algebra if A is an H-module such
that the multiplication map and the unit map of A are H-module homo-
morphisms. These conditions say that

(0.3) Wab)=2mlhma)(hab) and A(1)=e(h)l.

If A and B are H-module algebras and f € Hom(A, B), then f is called
an H-module algebra homomorphism if it is an H-module homomorphism
and an R-algebra homomorphism. For an H-module algebra A, the smash
product A# H is equal to AQFH as an R-module with multiplication

0.4) (et h)(bER)=2malhayb)thaok (a, BE A, h, kE H).

A commutative H-module algebra A is called an H-Hopf Galois extension
of R if A is a finitely generated projective R-module and the map ¢:
A#H— Hom(A, A) defined by ¢(ath)(x)=ah(x) is an isomorphism.
Then by [1, Th.9.3], A is an H-Hopf Galois extension if and only if A is
a Galois H*-object. When this is the case A¥={a € Alha=e(h)a for all
hE H) is equal to R. Moreover if H has a constant rank #, then A has
the same rank #.

Let A be a commutative H(u,p™)-module algebra. Then by (0.3), we
have

(0.5) 8(ab)=08(a)b+ ad(b)+ ud(a)s(b) and 8(1)=0.
Note that the formula (0.5) depends only on the coalgebra structure of ¢.
Moreover by (0.4) and the coalgebra structure of 8, we have

(0.6) 1#8)Natl)=08(a)1+attd+ud(a)t#o.

In the rest of this section, assume that H=H(u«,p™) and A is a com-
mutative H-module algebra. First, we formulate the operation of § on A.
By inductions, the following two lemmas are proved by (0.5).

Lemma 0.1. For any a € A, we have the following :
(1) a)=30,(Nui~ta"d(a)) Q=< n<p-—1).
(2) o(a®)=u”"18(a)".
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(3) If 6(a)=1, then 8™(a™)=n!.

Lemma 0.2, Suppose that there exist 8, -+, 6s in H and u,, **, us
in R such that

(07) A(3;)=6,®1+1®8,+ u,(6,®6,) and 6(&):0 (1 =< S).

If there exist xi, -, xs in A such that 08{x;)=0 and 8{x;)=1
(1< j<i=<s), then the followings hold for any non-negative integer
i o e S ﬁ—_l T

(1) el = x7)=0 for 1< n<k

(2) Br(al o xi)=xi - 2P 88 (xE) for 1 <1 <jy.

(3) Srlxi +++ xi)=0 for I > js.

Note that if we set 8;=6° " and w;=u*"", then &, -+, om in H and
u1, ***, un in R satisfies the assumption (0.7).

Lemma 0.3. Let ;€ H and u; € R be as in Lemma 02, and
Ri={ac A|6:{a)=0}. If there exists aS A such that 8{a)=1, then
1, a, -, a®! are linearly independent over R;, and a®*— uf'a € R;.

Proof. Suppose that i 7:a'=0 (7:€R;). By 8:r)=0(0=i<p—1)
and Lemma 0.1 (3),
0=08, " (Z0 riat)=rp187 ' (@® ) =rpa(p— D).

Since 0=(p—1)! € GF(p), we have 7p_;=0, and by induction, rp_z= - =
r0=0. Moreover by Lemma 0.1 (2), we have &8;(a®—u«?'a)=0. This
proves the lemma.

Lemma 0.4. Swuppose that theve exists 6, € H and w1 € R such that
A(6‘1)=81®1+1®61+u1(6l®61) and 6(31):0

If there exists x € A such that 6,(x)=1, then for any n(l1< n< p—1),
there exist a polynomial f(X)E R\[X] with deg fu(X)=n such that
O n(x)=x""1, where Ri={a € A|6\(a)=0}. Moreover fo(X) is uniquely
determined by x"~! except the constant term.

Proof. For n=1, the lemma is clear by 6i(x)=1. Assume that there
holds the assertion for any £=< n—1. By Lemma 0.1 (1), we have

£ ={1/(n+ DHB () = Ty ()i xmei)

={1/(n+DH8(x" ) — 275 (1)U 81(furz-4(x)))
=0{(1/(n+1)) (x™ 1 = T2 () U fpaz-{x))).
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If 61(fu(x))=81(gn(x))=x"""!, then 6\(f(x)—gn(x))=0 and so f,(x)—gx(x)
€ R,. Therefore f»(X) is uniquely determined by x”~! except the constant
term.

By the above lemma, the following is easily seen.

Corollary 0.5. Under the same assumptions of Lemwma 04, for any
g(X)e R\[X] with deg g(X) < p—2. there exists X)E R [X] such
that deg h(X)=deg g(X)+1 and &(h(x))=g(x). Moreover h(X) is
uniquely determined by g(X) except the constant term.

Note that if g(X) is a monic polynomial, then the highest coefficient
of #(X) is invertible in R.

1. H(u,p™)-Hopf Galois extensions. In this section we characterize
H(u,p™)-Hopf Galois extensions of K. The following lemma is a special
case of [8, Prop.2.1], but it is useful in our studies.

Lemma 1.1. Let H=H( u,p™), A an H-Hopf Galois extension of R,
and ¢: A# H— Hom(A. A) an isomorphism defined by ¢(ath)(x)=ah(x).
Then ¢ induces an R-module isomorphism (1#87" ") (A#R)=A*=
Hom(A, R). In particular, there exists aS A such that 8- (a)=1.

Proof. We set H"={h &€ H|gh=¢e(g)h for all g€ H}. Since AtH
is an H-progenerator by [8, Cor.1.4], we can apply [8, Prop.2.1] to our case.
By HY=R6P"-!, ¢ induces a requested isomorphism. Moreover by |1,
Th.9.3] R is an R-direct summand of A, there exists a projection @ with
o(1)=1. Thus there exists « € A such that #{(1#6°"~")a#1)}=p, and
therefore 1=p(1)=48°"""(a).

Now, for an H(u,p™)-Hopf Galois extension A of R, we set
8:=06""" and x;=6%a),
where g;=p"—pi"'—1 (1£7< m) and a is an element in A such that

87"~ (a@)=1. Then under the above notations, we have the following

Lemma 1.2. Let A be an H(u,p™)-Hopf Galois extension of R and
Ri={a€ Al6{a)=0}. Then R\=R, Ri=Rl[x\, =, x;-1] and 8(x;) € R[x1,
uxim] 2= m).

Proof. By definitions of 8; and x; it suffices to prove that R; is
contained in R[x,, *:*, x;-1]. We prove this fact by induction on i Since
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A is an H(u,p™)-Hopf Galois extension, R, =R is clear. Assume that it is
true for any # < i. If 8i.1(@)=0(a € A). then 0=05:1..(a)=6"(a)=6:8! "(a)
and so 677'(a) € R[x,, -+ x;-1] by our induction assumption. Thus we. have

848 (@)= fix)=0 for some fi € Rlx,, -, xil.
and so
of~Ha)=fixi+fo for some fo € R[x\, -+, xi-1].

Since 4(8;)=6:Q1+1R8:+ u*"'6:Q8:, (8:)=0 and 8:(x;)=1, we can apply
Lemma 0.4 to fix;+fo and thus there exists g, (X) € R[x,, -+, x;-1][ X] such
that deg g,(X)=2 and 8d{gy(x;)) = fix;+f. Hence we have {8 3(a)—
g,(x:))=0. Repeating these processes, we consequently have a=g,_,(x;)
&€ R[x1, -+, x;]. This shows that R;,, is contained in R[x), ---. x;]. Since
8:8(x:)=6""(a)=0, 6(x;) € R[x\, ***, x:-1], so that Lemma 1.2 is proved.

Now, we prove the main theorem in this section.

Theorem 1.3. Let H=H(u.p™), and A an H-Hopf Galois extension
of R. Let 8;=8""". Ri={a < Al6{a)=0}. and H:; an R-Hopf subalgebra
generated by 0; (1 =i =< m). Then there exist x1,-*,xn in A which
satisfy the following conditions:

(1) 8x)=1 8dx;)=0 and (8u)* xrs)=xx (1 =j<i=m,
1€k m—1).

(2) {xl  xosssp1 is a free basis of A.

(3) R; is generated by x1,*,xi-1 as an R-algebra and A is an
H:-Hopf Galois extension of R

(4) x—uP"'x,€ER and 2P =(u® VP 1y + fio (xicr) for some
ficl(X) € Ri\[X] with deg fini(X)=p—1 2= 7= m).

Proof. By Lemma 1.1, there exists @ € A such that 07" Ya)=1. We
set g;=p"—pi~1—1 and x;=8(a) (1 £ i < m). Then (1) is trivial, and by
Lemma 1.2 and [8. Prop.1.6], (3) is clear. Now we prove (2). By Lemmas
0.3and 1.2, 1, xm, -, x5! are linearly independent over Rn=R[x1, ***, Xm-1)
and so {x{' - xi"} is linearly independent over R. Thus the R-subalgebra
B=R[x, ", xn] of R is a free R-module of rank p™ We show that the
inclusion map 7: B— A is an epimorphism. To this purpose, we may
assume that R is a local ring with maximal ideal M. Then we can easily
see that i®1: BRR/M— AQR/M is an epimorphism. Thus 7 is an
epimorphism, because A is a free R-module of rank p™ This proves (2).
By Lemmas 0.3 and 1.2, (4) is easily seen. This completes the proof.
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If =0, then § is an KR-derivation on A and so 8(x¥)=0. Hence
xP € A¥=R. Thus we have the following

Corollary 1.4. Let A be an H(0.p™)-Hopf Galois extension of R.
Then there exist x1, -, xm n A such that 8:(x:;)=1. Further we have
xP € R and R[x1, ", xn|=A; and there exists an R-algebra isomorphism

A= R[X)/(XT—xP)®  QR[Xn)/( Xn— x5).

Proposition 1.5. If u s invertible, then an H(u,p™)-Hopf Galois
extension A of R is a cyclic p™-extension in the sense of [2].

Proof We set 6=ud+1. Then 4(6)=0Q®0, e(o)=1 and §°"=1.
Thus o is an R-algebra automorphism of A of order p™, because « is inverti-
ble. Moreover H{wu,p™)=R<{c>, {o> the cyclic group generated by o.

The following is a generalization of [2, Ths.1.1 and 1.2].

Corollary 1.6. Let A be an H(u,p)-Hopf Galois extension of R. Then
there exists x € A such that 6(x)=1. When this is the case, theve holds.
that x*—u®'x E R and A=R[x]; and there exists an isomorphism
A= R[X)/(X*—uP ' X—xP—uP'x) of H(u.p)-Hopf Galois extensions of
R. Conversely, let F(X)=X"—u*"'X—r € R[X]. Then R[X)/(f(X)) is
an H(u.p)-Hopf Galois extension of R with a suitable action of 6.

Proof. It suffices to prove the converse part. Define 8(»)=0 (» € R),
8(x)=1 and inductively 6(x*")=x+8{x)x+ ud(x?) (1< i< p—1), where
x=X+(f(X)). Then it is easy to see that R[x] is an H(u,p)-module
algebra. We have to show that the map ¢: R[x]# H(u,p) — Hom(R[x],
R[x]) defined by ¢(a#h)(b)=ah(b) is an isomorphism. Since R[x] and
H(u,p) are free R-modules of rank p, it suffices to show that ¢ is an
epimorphism. Passing to residue class field, this is proved easily by Cor.1.4
and Prop.1.5. But here we show that ¢ is indeed an epimorphism. Let
px: R[x]— R[x] be the map defined by px(x*)=1 and px(x?)=0 (F * k).
We note that 8*(x*)=0 (/ < &), 0*(x*)=F! and 8*(x") € R[x] (I > k) by
Lemma 0.1. We put

o= =ar1=0, ar=1/k!, ara=—(1/(k+1)!)a,8*(x**),

......

ap-1=—(1/(p—D!Nap-207"2(x"")+ - +and*(x*1)).

Then ao, -+, @»-1 are contained in R[x] and ¢(7 ) a:#8")=pxr Since
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Hom(R[x], R[x]) is generated by p,, -, P,_, as an R[x]-algebra and ¢ is
an R[x]-algebra homorphism, ¢ is an epimorphism, completing the proof.

Corollary 1.7. Let R[X,, -, Xu] be a polynomial ring, and f:(X;)
=X —r.X;—s: € R[X,]. If there exist v, -, vm in R such that vP~'=y,
then B=R[ Xy, -, Xpl/(F(X)), =, (X)) is an H(01.0)Q +* QH(vm,p)-
Hopf Galois extension of R.

Proof. Let x;=X;+(f{(X:)) € R[X;]/(f{X:)). Then B is isomorphic to
R[X1)/(A(X))® - QR[Xn]/(fu(Xn)) as R-algebras. Thus the assertion
is clear by Cor.1.6 and [1, Prop.3.2.].

Theorem 1.8. Let H=H(u1:p)® - QH(um,p). {1, 8:, -, 8P} a free
basis of H(u:p), and A an H-module algebra. Then A is an H-Hopf
Galois extension of R if and only if there exist X1, **, xn in A such that
8:(x:)=1, 8:(x;)=0 (i#)) and A is generated by x,, **, Xxm as an R-algebra.
When this is the case, if we set fi(Xi)=X{—uf'X;— si(s: € R), then
A = R X\ )/(A(XD))R - QR Xn)/Fu(Xn)) as H-module algebras.

Proof. Let A be an H-Hopf Galois extension of R. Since H¥=
R(3{'® -+ ®@38n "), we have by [8, Prop.1.2] and the proof of Lemma 1.1,
there exists ¢ € A such that (67 7'® - @52 )Na)=1. We set x;=(6{"'®
= @01 ® "R ® - ®dn Na). Then 6x)=1, &(x)=0, 8:(xf—
uf'x)=0 and &;(xP—uf'x")=0 (i#j). Moreover by Cor.1.6, R[x.] is an
H(u;,p)-Hopf Galois extension of R. Since R[x:]® -+ QR[xn] is an
H-Hopf Galois extension of R and R[x,]® --- ® R[xx] is contained in A,
then by [1, Th.1.12], A=R[x]® - ®R[x»]. The converse part is clear by
Cor.1.7. -

Let A be a commutative R-algebra, and ¢: AQA— A a map defined
by la®b)=ab. A is called a purely inseparable algebra over R if Ker(y)
is contained in the Jacobson radical J(AQA) of AQA (cf. [6, Def.l1 and
Lemma 1 (@)]). A is called a strongly radicial over R if A is a finitely
generated projective R-module and Ker(y) is a nil ideal (cf. [7]).

Theorem 1.9. Let A be an H(u,p™)-Hopf Galois extension of R.

(1) If u is contained in the Jacobson radical J(R) of R, then A isa
purely inseparable algebra.

(2) A is strongly radicial if and only if u is nilpotent.

Proof. Let x1, -, xn be an R-algebra generator which is obtained in
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Th.1.3. Note that Ker(z) is generated by

a1 1Qx1 - X

=an(xn®1—1Qxn)+ - +a:i(x1®1—1Qx1) (a; € AQA)
(0 < i, jm = p—1) as an AQA-module, and J(R) C J(A®RA) because
A®A is integral over R.  First, we prove (1). If « € J(R), then

*) (P -1Q@x)P=u" (xR — 1&®x,)

is contained in J (A®A) and so n@L—-1®x €7 (A®A). Assume that
X xmm i ®1—1Qx1" - xmor € J(AR®A) (0 £ ji, - jm-1 = p—1). By Th.
1.3 (4),

(**) (xn®1— 1®xp)?=(2?"")P~ (xn®1—1Qxm) _ '
2 i (] X i @1 —1@x7" X

is contained in J(A®A) and so xm®1—1Q®xn € J(A®A). This proves
(1). Next we prove (2). If A is strongly radicial, then x,®1—1Qx, is
nilpotent and so # is nilpotent by (*). Conversely if # is nilpotent, then
x1®1—1®x, is nilpotent by (*). If x;' -+ xmi®1—1®x," -+ x4~ are nilpo-
tent, then x»,®1—1®x, is nilpotent by (**). This proves (2).

Remark 1.10. Let u be an idempotent, H = H(2,p™), and A an H-Hopf
Galois extension of R. Then it is easy to see that Awu is a cyclic p™-
extension of Ru (cf. Prop.1.3). On the other hand A(1—u) is an H(0,p™)-
extension of R(1—u) (cf. Cor.1.4).

2. Isomorphisms of H(u,p?-Hopf Galois extensions. In thissection,
for H(u,p?)-Hopf Galois extensions A and B, we determine H(u,5?)-module
algebra isomorphisms from A to B.

Let A be an H(u,p?)-Hopf Galois extension of . Then by Th.1.3,
there exist x, y € A such that the following conditions hold :

(2.1) 8(x)=1 and 8* '(y)=x.

(2.2) {x’y*}osirso-1 is a free basis of A.

(2.3) xP=u""'x+7r and y*=(u®)*"'y+f(x), where f(x)=2" " six! (7. s:
€ R).

Under the above notations, we have the following lemma which is
easily obtained by Lemma 0.4.

Lemma 2.1. For any n(l £ n £ p—1), there exists a polynomial
o X) € GF(PullX] with deg fu(X)=n such that
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U n(x)=x""1 and 8 (fuly))=y"".

Lemma 2.2. Under the above notations, for any n (0 € n < p—1),
theve exists a polynomial gu(X) € R[X] with deg g.(X) =n such that
P-n
87 (»)=gnlx).

Proof. For n=0, the result is clear. Assume that there exists a poly-
nomials g.(X) € R[X] with deg g«(X)=# such that 6° *(3)=gu(x) (1 <
k = n). By Cor.0.5. there exists a polynomial #(X)E R[X] with deg
W(X)=n+1 such that 8(h(x))=gu(x)=6"""(y), and thus 8(8°"*"(y)—
Mx))=0. Since R={a € Al6(a)=0}, 67" V(y)=h(x)+s for some s < R,
completing the proof.

Theorem 2.3. Let R[x;] be H(w.p)-Hopf Galois extensions of R.
where 6(x;)=1. {1, x;. -=-. xF'} is a free basis of R[x:]. and xP=1""'xi+r;
(1=1.2). Then there exists an H(u.p)-module algebra homomorphism
¢: Rlxi] = Rlxz2] (such map is necessarily an isomorphism by [1. Th.1.12])
if and only if there exists » € R such that

rP=u?lr+(r— ro).
When this is the case, ¢ is given by ¢(x))=x2+ r.

Proof. Let ¢ : R[x]— R[x2] be an H(u.p)-module algebra homomor-
phism. We set t,/)(xl):Zf.’:_O’I,-x; (4 € R). Since ¢ is an H(w p)-module
algebra homomorphism, and by Lemma 0.1,

8P g(x1)=8""NZ L tex)=to-1(p—1)! = ¢(6°7(x,))=0.

Thus tp,-1=0. Repeating the above computations, we have ¢(x,)=#tHx2+ fo.
and 8(¢(x1))=H=¢(5(x1))=1. Moreover, by ¢(x1)°=¢(xf), we have
f({;: T fo+ 71— 7.

Conversely, assume that there exists » € R such that »?=u”"1r+
(ri—7r2). We define an R-linear map ¢ : R[x,] — R[x2] by ¢(x})=(x2+ )¢
(0 <7< p—1). Then it is easy to see that ¢ is an H(u,p)-module algebra
homomorphism. This proves the theorem.

Theorem 2.4. Let A;=R[x: y:] be H(wu.p?)-Hopf Galois extensions
of R, where {x:. y:} satisfies the conditions (2.1)—(2.3) (i=1, 2). Then
there exisis an H(u,p?)-module algebva homomorphism ¢ : A1 — A, if
and only if there exist y € R and g(X) € R[X] with deg g(X) < p—1
such that the following conditions hold :
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(1) rP=u?r+(n—r2).

(2) glx)?=(u?)*1g(a)+filxa+7)—foxe), where  flx:)=yi—
(u®)?1y; (of. (2.3)).

(3) 8(glx2))=gp-1(x2+ r)—goi(x2), where goo1(x)=0(v) (cf
Lemma 2.2).

When this is the case, ¢ is given by

d(x)=x2+7 and $(31)=y2+g(x2).
Moreover the coefficients of g(X) is determined by Lemmas 0.1 and 0.2,
explicitly.
Proof. Assume that there exists an H(,p%)-module algebra homomor-

phism ¢ : A; — A.. '
(1) We set ¢(x1)=270(D5 7543)ys. By Lemma 0.1,

(827 1 ($(x))= (%0 72p-102)(p— 1)1 = $((8°)7~'21) =0,

and so 7:,p-1=0 for any 0 <7< p—1. Repeating the above computations,
we obtain ¢(x1)=2""0 75 and so (1) is easily seen by Th.2.3.

(2) Weset ¢(31)=2004 (20,5 x2)ys.  Since 3°(y2)=1, (§°)*(y2)=0,
and (8”)%(25 5 sux2)=0 (2 = k£ < p—1), we have ¢(y1)=y2+&(x2), where
g(X) € R[X] with deg g(X) < p—1. Moreover by (2.3) and ¢(x1)=x2+7,
we have

D) =(u®)P (v + g(22)) + Filoz+ 7)= $(31)* =z + g(x2)”.
(3) Since ¢ is an H(u,p?)-module algebra homomorphism, we have

a(¢(y))= 8(y2+ g(x2)) :gp—x(xz) + 3(8’(3\72))
=¢(8(3n)=(gp-1(x1))=gp-1(x2+ 7).

Conversely we assume that there exist » € R and g(X) € R[X] which
satisfy the conditions (1)—(3). Define a map ¢ : A;— Az by

SOt il = D e i+ ) (a4 g (x) V.

Then by (1) and (2), ¢ is an R-algebra homomorphism. Since 8(y:;)=
go-1(x;) and 8(x;)=06(x;+7)=1 (i=1, 2), we have

$(3(xy7))
:¢{2i=](1.) - +2!_( )u Leypien)
+3_ 32 (f)(?)u‘“’zxf Y 78(m)’)

=35 ( >u‘ Yozt 7)) (y2+ g(x2))
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+ 2:=12;1=1(£)(7) U xp+ )i (ya+ ) gp_1(x2+7)
=Z§=,([-)u"“(xz+r)“"(yz+g(xz))"
+320 ,( )u’ Wz + 7) (ya+ g(x2))" 18 (y2+ g(x2))*

F 2L B ) (1) et P+ 2V 850+ ()
=0(¢(xjy),

because gp-1(x2+7)=0(g(x2))+ go-1(x2) = (32 + 2(x2)). Thus ¢ is an
H(u,p*)-module homomorphism. Finally let g(X)= S X e RIX].
By Lemmas 0.1 and 0.2,

82N P(y))= 8N tixs+y2)=(p— 1) o + %2
=¢(6" (y))=x2+ 7,

and so fp_ 1—((p D!)"'». Moreover by Lemma 2.2, there exists fu(X)=
R 07w X € R[X] such that 6°-*(y,)= felxs) G=1, 2). Then

8P (P(31)) =270 :87 4 (x2) + fulx2) = $(8°-*(31)) = fulxa + 7).
Since 8% *(x3)=0 for i< p—k &°- k(xP-*)=(p—Fk)! and &7 Axh)=

j‘Lﬁ Lo € R[x2] for p—k < i < p—1, the constant term of the above

equation is

(»— k)'tp-k+c0nstant term of 27} ., 4075 (x3)+ 7o
=7ro+7r17+ 0 +¥pert

Therefore by induction, fp-2, **, fo are determined, completing the proof.

Let A;=R[x: v:]be H(w,p?)-Hopf Galois extensions of R, where
{x:, y:} satisfies the conditions (2.1)—(2.3) (=1, 2). Then the product of
H(u,p?)-Hopf Galois extensions of R is defined by

(25) A Ar={Za1:Qa: € Ai®AX8(a1)Ra2:=a1:Q8(az)),
where & acts on A;*A; by 8(a®b)=68(a)®b (=a®48(b)). We set

x=x18®14+1Q®x; and
y=311Q6%(y2)+ (3)Q8 ! (y2)+ -+ +3p_l(y1)®3(y2)+5p(y1)®yz-

Then by the proof of Th.1.3, we have the following

Theorem 2.5. Under the above notations, we have

(1) 8(x)=1 and 8 ' (y)==x
(2) {xjyk}OS.i.ksﬂ—l S a free basis of A~ A,.
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3. The group of H(u,p™)-Hopf Galois extensions. Let Gal(H(x,p™))
be the group of H(u,p™)-isomorphism classes of commutative H(z,p™)-
Hopf Galois extensions of R with product defined by (2.5). In this section,
using results of §2, we compute Gal(H(x,p™)) in case of

(1) pis an arbitrary prime and m=1,

(2) p=2 and m=2.

Let H be a finite cocommutative Hopf algebra over R. Then H*=
Hom(H, R) has an H-module structure defined by

(3.0.1)  AE")=Dmlhin, b hin, where dus(h*)=mbin®hi

and <> : H*®H — R is evaluation.

We say that an H-Hopf Galois extension A of R has a normal basis, or a
dual normal basis according as A is isomorphic to H, or H* as H-modules.
We show that an H(w,p)-Hopf Galois extension has a normal basis, or
equivalently, a dual normal basis.

Lemma 3.0.1. H{zx,p™)* = H(u,p™) as H{u,p™)-modules.

Proof. Let {So=¢, &, =, 84-1) be the dual basis of {1, -, 6971},
where g=p" By (3.0.1),
6‘!(80—1):2?:-01(6{‘ (()‘k>5q_1_i=6q_k_1,
and so H(w,p™)* is generated by &q-; as an H(u,p™)-module, and by
(B 7:00(8q-1)=2724 7:6a-1-1, {8a-1) is a free basis of H(u,p™)* as an
H(w,p™)-module, completing the proof.

Theorem 3.0.2. An H(u,p)-Hopf Galois extension A of R has a
normal basis, or equivalently, a dual normal basis.

Proof. By Cor.1.6, there exists x € A such that A=R[x] and 8(x)=1.
Then

8 )=(PT ezt a3t

62(x"“)=(1’I1)(1’;2)x""3+sx”“+

8P xP VN=(p—1)x+¢

8P xP )=(p—1!.
Thus it is easy to see that {§(x?"1), -+, 8*~1(x*-1)} is an R-free basis of A.
This proves the theorem.
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3.1. Gal(H(u,p)). Let H=H(u,p), and A an H-Hopf Galois extension
of R. By Th.1.3, there exists x € A such that the following conditions
hold :

(3.1.1) &(x)=1.
(3.1.2) {1, x, ---, P71} is a free basis of A.
(3.1.3) x?=uP'x+~ for some r € R.

Thus we may write A=R[x;7]. Let B=R[y;s] be another H-Hopf
Galois extension of R, and z2=x®1+1®y. By Th.2.5, A-B has a free
basis {1,z :+, 2°7!}, 8(2)=1 and z°=u*"'2+(r+s). Therefore A-B=
R[z;r+s]. Let R* be the additive group of R. Define a map ¢: R*—
Gal(H) by ¢(r)=(R[x; »]). where (R[x; »]) is the isomorphism classes of
R[x;7]. Then by Cor.1.6, ¢ is a group epimorphism.

We shall determine the kernel of ¢. To this purpose we have. to
determine the structure of H*. Let {do=¢, 61, -, 6o_1} be the dual basis
of H*. Then we easily see that 6(81)=1x., and by the proof of Th.1.3,
(e, 81, +, 87"} is a free basis of H* and

Sf=u?"18,+¢ for some ¢t E R.

But by <8, 1>=<(u®!'8,+1¢ 1>=0, we have t=0. Thus we have the
following

Theorem 3.1.1. Under the above notations, H* has the following
structure :

(1) {e &, 8"} is a free basis of H*.

(2) &’=ur14:

Now we have the following theorem which is a generalization of [1,
Cor.17.14 or 3, Th. 24].

Theorem 3.1.2. There exists a group isomorphism
¢: R /(tP—uP't|t € R) — Gal(H(u,p))
defined by ¢(7)=(R[x; r]).

Proof By Cor.1.6, it suffices to show that Ker (¢)={¢"—u”"'t|r € R}.
By Th.3.1.1, the identity element of Gal(H(u,p)) is (R[8,;0]). Let » be
in Rsuch that (R[x;r])=(R[6;0]). Since R[x:;0] is isomorphic to
R[8:;0] as H(u,p)-module algebras, there exists t € T such that =
u®'t+7 by Th.2.3, completing the proof.
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3.2. Gal(H(u,22)). Let H=H(u.22)), and A an H-Hopf Galois exten-
sion of R. By Th.1.3, there exist x, y € A and f(X) € R[X] with deg
F(X)=1 such that the following conditions hold : ,
(32.1) 8(x)=1 and 8(y)=x.

(3.2.2) {1, x, v, xy} is a free basis of A.
(3.2.3) x%2=ux+ r for some » € R some r € R and y*=u?y+f(x).

Under the above notations, the following lemma is easily seen.

Lemma 3.2.1. AX)=wrX+s for some s € R.

By Lemma 3.2.1, we may write A=R[x, y; 7, s]. Then by(3.2.1)-(3.2.3),
we have the following

Theorem 3.2.2. Let A;=R[x: vi; 7, s:] be H-Hopf Galois extensions
of R (i=1, 2). If we set
1=011Q1+1®x2 and y=y®1+xQx2+1Qy,,
then the product Ai-Az has the following structure :
(1) 8(x)=1 and 8(y)=nx.
(2) {1, x, y, xy} is a free basis of A+ Aa.
(3) P=ux+n+r and y*=uly+u(ri+r)x+nr+s+s.

Thus by Th.3.2.2, we have A;*A;=R[x, y:; ri+re, ri72+51+S2).
Let {So=¢, 81, 82, 83} be the dual basis of H* with respect to {1, 8, 2, §3}.
By (3.0.1) we have

H*=R[4), 62,0, 0].

Proposition 3.2.3. Let r, s be elements in R. Then
R[X, Y]/(X2+ uX+7, Y+ u? Y+ urX +s)
is an H-Hopf Galois extension of R with a suitable action of 9.

Proof. We define an H-action on R[X. Y] by 8(#)=0(r € R), 6(X)=
1, 8(Y)=X and 8(fg)=/3(g)+6(g+us(f)é(g) (f, g€ R[X, Y]). Let
I be the ideal generated by X?+uX+r and Y’ +u?Y+urX+s. Then
one can easily check that R[X, Y]/l is an H-module algebra with 8(x)=1
and 8(y)=x, where x=X+/7 and y=Y+1. Moreover R[X, Y]/I=R|[x, y]
is a free R-module with basis {1, x, y, xy} and {x, ¥} satisfies the condition
(3.2.3). Since 8*(xy)=1, R[x, y] is an H-Hopf Galois extension of R.
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Now we set R, =RXR. Define an addition on R by
(71, 1)+ (2, $2)=(r1+ 72 rirz+s1+s2).

Then R is an abelian group with zero element (0, 0). Under the above
notations, we have the following

Theorem 3.2.4. There exists a group isomorphism
¢: R3/M— Gal(H(x,22))

defined by ¢((r, s))=(R[x, y: 7 s]), where ¢: R; — Gal(H(u,22)) is
defined by ¢((r, s)=(R[x, y; 7, s]). M={(rZ4uro, urdri+ury)+
solze2+ so))| 7o, s0 € R} and (7, s)=(r, s)+ M.

Proof. By Prop.3.2.3, it is easy to see that ¢ is a group epimorphism.
Let A=R[x, y: ». s] be an H(,2%)-Hopf Galois extension of R, and let
a: A— H(u,2%)* be an isomorphism of H(u,22)-Hopf Galois extensions of
R. By Th.2.4, we may set

a(x)=81+7 and a(y)=82+s181+s0 (70, s: € R),

where 72=ur,+r. Since a is an H(«,2%)-module algebra homomorphism,
we have s,=7p and s=ur§+u?»?+si+u?s. Thus (r,s)E M. Conversely,
let (7, s,) =72+ uro, urd + 1?12+ si+u?s)) € M, and ¢((7, s1))=(R[x1, 1 ;
7. $1)). Define a map @ : R[x1, »1; n, s:]— R[81, 6210, 0] by

(1/1(].)=6, a(x))=61+7 and Cl](y1)=62+7’061+30.

Then it is easy to see that o is an H(,2%)-module algebra isomorphism.
Therefore Ker(¢)=M, completing the proof.

In general, to calculate the group Gal(H(u«,p™)) is a complicated work.
For example, Gal(H(#,3%)) has a following isomorphism.

Theorem 3.2.5. Let R;=RXR be an abelian gromp with addition
(r1, $1)+(rz, s2)=(n+ 72, si+s2+2n7ri+ r2+u®)).
Then there exists a group isomorphism
¢: R3/N — Gal(H(2,3%)

defined by ¢((v, s))=(Rlx. y: 7, s]). where N={(r¢—u?ro, s3—uSso—
20 (72— uPro) it — 20 (7 — urol (13— u ro) + u®) vol v, SoE R} and (r,.s)=
(r, s)+N.
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