A CERTAIN TYPE OF COMMUTATIVE HOPF GALOIS EXTENSIONS AND THEIR GROUPS

ATSUSHI NAKAJIMA

Let R be a commutative ring with identity, H a finite Hopf algebra over R, and $H^*=\operatorname{Hom}_R(H,R)$. In [1], Chase and Sweedler introduced the notion of a Galois H-object of R as a generalization of a commutative Galois extension of R. A Galois H-object is nothing but an H^* -Hopf Galois extension of R in the sense of [8]. In this paper we consider a certain type of Hopf algebra H. We shall characterize commutative H-Hopf Galois extensions of R and determine the group of isomorphism classes of such extensions for some special cases.

Now, let R be a commutative algebra over the prime field GF(p) $(p \neq 0)$, u an element in R, and m a positive integer. We denote by $H(u,p^m)$, the free Hopf algebra over R with basis $\{1, \delta, \dots, \delta^{p^m-1}\}$ whose Hopf algebra structure is defined by

$$\delta^{p^m} = 0$$
, $\Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta + u(\delta \otimes \delta)$, $\varepsilon(\delta) = 0$ and $\lambda(\delta) = \sum_{i=1}^{p^m-1} (-1)^i u^{i-1} \delta^i$,

where Δ , ε and λ are the comultiplication, counit and antipode of $H(u,p^m)$, respectively. In §1, we characterize commutative $H(u,p^m)$ -Hopf Galois extensions of R. Using this characterization, we show that a commutative $H(u,p^m)$ -Hopf Galois extension is a cyclic p^m -extension [2], a purely inseparable extension [6], or a strongly radicial extension [7] according as u is invertible, or u=0, or u is nilpotent. In §2, for $H(u,p^2)$ -Hopf Galois extensions A and B of R, we determine $H(u,p^2)$ -module algebra isomorphisms from A to B and give a system of generators of the $H(u,p^2)$ -Hopf Galois extension $A \cdot B$ of R. In §3, using results in §1 and §2, we determine the group of $H(u,p^m)$ -Hopf Galois extensions in the following two cases: (1) p is an arbitrary prime and m=1. (2) p=2 and m=2.

Throughout the following, R is a commutative algebra over GF(p) $(p \neq 0)$, each \otimes , Hom, etc. is taken over R and each map is R-linear unless otherwise stated. By an R-algebra A we always assume that A is a ring extension of R with the same identity. All R-algebra homomorphisms are unitary. We freely use the notations, terminologies and the results of Hopf algebras and Galois H-objects in Sweedler [5] and Chase-Sweedler [1].

- **0.** Preliminaries. Let H be a finite cocommutative Hopf algebra over R. Let A be an H-module. Then $A \otimes A$ and R are H-modules via, respectively,
- (0.1) $h(a \otimes b) = \sum_{(h)} h_{(1)} a \otimes h_{(2)} b$, where $\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)}$ and

$$h(r) = \varepsilon(h)r.$$

An R-algebra A is called an H-module algebra if A is an H-module such that the multiplication map and the unit map of A are H-module homomorphisms. These conditions say that

(0.3)
$$h(ab) = \sum_{(h)} (h_{(1)}a)(h_{(2)}b)$$
 and $h(1) = \varepsilon(h)1$.

If A and B are H-module algebras and $f \in \text{Hom}(A, B)$, then f is called an H-module algebra homomorphism if it is an H-module homomorphism and an R-algebra homomorphism. For an H-module algebra A, the smash product A # H is equal to $A \otimes H$ as an R-module with multiplication

$$(0.4) (a \# h)(b \# k) = \sum_{(h)} a(h_{(1)}b) \# h_{(2)}k (a, b \in A, h, k \in H).$$

A commutative *H*-module algebra *A* is called an *H*-Hopf Galois extension of *R* if *A* is a finitely generated projective *R*-module and the map ϕ : $A\#H \to \text{Hom}(A, A)$ defined by $\phi(a\#h)(x)=ah(x)$ is an isomorphism. Then by [1, Th.9.3], *A* is an *H*-Hopf Galois extension if and only if *A* is a Galois H^* -object. When this is the case $A^H = \{a \in A | ha = \varepsilon(h)a \text{ for all } h \in H\}$ is equal to *R*. Moreover if *H* has a constant rank *n*, then *A* has the same rank *n*.

Let A be a commutative $H(u,p^m)$ -module algebra. Then by (0.3), we have

(0.5)
$$\delta(ab) = \delta(a)b + a\delta(b) + u\delta(a)\delta(b) \text{ and } \delta(1) = 0.$$

Note that the formula (0.5) depends only on the coalgebra structure of δ . Moreover by (0.4) and the coalgebra structure of δ , we have

(0.6)
$$(1\#\delta)(a\#1) = \delta(a)\#1 + a\#\delta + u\delta(a)\#\delta.$$

In the rest of this section, assume that $H=H(u,p^m)$ and A is a commutative H-module algebra. First, we formulate the operation of δ on A. By inductions, the following two lemmas are proved by (0.5).

Lemma 0.1. For any $a \in A$, we have the following:

- (1) $\delta(a^n) = \sum_{i=1}^n \binom{n}{i} u^{i-1} a^{n-i} \delta(a)^i \ (1 \le n \le p-1).$
- $(2) \quad \delta(a^p) = u^{p-1}\delta(a)^p.$

(3) If $\delta(a)=1$, then $\delta^n(a^n)=n!$.

Lemma 0.2. Suppose that there exist δ_1 , ..., δ_s in H and u_1 , ..., u_s in R such that

$$(0.7) \qquad \Delta(\delta_i) = \delta_i \otimes 1 + 1 \otimes \delta_i + u_i(\delta_i \otimes \delta_i) \quad and \quad \varepsilon(\delta_i) = 0 \quad (1 \le i \le s).$$

If there exist x_1, \dots, x_s in A such that $\delta_i(x_j)=0$ and $\delta_i(x_i)=1$ $(1 \le j < i \le s)$, then the followings hold for any non-negative integer $j_1, \dots, j_k \le p-1$:

- (1) $\delta_k(x_1^{j_1} \cdots x_n^{j_n}) = 0$ for $1 \le n < k$.
- (2) $\delta_k^l(x_1^{j_1} \cdots x_k^{j_k}) = x_1^{j_1} \cdots x_{k-1}^{j_{k-1}} \delta_k^l(x_k^{j_k})$ for $1 \le l < j_k$.
- (3) $\delta_k^l(x_1^{j_1} \cdots x_k^{j_k}) = 0 \text{ for } l > j_k.$

Note that if we set $\delta_i = \delta^{p^{i-1}}$ and $u_i = u^{p^{i-1}}$, then $\delta_1, \dots, \delta_m$ in H and u_1, \dots, u_m in R satisfies the assumption (0.7).

Lemma 0.3. Let $\delta_j \in H$ and $u_j \in R$ be as in Lemma 0.2, and $R_j = \{a \in A \mid \delta_j(a) = 0\}$. If there exists $a \in A$ such that $\delta_j(a) = 1$, then 1, a, \dots, a^{p-1} are linearly independent over R_j , and $a^p - u_j^{p-1}a \in R_j$.

Proof. Suppose that $\sum_{i=0}^{p-1} r_i a^i = 0$ $(r_i \in R_j)$. By $\delta_j(r_i) = 0$ $(0 \le i \le p-1)$ and Lemma 0.1 (3),

$$0 = \delta_{j}^{p-1}(\sum_{i=0}^{p-1} r_{i} a^{i}) = r_{p-1} \delta_{j}^{p-1}(a^{p-1}) = r_{p-1}(p-1)!.$$

Since $0 \neq (p-1)! \in GF(p)$, we have $r_{p-1}=0$, and by induction, $r_{p-2}=\cdots=r_0=0$. Moreover by Lemma 0.1 (2), we have $\delta_j(a^p-u_j^{p-1}a)=0$. This proves the lemma.

Lemma 0.4. Suppose that there exists $\delta_1 \in H$ and $u_1 \in R$ such that $\Delta(\delta_1) = \delta_1 \otimes 1 + 1 \otimes \delta_1 + u_1(\delta_1 \otimes \delta_1)$ and $\varepsilon(\delta_1) = 0$.

If there exists $x \in A$ such that $\delta_1(x)=1$, then for any $n(1 \le n \le p-1)$, there exist a polynomial $f_n(X) \in R_1[X]$ with $\deg f_n(X)=n$ such that $\delta_1(f_n(x))=x^{n-1}$, where $R_1=\{a \in A|\delta_1(a)=0\}$. Moreover $f_n(X)$ is uniquely determined by x^{n-1} except the constant term.

Proof. For n=1, the lemma is clear by $\delta_1(x)=1$. Assume that there holds the assertion for any $k \le n-1$. By Lemma 0.1 (1), we have

$$\begin{split} x^n &= \{1/(n+1)\} \{\delta_1(x^{n+1}) - \sum_{i=2}^{n+1} \binom{n+1}{i} u^{i-1} x^{n+1-i} \} \\ &= \{1/(n+1)\} \{\delta_1(x^{n+1}) - \sum_{i=2}^{n+1} \binom{n+1}{i} u^{i-1} \delta_1(f_{n+2-i}(x)) \} \\ &= \delta_1 \{(1/(n+1))(x^{n+1} - \sum_{i=2}^{n+1} \binom{n+1}{i} u^{i-1} f_{n+2-i}(x)) \}. \end{split}$$

If $\delta_1(f_n(x)) = \delta_1(g_n(x)) = x^{n-1}$, then $\delta_1(f_n(x) - g_n(x)) = 0$ and so $f_n(x) - g_n(x) \in R_1$. Therefore $f_n(X)$ is uniquely determined by x^{n-1} except the constant term.

By the above lemma, the following is easily seen.

Corollary 0.5. Under the same assumptions of Lemma 0.4, for any $g(X) \in R_1[X]$ with deg $g(X) \le p-2$, there exists $h(X) \in R_1[X]$ such that deg $h(X) = \deg g(X) + 1$ and $\delta_1(h(x)) = g(x)$. Moreover h(X) is uniquely determined by g(X) except the constant term.

Note that if g(X) is a monic polynomial, then the highest coefficient of h(X) is invertible in R.

1. $H(u,p^m)$ -Hopf Galois extensions. In this section we characterize $H(u,p^m)$ -Hopf Galois extensions of R. The following lemma is a special case of [8, Prop.2.1], but it is useful in our studies.

Lemma 1.1. Let $H = H(u, p^m)$, A an H-Hopf Galois extension of R, and $\phi: A \# H \to \operatorname{Hom}(A, A)$ an isomorphism defined by $\phi(a \# h)(x) = ah(x)$. Then ϕ induces an R-module isomorphism $(1 \# \delta^{p^m-1})(A \# R) = A^* = \operatorname{Hom}(A, R)$. In particular, there exists $a \in A$ such that $\delta^{p^m-1}(a) = 1$.

Proof. We set $H^H = \{h \in H | gh = \varepsilon(g)h \text{ for all } g \in H\}$. Since A # H is an H-progenerator by $[8, \operatorname{Cor} 1.4]$, we can apply $[8, \operatorname{Prop} 2.1]$ to our case. By $H^H = R\delta^{p^m-1}$, ϕ induces a requested isomorphism. Moreover by $[1, \operatorname{Th} 9.3]$ R is an R-direct summand of A, there exists a projection ρ with $\rho(1)=1$. Thus there exists $a \in A$ such that $\phi\{(1\# \delta^{p^m-1})(a\# 1)\}=\rho$, and therefore $1=\rho(1)=\delta^{p^m-1}(a)$.

Now, for an $H(u,p^m)$ -Hopf Galois extension A of R, we set

$$\delta_i = \delta^{p^{i-1}}$$
 and $x_i = \delta^{q_i}(a)$,

where $q_i = p^m - p^{i-1} - 1$ $(1 \le i \le m)$ and a is an element in A such that $\delta^{p^m-1}(a) = 1$. Then under the above notations, we have the following

Lemma 1.2. Let A be an $H(u,p^m)$ -Hopf Galois extension of R and $R_i = \{a \in A | \delta_i(a) = 0\}$. Then $R_1 = R$, $R_i = R[x_1, \dots, x_{i-1}]$ and $\delta(x_i) \in R[x_1, \dots, x_{i-1}]$ $(2 \le i \le m)$.

Proof. By definitions of δ_i and x_i , it suffices to prove that R_i is contained in $R[x_1, \dots, x_{i-1}]$. We prove this fact by induction on i. Since

A is an $H(u,p^m)$ -Hopf Galois extension, $R_1 = R$ is clear. Assume that it is true for any $n \le i$. If $\delta_{i+1}(a) = 0$ ($a \in A$), then $0 = \delta_{i+1}(a) = \delta_i^P(a) = \delta_i \delta_i^{P-1}(a)$ and so $\delta_i^{P-1}(a) \in R[x_1, \dots, x_{i-1}]$ by our induction assumption. Thus we have

$$\delta_i(\delta_i^{p-2}(a)-f_1x_i)=0$$
 for some $f_1 \in R[x_1, \dots, x_{i-1}]$,

and so

$$\delta_i^{p-2}(a) = f_1 x_i + f_0$$
 for some $f_0 \in R[x_1, \dots, x_{i-1}]$.

Since $\Delta(\delta_i) = \delta_i \otimes 1 + 1 \otimes \delta_i + u^{p^{i-1}} \delta_i \otimes \delta_i$, $\varepsilon(\delta_i) = 0$ and $\delta_i(x_i) = 1$, we can apply Lemma 0.4 to $f_1 x_i + f_0$ and thus there exists $g_2(X) \in R[x_1, \dots, x_{i-1}][X]$ such that deg $g_2(X) = 2$ and $\delta_i(g_2(x_i)) = f_1 x_i + f$. Hence we have $\delta_i(\delta_i^{p-3}(a) - g_2(x_i)) = 0$. Repeating these processes, we consequently have $a = g_{p-1}(x_i) \in R[x_1, \dots, x_i]$. Since $\delta_i \delta(x_i) = \delta^{pm}(a) = 0$, $\delta(x_i) \in R[x_1, \dots, x_{i-1}]$, so that Lemma 1.2 is proved.

Now, we prove the main theorem in this section.

Theorem 1.3. Let $H = H(u, p^m)$, and A an H-Hopf Galois extension of R. Let $\delta_i = \delta^{p^{i-1}}$, $R_i = \{a \in A | \delta_i(a) = 0\}$, and H_i an R-Hopf subalgebra generated by δ_i $(1 \le i \le m)$. Then there exist x_1, \dots, x_m in A which satisfy the following conditions:

- (1) $\delta_i(x_i)=1$, $\delta_i(x_j)=0$ and $(\delta_k)^{p-1}(x_{k+1})=x_k$ $(1 \le j < i \le m, 1 \le k \le m-1)$.
 - (2) $\{x_1^{j_1} \cdots x_m^{j_m}\}_{0 \le j_i \le p-1}$ is a free basis of A.
- (3) R_i is generated by x_1, \dots, x_{i-1} as an R-algebra and A is an H_i -Hopf Galois extension of R_i .
- (4) $x_1^p u^{p-1}x_1 \in R$ and $x_i^p = (u^{p^{i-1}})^{p-1}x_i + f_{i-1}(x_{i-1})$ for some $f_{i-1}(X) \in R_{i-1}[X]$ with deg $f_{i-1}(X) \le p-1$ $(2 \le i \le m)$.

Proof. By Lemma 1.1, there exists $a \in A$ such that $\delta^{p^m-1}(a)=1$. We set $q_i=p^m-p^{i-1}-1$ and $x_i=\delta^{q_i}(a)$ $(1 \le i \le m)$. Then (1) is trivial, and by Lemma 1.2 and [8, Prop.1.6], (3) is clear. Now we prove (2). By Lemmas 0.3 and 1.2, 1, x_m, \dots, x_m^{p-1} are linearly independent over $R_m=R[x_1, \dots, x_{m-1}]$ and so $\{x_1^{j_1} \cdots x_m^{j_m}\}$ is linearly independent over R. Thus the R-subalgebra $B=R[x_1, \dots, x_m]$ of R is a free R-module of rank p^m . We show that the inclusion map $i: B \to A$ is an epimorphism. To this purpose, we may assume that R is a local ring with maximal ideal M. Then we can easily see that $i \otimes 1: B \otimes R/M \to A \otimes R/M$ is an epimorphism. Thus i is an epimorphism, because A is a free R-module of rank p^m . This proves (2). By Lemmas 0.3 and 1.2, (4) is easily seen. This completes the proof.

If u=0, then δ is an R-derivation on A and so $\delta(x_i^p)=0$. Hence $x_i^p \in A^H = R$. Thus we have the following

Corollary 1.4. Let A be an $H(0,p^m)$ -Hopf Galois extension of R. Then there exist x_1, \dots, x_m in A such that $\delta_i(x_i)=1$. Further we have $x_i^p \in R$ and $R[x_1, \dots, x_m]=A$; and there exists an R-algebra isomorphism

$$A \cong R[X_1]/(X_1^p - x_1^p) \otimes \cdots \otimes R[X_m]/(X_m^p - x_m^p).$$

Proposition 1.5. If u is invertible, then an $H(u,p^m)$ -Hopf Galois extension A of R is a cyclic p^m -extension in the sense of [2].

Proof. We set $\sigma = u\delta + 1$. Then $\Delta(\sigma) = \sigma \otimes \sigma$, $\varepsilon(\sigma) = 1$ and $\delta^{p^m} = 1$. Thus σ is an R-algebra automorphism of A of order p^m , because u is invertible. Moreover $H(u, p^m) = R\langle \sigma \rangle$, $\langle \sigma \rangle$ the cyclic group generated by σ .

The following is a generalization of [2, Ths.1.1 and 1.2].

Corollary 1.6. Let A be an H(u,p)-Hopf Galois extension of R. Then there exists $x \in A$ such that $\delta(x)=1$. When this is the case, there holds that $x^p-u^{p-1}x \in R$ and A=R[x]; and there exists an isomorphism $A \cong R[X]/(X^p-u^{p-1}X-x^p-u^{p-1}x)$ of H(u,p)-Hopf Galois extensions of R. Conversely, let $f(X)=X^p-u^{p-1}X-r \in R[X]$. Then R[X]/(f(X)) is an H(u,p)-Hopf Galois extension of R with a suitable action of δ .

Proof. It suffices to prove the converse part. Define $\delta(r) = 0$ $(r \in R)$, $\delta(x) = 1$ and inductively $\delta(x^{i+1}) = x^i + \delta(x^i)x + u\delta(x^i)$ $(1 \le i \le p-1)$, where x = X + (f(X)). Then it is easy to see that R[x] is an H(u,p)-module algebra. We have to show that the map $\phi: R[x] \# H(u,p) \to \operatorname{Hom}(R[x], R[x])$ defined by $\phi(a \# h)(b) = ah(b)$ is an isomorphism. Since R[x] and H(u,p) are free R-modules of rank p, it suffices to show that ϕ is an epimorphism. Passing to residue class field, this is proved easily by Cor.1.4 and Prop.1.5. But here we show that ϕ is indeed an epimorphism. Let $\rho_k: R[x] \to R[x]$ be the map defined by $\rho_k(x^k) = 1$ and $\rho_k(x^j) = 0$ $(j \ne k)$. We note that $\delta^k(x^l) = 0$ (l < k), $\delta^k(x^k) = k!$ and $\delta^k(x^l) \in R[x]$ (l > k) by Lemma 0.1. We put

$$a_0 = \cdots = a_{k-1} = 0, \ a_k = 1/k!, \ a_{k+1} = -(1/(k+1)!)a_k \delta^k(x^{k+1}),$$

$$\cdots \cdots$$

$$a_{p-1} = -(1/(p-1)!)\{a_{p-2}\delta^{p-2}(x^{p-1}) + \cdots + a_k\delta^k(x^{p-1})\}.$$

Then a_0, \dots, a_{p-1} are contained in R[x] and $\phi(\sum_{i=0}^{p-1} a_i \# \delta^i) = \rho_k$. Since

Hom(R[x], R[x]) is generated by $\rho_1, \dots, \rho_{p-1}$ as an R[x]-algebra and ϕ is an R[x]-algebra homorphism, ϕ is an epimorphism, completing the proof.

Corollary 1.7. Let $R[X_1, \dots, X_m]$ be a polynomial ring, and $f_i(X_i) = X_i^p - r_i X_i - s_i \in R[X_i]$. If there exist v_1, \dots, v_m in R such that $v_i^{p-1} = r_i$, then $B = R[X_1, \dots, X_m]/(f_1(X_1), \dots, f_m(X_m))$ is an $H(v_1, p) \otimes \dots \otimes H(v_m, p)$. Hopf Galois extension of R.

Proof. Let $x_i = X_i + (f_i(X_i)) \in R[X_i]/(f_i(X_i))$. Then B is isomorphic to $R[X_1]/(f_1(X_1)) \otimes \cdots \otimes R[X_m]/(f_m(X_m))$ as R-algebras. Thus the assertion is clear by Cor.1.6 and [1, Prop.3.2.].

Theorem 1.8. Let $H = H(u_1,p) \otimes \cdots \otimes H(u_m,p)$, $\{1, \delta_i, \cdots, \delta_i^{p-1}\}$ a free basis of $H(u_i,p)$, and A an H-module algebra. Then A is an H-Hopf Galois extension of R if and only if there exist x_1, \cdots, x_m in A such that $\delta_i(x_i) = 1$, $\delta_i(x_j) = 0$ $(i \neq j)$ and A is generated by x_1, \cdots, x_m as an R-algebra. When this is the case, if we set $f_i(X_i) = X_i^p - u_i^{p-1}X_i - s_i(s_i \in R)$, then $A \cong R[X_1]/(f_1(X_1)) \otimes \cdots \otimes R[X_m]/(f_m(X_m))$ as H-module algebras.

Proof. Let A be an H-Hopf Galois extension of R. Since $H^H = R(\delta_1^{p-1} \otimes \cdots \otimes \delta_m^{p-1})$, we have by [8, Prop.1.2] and the proof of Lemma 1.1, there exists $a \in A$ such that $(\delta_1^{p-1} \otimes \cdots \otimes \delta_m^{p-1})(a) = 1$. We set $x_i = (\delta_1^{p-1} \otimes \cdots \otimes \delta_{i-1}^{p-1} \otimes \delta_i^{p-2} \otimes \delta_{i+1}^{p-1} \otimes \cdots \otimes \delta_m^{p-1})(a)$. Then $\delta_i(x_i) = 1$, $\delta_i(x_i) = 0$, $\delta_i(x_i^p - u_i^{p-1}x_i) = 0$ and $\delta_i(x_i^p - u_i^{p-1}x^i) = 0$ $(i \neq j)$. Moreover by Cor.1.6, $R[x_i]$ is an $H(u_i, p)$ -Hopf Galois extension of R. Since $R[x_1] \otimes \cdots \otimes R[x_m]$ is contained in A, then by [1, Th.1.12], $A = R[x_1] \otimes \cdots \otimes R[x_m]$. The converse part is clear by Cor.1.7.

Let A be a commutative R-algebra, and $\mu: A \otimes A \to A$ a map defined by $\mu(a \otimes b) = ab$. A is called a *purely inseparable algebra* over R if $Ker(\mu)$ is contained in the Jacobson radical $J(A \otimes A)$ of $A \otimes A$ (cf. [6, Def.1 and Lemma 1 (a)]). A is called a *strongly radicial* over R if A is a finitely generated projective R-module and $Ker(\mu)$ is a nil ideal (cf. [7]).

Theorem 1.9. Let A be an $H(u,p^m)$ -Hopf Galois extension of R.

- (1) If u is contained in the Jacobson radical J(R) of R, then A is a purely inseparable algebra.
 - (2) A is strongly radicial if and only if u is nilpotent.

Proof. Let x_1, \dots, x_m be an R-algebra generator which is obtained in

Th.1.3. Note that $Ker(\mu)$ is generated by

$$x_1^{j_1} \cdots x_m^{j_m} \otimes 1 - 1 \otimes x_1^{j_1} \cdots x_m^{j_m}$$

$$= a_m(x_m \otimes 1 - 1 \otimes x_m) + \cdots + a_1(x_1 \otimes 1 - 1 \otimes x_1) \ (a_i \in A \otimes A)$$

 $(0 \le j_1, \dots, j_m \le p-1)$ as an $A \otimes A$ -module, and $J(R) \subset J(A \otimes A)$ because $A \otimes A$ is integral over R. First, we prove (1). If $u \in J(R)$, then

$$(x_1 \otimes 1 - 1 \otimes x_1)^p = u^{p-1}(x_1 \otimes 1 - 1 \otimes x_1)$$

is contained in $J(A \otimes A)$ and so $x_1 \otimes 1 - 1 \otimes x_1 \in J(A \otimes A)$. Assume that $x_1^{j_1} \cdots x_{m-1}^{j_{m-1}} \otimes 1 - 1 \otimes x_1^{j_1} \cdots x_{m-1}^{j_{m-1}} \in J(A \otimes A)$ $(0 \leq j_1, \dots, j_{m-1} \leq p-1)$. By Th. 1.3 (4).

$$(**) (x_m \otimes 1 - 1 \otimes x_m)^p = (u^{p^{m-1}})^{p-1} (x_m \otimes 1 - 1 \otimes x_m) + \sum_{i = i, \dots, i} (x_{i-1}^{i} \cdots x_{m-1}^{i-1} \otimes 1 - 1 \otimes x_{i-1}^{i} \cdots x_{m-1}^{i-1})$$

is contained in $J(A \otimes A)$ and so $x_m \otimes 1 - 1 \otimes x_m \in J(A \otimes A)$. This proves (1). Next we prove (2). If A is strongly radicial, then $x_1 \otimes 1 - 1 \otimes x_1$ is nilpotent and so u is nilpotent by (*). Conversely if u is nilpotent, then $x_1 \otimes 1 - 1 \otimes x_1$ is nilpotent by (*). If $x_1^{i_1} \cdots x_{m-1}^{i_{m-1}} \otimes 1 - 1 \otimes x_1^{i_1} \cdots x_{m-1}^{i_{m-1}}$ are nilpotent, then $x_m \otimes 1 - 1 \otimes x_m$ is nilpotent by (**). This proves (2).

- **Remark 1.10.** Let u be an idempotent, $H = H(u, p^m)$, and A an H-Hopf Galois extension of R. Then it is easy to see that Au is a cyclic p^m -extension of Ru (cf. Prop.1.5). On the other hand A(1-u) is an $H(0,p^m)$ -extension of R(1-u) (cf. Cor.1.4).
- 2. Isomorphisms of $H(u,p^2)$ -Hopf Galois extensions. In this section, for $H(u,p^2)$ -Hopf Galois extensions A and B, we determine $H(u,p^2)$ -module algebra isomorphisms from A to B.

Let A be an $H(u,p^2)$ -Hopf Galois extension of R. Then by Th.1.3, there exist $x, y \in A$ such that the following conditions hold:

- (2.1) $\delta(x)=1$ and $\delta^{p-1}(y)=x$.
- (2.2) $\{x^j y^k\}_{0 \le j,k \le p-1}$ is a free basis of A.
- (2.3) $x^p = u^{p-1}x + r$ and $y^p = (u^p)^{p-1}y + f(x)$, where $f(x) = \sum_{i=0}^{p-1} s_i x^i$ $(r, s_i) \in R$.

Under the above notations, we have the following lemma which is easily obtained by Lemma 0.4.

Lemma 2.1. For any $n(1 \le n \le p-1)$, there exists a polynomial $f_n(X) \in GF(p)[u][X]$ with deg $f_n(X) = n$ such that

$$\delta(f_n(x)) = x^{n-1}$$
 and $\delta^{p}(f_n(y)) = y^{n-1}$.

Lemma 2.2. Under the above notations, for any $n \ (0 \le n \le p-1)$, there exists a polynomial $g_n(X) \in R[X]$ with deg $g_n(X) = n$ such that $\delta^{p-n}(y) = g_n(x)$.

Proof. For n=0, the result is clear. Assume that there exists a polynomials $g_k(X) \in R[X]$ with deg $g_k(X) = k$ such that $\delta^{p-k}(y) = g_k(x)$ ($1 \le k \le n$). By Cor.0.5, there exists a polynomial $h(X) \in R[X]$ with deg h(X) = n+1 such that $\delta(h(x)) = g_n(x) = \delta^{p-n}(y)$, and thus $\delta(\delta^{p-(n+1)}(y) - h(x)) = 0$. Since $R = \{a \in A | \delta(a) = 0\}$, $\delta^{p-(n+1)}(y) = h(x) + s$ for some $s \in R$, completing the proof.

Theorem 2.3. Let $R[x_i]$ be H(u,p)-Hopf Galois extensions of R, where $\delta(x_i)=1$, $\{1, x_i, \cdots, x_i^{p-1}\}$ is a free basis of $R[x_i]$, and $x_i^p=u^{p-1}x_i+r_i$ (i=1, 2). Then there exists an H(u,p)-module algebra homomorphism $\psi: R[x_1] \to R[x_2]$ (such map is necessarily an isomorphism by [1, Th.1.12]) if and only if there exists $r \in R$ such that

$$r^{p} = u^{p-1}r + (r_1 - r_2).$$

When this is the case, ψ is given by $\psi(x_1) = x_2 + r$.

Proof. Let $\psi: R[x_1] \to R[x_2]$ be an H(u,p)-module algebra homomorphism. We set $\psi(x_1) = \sum_{i=0}^{p-1} t_i x_2^i$ $(t_i \in R)$. Since ψ is an H(u,p)-module algebra homomorphism, and by Lemma 0.1,

$$\delta^{p-1}(\psi(x_1)) = \delta^{p-1}(\sum_{i=0}^{p-1} t_i x_2^i) = t_{p-1}(p-1)! = \psi(\delta^{p-1}(x_1)) = 0.$$

Thus $t_{P-1}=0$. Repeating the above computations, we have $\psi(x_1)=t_1x_2+t_0$, and $\delta(\psi(x_1))=t_1=\psi(\delta(x_1))=1$. Moreover, by $\psi(x_1)^P=\psi(x_1^P)$, we have $t_0^P=u^{P-1}t_0+r_1-r_2$.

Conversely, assume that there exists $r \in R$ such that $r^p = u^{p-1}r + (r_1 - r_2)$. We define an R-linear map $\psi : R[x_1] \to R[x_2]$ by $\psi(x_1^i) = (x_2 + r)^i$ $(0 \le i \le p-1)$. Then it is easy to see that ψ is an H(u,p)-module algebra homomorphism. This proves the theorem.

Theorem 2.4. Let $A_i = R[x_i, y_i]$ be $H(u, p^2)$ -Hopf Galois extensions of R, where $\{x_i, y_i\}$ satisfies the conditions (2.1)-(2.3) (i=1, 2). Then there exists an $H(u, p^2)$ -module algebra homomorphism $\psi: A_1 \to A_2$ if and only if there exist $r \in R$ and $g(X) \in R[X]$ with $\deg g(X) \leq p-1$ such that the following conditions hold:

- (1) $r^{p} = u^{p-1}r + (r_1 r_2).$
- (2) $g(x_2)^p = (u^p)^{p-1}g(x_2) + f_1(x_2+r) f_2(x_2)$, where $f_i(x_i) = y_i^p (u^p)^{p-1}y_i$ (cf. (2.3)).
- (3) $\delta(g(x_2)) = g_{p-1}(x_2+r) g_{p-1}(x_2)$, where $g_{p-1}(x_i) = \delta(y_i)$ (cf. Lemma 2.2).

When this is the case, ψ is given by

$$\phi(x_1) = x_2 + r$$
 and $\phi(y_1) = y_2 + g(x_2)$.

Moreover the coefficients of g(X) is determined by Lemmas 0.1 and 0.2, explicitly.

Proof. Assume that there exists an $H(u,p^2)$ -module algebra homomorphism $\psi: A_1 \to A_2$.

(1) We set
$$\psi(x_1) = \sum_{j=0}^{p-1} (\sum_{i=0}^{p-1} r_{ij} x_2^i) y_2^j$$
. By Lemma 0.1, $(\delta^p)^{p-1} (\psi(x_1)) = (\sum_{j=0}^{p-1} r_{j,p-1} x_2^j) (p-1)! = \psi((\delta^p)^{p-1} x_1) = 0$,

and so $r_{i,p-1}=0$ for any $0 \le i \le p-1$. Repeating the above computations, we obtain $\psi(x_1) = \sum_{i=0}^{p-1} r_i x_2^i$ and so (1) is easily seen by Th.2.3.

(2) We set $\psi(y_1) = \sum_{j=0}^{p-1} (\sum_{i=0}^{p-1} s_{ij} x_2^i) y_2^j$. Since $\delta^p(y_2) = 1$, $(\delta^p)^k(y_2) = 0$, and $(\delta^p)^k (\sum_{i=0}^{p-1} s_{ij} x_2^i) = 0$ ($2 \le k \le p-1$), we have $\psi(y_1) = y_2 + g(x_2)$, where $g(X) \in R[X]$ with deg $g(X) \le p-1$. Moreover by (2.3) and $\psi(x_1) = x_2 + r$, we have

$$\phi(y_1^p) = (u^p)^{p-1}(y_2 + g(x_2)) + f_1(x_2 + r) = \phi(y_1)^p = y_2^p + g(x_2)^p.$$

(3) Since ψ is an $H(u,p^2)$ -module algebra homomorphism, we have

$$\delta(\psi(y_1)) = \delta(y_2 + g(x_2)) = g_{p-1}(x_2) + \delta(g(x_2))$$

= $\psi(\delta(y_1)) = \psi(g_{p-1}(x_1)) = g_{p-1}(x_2 + r).$

Conversely we assume that there exist $r \in R$ and $g(X) \in R[X]$ which satisfy the conditions (1)-(3). Define a map $\psi: A_1 \to A_2$ by

$$\phi(\sum_{i=0}^{p-1}\sum_{j=0}^{p-1}r_{ij}x_1^iy_1^j) = \sum_{i=0}^{p-1}\sum_{j=0}^{p-1}r_{ij}(x_2+r)^i(y_2+g(x_2))^j.$$

Then by (1) and (2), ψ is an *R*-algebra homomorphism. Since $\delta(y_i) = g_{p-1}(x_i)$ and $\delta(x_i) = \delta(x_i + r) = 1$ (i = 1, 2), we have

$$\begin{split} & \psi(\delta(x_{1}^{l}y_{1}^{n})) \\ &= \psi\{\sum_{i=1}^{l} \binom{l}{i} u^{i-1} x_{1}^{l-i} y_{1}^{n} + \sum_{i=1}^{n} \binom{n}{i} u^{i-1} x_{1} y_{1}^{n-i} \delta(y_{1})^{i} \\ &+ \sum_{i=1}^{l} \sum_{j=1}^{n} \binom{l}{i} \binom{n}{j} u^{i+j-2} x_{1}^{l-i} y_{1}^{n-j} \delta(y_{1})^{j} \} \\ &= \sum_{i=1}^{l} \binom{l}{i} u^{i-1} (x_{2} + r)^{l-i} (y_{2} + g(x_{2}))^{n} \\ &+ \sum_{i=1}^{n} \binom{n}{i} u^{i-l} (x_{2} + r)^{l} (y_{2} + g(x_{2}))^{n-i} g_{p-1} (x_{2} + r)^{i} \end{split}$$

$$\begin{split} &+ \sum_{i=1}^{l} \sum_{j=1}^{n} \binom{l}{i} \binom{n}{j} u^{i+j-2} (x_{2}+r)^{l-i} (y_{2}+r)^{n-j} g_{p-1} (x_{2}+r)^{j} \\ &= \sum_{i=1}^{l} \binom{l}{i} u^{i-1} (x_{2}+r)^{l-i} (y_{2}+g(x_{2}))^{n} \\ &+ \sum_{i=1}^{n} \binom{n}{i} u^{i-1} (x_{2}+r)^{l} (y_{2}+g(x_{2}))^{n-i} \delta(y_{2}+g(x_{2}))^{i} \\ &+ \sum_{i=1}^{l} \sum_{j=1}^{n} \binom{l}{i} \binom{n}{j} u^{i+j-2} (x_{2}+r)^{l-i} (y_{2}+g(x_{2}))^{n-j} \delta(y_{2}+g(x_{2}))^{j} \\ &= \delta(\psi(x_{1}^{l}y_{1}^{n})), \end{split}$$

because $g_{P-1}(x_2+r) = \delta(g(x_2)) + g_{P-1}(x_2) = \delta(y_2+g(x_2))$. Thus ψ is an $H(u,p^2)$ -module homomorphism. Finally let $g(X) = \sum_{i=0}^{P-1} t_i X^i \in R[X]$. By Lemmas 0.1 and 0.2,

$$\delta^{p-1}(\psi(y_1)) = \delta^{p-1}(\sum_{i=0}^{p-1} t_i x_2^i + y_2) = (p-1)! t_{p-1} + x_2$$

= $\psi(\delta^{p-1}(y_1)) = x_2 + r$,

and so $t_{p-1}=((p-1)!)^{-1}r$. Moreover by Lemma 2.2, there exists $f_k(X)=\sum_{i=0}^k r_{ki}X^i \in R[X]$ such that $\delta^{p-k}(y_j)=f_k(x_j)$ (j=1, 2). Then

$$\delta^{P-k}(\psi(y_1)) = \sum_{i=0}^{P-1} t_i \delta^{P-k}(x_2^i) + f_k(x_2) = \psi(\delta^{P-k}(y_1)) = f_k(x_2 + r).$$

Since $\delta^{p-k}(x_2^i)=0$ for i < p-k, $\delta^{p-k}(x_2^{p-k})=(p-k)!$ and $\delta^{p-k}(x_2^i)=\sum_{j=0}^{i+k-p} s_j x_2^j \in R[x_2]$ for p-k < i < p-1, the constant term of the above equation is

$$(p-k)! t_{P-k} + \text{constant term of } \sum_{i=P-k+1}^{P-1} t_i \delta^{P-k} (x_2^i) + r_{k0}$$

= $r_{k0} + r_{k1}r + \dots + r_{kk}r^k$.

Therefore by induction, t_{P-2}, \dots, t_0 are determined, completing the proof.

Let $A_i = R[x_i, y_i]$ be $H(u,p^2)$ -Hopf Galois extensions of R, where $\{x_i, y_i\}$ satisfies the conditions (2.1)–(2.3) (i=1, 2). Then the *product* of $H(u,p^2)$ -Hopf Galois extensions of R is defined by

$$(2.5) \quad A_1 \cdot A_2 = \{ \sum a_{1i} \otimes a_{2i} \in A_1 \otimes A_2 | \sum \delta(a_{1i}) \otimes a_{2i} = \sum a_{1i} \otimes \delta(a_{2i}) \},$$

where δ acts on $A_1 \cdot A_2$ by $\delta(a \otimes b) = \delta(a) \otimes b$ (= $a \otimes \delta(b)$). We set

$$x = x_1 \otimes 1 + 1 \otimes x_2$$
 and
 $y = y_1 \otimes \delta^p(y_2) + \delta(y_1) \otimes \delta^{p-1}(y_2) + \dots + \delta^{p-1}(y_1) \otimes \delta(y_2) + \delta^p(y_1) \otimes y_2.$

Then by the proof of Th.1.3, we have the following

Theorem 2.5. Under the above notations, we have

- (1) $\delta(x)=1$ and $\delta^{p-1}(y)=x$.
- (2) $\{x^jy^k\}_{0 \leq j,k \leq p-1}$ is a free basis of $A_1 \cdot A_2$.

- 3. The group of $H(u,p^m)$ -Hopf Galois extensions. Let $Gal(H(u,p^m))$ be the group of $H(u,p^m)$ -isomorphism classes of commutative $H(u,p^m)$ -Hopf Galois extensions of R with product defined by (2.5). In this section, using results of $\S 2$, we compute $Gal(H(u,p^m))$ in case of
 - (1) p is an arbitrary prime and m=1,
 - (2) p=2 and m=2.

Let H be a finite cocommutative Hopf algebra over R. Then $H^* = \text{Hom}(H, R)$ has an H-module structure defined by

(3.0.1)
$$h(h^*) = \sum_{(h^*)} \langle h_{(1)}^*, h \rangle h_{(2)}^*, \text{ where } \Delta_{H^*}(h^*) = \sum_{(h^*)} h_{(1)}^* \otimes h_{(2)}^*$$

and $\langle , \rangle : H^* \otimes H \to R$ is evaluation.

We say that an H-Hopf Galois extension A of R has a normal basis, or a dual normal basis according as A is isomorphic to H, or H^* as H-modules. We show that an H(u,p)-Hopf Galois extension has a normal basis, or equivalently, a dual normal basis.

Lemma 3.0.1. $H(u,p^m)^* \cong H(u,p^m)$ as $H(u,p^m)$ -modules.

Proof. Let $\{\delta_0 = \varepsilon, \delta, \dots, \delta_{q-1}\}$ be the dual basis of $\{1, \delta, \dots, \delta^{q-1}\}$, where $q = p^m$. By (3.0.1),

$$\delta^{k}(\delta_{q-1}) = \sum_{i=0}^{q-1} \langle \delta_{i}, \delta^{k} \rangle \delta_{q-1-i} = \delta_{q-k-1},$$

and so $H(u,p^m)^*$ is generated by δ_{q-1} as an $H(u,p^m)$ -module, and by $(\sum_{i=0}^{q-1}r_i\delta^i)(\delta_{q-1})=\sum_{i=0}^{q-1}r_i\delta_{q-1-i}$, $\{\delta_{q-1}\}$ is a free basis of $H(u,p^m)^*$ as an $H(u,p^m)$ -module, completing the proof.

Theorem 3.0.2. An H(u,p)-Hopf Galois extension A of R has a normal basis, or equivalently, a dual normal basis.

Proof. By Cor.1.6, there exists $x \in A$ such that A = R[x] and $\delta(x) = 1$. Then

$$\begin{split} \delta(x^{p-1}) &= \binom{p-1}{1} x^{p-2} + r x^{p-3} + \cdots, \\ \delta^2(x^{p-1}) &= \binom{p-1}{1} \binom{p-2}{1} x^{p-3} + s x^{p-4} + \cdots, \\ &\cdots \\ \delta^{p-2}(x^{p-1}) &= (p-1)! \, x + t \\ \delta^{p-1}(x^{p-1}) &= (p-1)!. \end{split}$$

Thus it is easy to see that $\{\delta(x^{p-1}), \dots, \delta^{p-1}(x^{p-1})\}$ is an R-free basis of A. This proves the theorem.

3.1. Gal(H(u,p)). Let H=H(u,p), and A an H-Hopf Galois extension of R. By Th.1.3, there exists $x \in A$ such that the following conditions hold:

- (3.1.1) $\delta(x)=1.$
- (3.1.2) {1, x_1, \dots, x^{p-1} } is a free basis of A.
- (3.1.3) $x^{p} = u^{p-1}x + r$ for some $r \in R$.

Thus we may write A=R[x;r]. Let B=R[y;s] be another H-Hopf Galois extension of R, and $z=x\otimes 1+1\otimes y$. By Th.2.5, $A\cdot B$ has a free basis $\{1,z,\cdots,z^{p-1}\}$, $\delta(z)=1$ and $z^p=u^{p-1}z+(r+s)$. Therefore $A\cdot B=R[z;r+s]$. Let R^+ be the additive group of R. Define a map $\psi:R^+\to Gal(H)$ by $\psi(r)=(R[x;r])$, where (R[x;r]) is the isomorphism classes of R[x;r]. Then by Cor.1.6, ψ is a group epimorphism.

We shall determine the kernel of ϕ . To this purpose we have to determine the structure of H^* . Let $\{\delta_0 = \varepsilon, \delta_1, \dots, \delta_{P-1}\}$ be the dual basis of H^* . Then we easily see that $\delta(\delta_1) = 1_{H^*}$, and by the proof of Th.1.3, $\{\varepsilon, \delta_1, \dots, \delta_1^{P-1}\}$ is a free basis of H^* and

$$\delta_1^p = u^{p-1}\delta_1 + t$$
 for some $t \in R$.

But by $\langle \delta_1^p, 1 \rangle = \langle u^{p-1} \delta_1 + t, 1 \rangle = 0$, we have t = 0. Thus we have the following

Theorem 3.1.1. Under the above notations, H^* has the following structure:

- (1) $\{\varepsilon, \delta_1, \dots, \delta_1^{p-1}\}\$ is a free basis of H^* .
- $(2) \quad \delta_1^{p} = u^{p-1} \delta_1.$

Now we have the following theorem which is a generalization of [1, Cor.17.14 or 3, Th. 2.4].

Theorem 3.1.2. There exists a group isomorphism

$$\bar{\psi}: R^+/\{t^p-u^{p-1}t|t\in R\}\longrightarrow \operatorname{Gal}(H(u,p))$$

defined by $\overline{\psi}(\overline{r}) = (R[x;r]).$

Proof. By Cor.1.6, it suffices to show that $\operatorname{Ker}(\bar{\psi}) = \{t^p - u^{p-1}t | r \in R\}$. By Th.3.1.1, the identity element of $\operatorname{Gal}(H(u,p))$ is $(R[\delta_1;0])$. Let r be in R such that $(R[x;r]) = (R[\delta;0])$. Since R[x;0] is isomorphic to $R[\delta_1;0]$ as H(u,p)-module algebras, there exists $t \in T$ such that $t^p = u^{p-1}t + r$ by Th.2.3, completing the proof.

- 3.2. Gal($H(u,2^2)$). Let $H = H(u,2^2)$), and A an H-Hopf Galois extension of R. By Th.1.3, there exist $x, y \in A$ and $f(X) \in R[X]$ with deg f(X)=1 such that the following conditions hold:
- (3.2.1) $\delta(x) = 1$ and $\delta(y) = x$.
- (3.2.2) {1, x, y, xy} is a free basis of A.
- (3.2.3) $x^2 = ux + r$ for some $r \in R$ some $r \in R$ and $y^2 = u^2y + f(x)$.

Under the above notations, the following lemma is easily seen.

Lemma 3.2.1. f(X) = urX + s for some $s \in R$.

By Lemma 3.2.1, we may write A = R[x, y; r, s]. Then by (3.2.1) – (3.2.3), we have the following

Theorem 3.2.2. Let $A_i = R[x_i, y_i; r_i, s_i]$ be H-Hopf Galois extensions of R (i=1, 2). If we set

$$x=x_1\otimes 1+1\otimes x_2$$
 and $y=y_1\otimes 1+x_1\otimes x_2+1\otimes y_2$,

then the product $A_1 \cdot A_2$ has the following structure:

- (1) $\delta(x)=1$ and $\delta(y)=x$.
- (2) $\{1, x, y, xy\}$ is a free basis of $A_1 \cdot A_2$.
- (3) $x^2 = ux + r_1 + r_2$ and $y^2 = u^2y + u(r_1 + r_2)x + r_1r_2 + s_1 + s_2$.

Thus by Th.3.2.2, we have $A_1 \cdot A_2 = R[x, y; r_1 + r_2, r_1 r_2 + s_1 + s_2]$. Let $\{\delta_0 = \varepsilon, \delta_1, \delta_2, \delta_3\}$ be the dual basis of H^* with respect to $\{1, \delta, \delta^2, \delta^3\}$. By (3.0.1) we have

$$H^*=R[\delta_1, \delta_2; 0, 0].$$

Proposition 3.2.3. Let r, s be elements in R. Then

$$R[X, Y]/(X^2 + uX + r, Y^2 + u^2Y + urX + s)$$

is an H-Hopf Galois extension of R with a suitable action of δ .

Proof. We define an *H*-action on R[X, Y] by $\delta(r) = 0$ ($r \in R$), $\delta(X) = 1$, $\delta(Y) = X$ and $\delta(fg) = f\delta(g) + \delta(f)g + u\delta(f)\delta(g)$ ($f, g \in R[X, Y]$). Let I be the ideal generated by $X^2 + uX + r$ and $Y^2 + u^2Y + urX + s$. Then one can easily check that R[X, Y]/I is an H-module algebra with $\delta(x) = 1$ and $\delta(y) = x$, where x = X + I and y = Y + I. Moreover R[X, Y]/I = R[x, y] is a free R-module with basis $\{1, x, y, xy\}$ and $\{x, y\}$ satisfies the condition (3.2.3). Since $\delta^3(xy) = 1$, R[x, y] is an H-Hopf Galois extension of R.

Now we set $R_2^+ = R \times R$. Define an addition on R_2^+ by $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, r_1 r_2 + s_1 + s_2)$.

Then R_2^+ is an abelian group with zero element (0, 0). Under the above notations, we have the following

Theorem 3.2.4. There exists a group isomorphism

$$\bar{\psi}: R_2^+/M \longrightarrow \operatorname{Gal}(H(u,2^2))$$

defined by $\overline{\psi((r,s))} = (R[x, y; r, s])$, where $\psi: R_2^+ \longrightarrow Gal(H(u,2^2))$ is defined by $\psi((r,s)) = (R[x, y; r, s])$, $M = \{(r_0^2 + ur_0, ur_0(r_0^2 + ur_0) + s_0(u^2 + s_0)) | r_0, s_0 \in R\}$ and $\overline{(r,s)} = (r,s) + M$.

Proof. By Prop.3.2.3, it is easy to see that ψ is a group epimorphism. Let A=R[x, y; r, s] be an $H(u,2^2)$ -Hopf Galois extension of R, and let $\alpha: A \to H(u,2^2)^*$ be an isomorphism of $H(u,2^2)$ -Hopf Galois extensions of R. By Th.2.4, we may set

$$\alpha(x) = \delta_1 + r_0$$
 and $\alpha(y) = \delta_2 + s_1 \delta_1 + s_0$ $(r_0, s_i \in R)$,

where $r_0^2 = ur_0 + r$. Since α is an $H(u,2^2)$ -module algebra homomorphism, we have $s_1 = r_0$ and $s = ur_0^3 + u^2r_0^2 + s_0^2 + u^2s$. Thus $(r, s) \in M$. Conversely, let $(r_1, s_1) = (r_0^2 + ur_0, ur_0^3 + u^2r_0^2 + s_0^2 + u^2s_0) \in M$, and $\overline{\psi}(\overline{(r, s_1)}) = (R[x_1, y_1; r_1, s_1])$. Define a map $\alpha_1 : R[x_1, y_1; r_1, s_1] \to R[\delta_1, \delta_2; 0, 0]$ by

$$\alpha_1(1) = \varepsilon$$
, $\alpha_1(x_1) = \delta_1 + r_0$ and $\alpha_1(y_1) = \delta_2 + r_0 \delta_1 + s_0$.

Then it is easy to see that α_1 is an $H(u,2^2)$ -module algebra isomorphism. Therefore $Ker(\psi) = M$, completing the proof.

In general, to calculate the group $Gal(H(u,p^m))$ is a complicated work. For example, $Gal(H(u,3^2))$ has a following isomorphism.

Theorem 3.2.5. Let $R_2^+ = R \times R$ be an abelian group with addition

$$(r_1, s_1)+(r_2, s_2)=(r_1+r_2, s_1+s_2+2r_1r_2(r_1+r_2+u^3)).$$

Then there exists a group isomorphism

$$\psi: R_2^+/N \longrightarrow Gal(H(u,3^2))$$

defined by $\psi(\overline{(r,s)}) = (R[x, y; r, s])$, where $N = \{(r_0^3 - u^2r_0, s_0^3 - u^6s_0 - 2u^4(r_0^3 - u^2r_0)r_0^2 - 2u^2(r_0^3 - u^2r_0)((r_0^3 - u^2r_0) + u^3)r_0|r_0, s_0 \in R\}$ and $\overline{(r,s)} = (r, s) + N$.

REFERENCES

- S.U. CHASE and M.E. SWEEDLER: Hopf Algebras and Galois Theory, Lecture Notes in Math. 97, Springer-Verlag, Berlin, 1969.
- [2] T. NAGAHARA and A. NAKAJIMA: On cyclic extensions of commutative rings, Math. J. Okayama Univ. 15 (1971), 81—90.
- [3] A. NAKAJIMA: On a group of cyclic extensions over commutative rings, Math. J. Okayama Univ. 15 (1972), 163—172.
- [4] A. NAKAJIMA: Free algebras and Galois objects of rank 2, Math. J. Okayama Univ. 23 (1981), 181—187.
- [5] M.E. SWEEDLER: Hopf Algebras, Benjamin, New York, 1969.
- [6] M.E. SWEEDLER: Purely inseparable algebras, J. Alg. 35 (1975), 342-355.
- [7] Y. TAKEUCHI: On strongly radicial extensions, Pacific J. Math. 55 (1974), 619—627.
- [8] K. YOKOGAWA: Non-commutative Hopf Galois extensions, Osaka J. Math. 18 (1981), 67-73.
- [9] K. Yokogawa: The cohomological aspects of Hopf Galois extensions over commutative rings, Osaka J. Math. 18 (1981), 75—93.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received May 8, 1982)