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ON THE EQUATIONAL DEFINABILITY
OF ADDITION IN RINGS

Hiroakli KOMATSU

Boolean rings and Boolean algebras, though conceptually different,
were shown by Stone [6] to be equationally interdefinable. Indeed, in a
Boolean ring, addition can be defined in terms of the ring multiplication
and the Boolean complementation “*”. Recently, Putcha and Yaqub [5]
have shown that the equational definability of addition in terms of the ring
multiplication and the successor operation “*” also holds for rings satisfying
a polynomial identity X™— X™*'f(X)=0, where m = 1 and f(X) € Z[ X].
The purpose of this paper is to give a shorter proof of the above result
and show that the converse is also true. Furthermore, we shall reprove
the main theorem of our previous paper [4].

Throughout the present paper, K will represent a ring with identity
element 1. For any ¢ € R, we define a*=a+1, a¥=a—1 and a*=1—a.
We also use the notation dx(a)=(:-+ a(aa™)* ") =a*+ a* '+ - +1. Let
Z{X} be the free ring generated by X={Xj, -, X;}, and T a set of unary
operations in Z{X}. We set

Co(X;T)=X, and
Cort (X T)={(d1+ )" "€ Z(X} | $: €EChX;T), ET s 21, t 20}

Obviously, Co(X:T) S Ci(X;T) S =+, and C(X;T)=Un=0 Ca(X:T) is the
set of all primitive compositions composed of the ring multiplication of
Z{X} and 7. Now, let f be in Z{X}. If f has only one monomial p of
the highest degree and the coefficients of p is 1, we call f a monic polyno-
mial, and p the leading term of f.

We start with the following lemma.

Lemma 1. (1) If ¢=¢(X1.. Xy) s in C(X;"Y) then ¢ is a
monic polynomial and every Xp, occuring in ¢, also occurs in the leading
term of ¢.

(2) If ¢=¢(Xy, -+, Xy) s in C(X;*) then ¢(1,-++,1)=0 or 1, where
1 is the identity element in R.

Proof. (1) Suppose that ¢ is in Cni(X;*Y). Then we can write
g=¢, - gsta with ¢;E Cax(X:"V) and e € Z. Hence, the assertion is
easily seen by induction.
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(2) Suppose that ¢ is in Cn+1(X:*). Since ¢=¢, s or 1—¢, - ¢s
with some ¢; € C,(X:*), the assertion is easily seen by induction.

Lemma 2. Let a, b be elementsof R. If b is nilpotent; b"=0 say,
then a—b=—{(acn-1(b))"b"}".

Proof. Since 0n-1(b)=(1—56)"'=—(b")"}, the assertion is easily seen.

Lemma 3. Let a be a strongly m-regular element of R; a" = a?"s=
ta®™ with a positive integer n and s, t € R. Then there exists a primitive
composition (X, Y,Z), composed of the “", “*" and “V”, such that a+b
=68(a,b.s) for all bE R.

Proof. By the proof of [2, Lemma 1], we see that e=a"s is an idem-
potent such that ae=ea and a"e=a". Set ci=evbe", c2=ea+eb=
ea(a™ 'sb)*, cs=eVa, and cy,=e"be. Since a+b=c,+c2— ¢3 —¢s and cicz
=c¥=c3=0, by Lemma 2 we find tnat

a+b=[[{{(cfcs) onr(ca)} ¥} et ] er ],
which completes the proof.

Here, as application of Lemma 3, we reprove Theorem and Corollary
1 of [4].

Corollary 1. Let S be a multiplicative subsemigroup of R. Suppose
that, for any a € S, a is right n-regular in S and left w-regular in R and
—a, a+1€S. Then S is a subring of R.

Proof By hypothesis, x € S always implies x*, x¥&€ S. Thus, if
H X, Y.Z) is in C(X,Y.Z;Y) then ¢(x,y2) €S for all x, y, zE S. Now,
let a be an arbitrary element of S. Since « is strongly z-regular and is
right 7m-regular in S, by Lemma 3 there exist s€ S and (X, Y.Z)E
C(X,Y.Z;*Y) such that a+b=60(a,b,s) for all b E S.

Corollary 2. Let R be a right integral extension of a division ring D.
Let S be a multiplicative subsemigroup of R. Suppose that S contains D
and suppose, further, that a € S always implies that a+1<E S. Then S is
a subring of R.

Proof. Let a be an arbitrary element of R. Since R is a right integral
extension of D, we can easily see that a®=a™"'as with some positive
integer m and some ao € XI;_, a’D. Hence, by [3, Proposition 2], R is
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strongly n-regular. Henceforth, we let @ be an arbitrary element of S.
Since every element of 2}, @’D is of the form a*(a*a,+ --- +1)a (e, a;E
D), an easy induction proves that 7., @’D € S. Thus, a”=a?"b=ca?" for
some positive integer #-and some b€ S and ¢ € R. Thus, by Corollary
1, S is a subring of K.

We now prove the main theorem, which is stated as follows:

Theorem 1. The following statements are equivalent

1) R satisfies a polynomial identity X*"— X"=0 with some positive
integer n.

2) R satisfies a polynomial identity f(X)=0 with a primitive
polynomial f(X) in Z[X].

3) The “+” of R is equationally definable in terms of the “.” of R
and """,

4) The“+" of R is equationally definable in terms of the “-” of R
and "V,
5) The “+” of R is equationally definable in terms of the " of R,
and V.

Proof. Obviously, 1)=2), 3)=15),and 4)=5).

2)=1). Since the equation f(X)=0 has only a finite number of
solutions in Z, R has finite characteristic g. Let g=p;"' pf where p;
are distinct primes and the e; > 0. Then, it is easy to see that the ring
o pEIR/ Y - pY R satisfies a polynomial identity f;(X)=0 with a monic
f(X)€ Z[X]). Thus, without loss of generality, we may assume that f(X)
is monic. Then, setting n=deg f(X), we have [Ka)| < ¢” for all a € R.
Hence, there holds 1), by [1, Lemma].

1)= 3)and 4). By Lemma 3, there exists 8(X,Y,Z) in C(X,Y,Z;».Y)
such that a+b=6(a,b,a") for all ¢, bE R. Since ¢=[22"—2">2in Z
and gR=0, we have x¥=x+(g—1)=((x")*-+)* and x*=(---(-+-(xV)¥---)V,
g—1 iterations. This proves 3) and 4).

5)= 2). There exists 8(X.Y) € C(X,Y;"") such that a+b=6(a,b)
for all @, b€ R. We can write (X, Y)=A(X,Y)+g(X)+ 4 Y)+ a, where
@ is the constant term of 8(X,Y), g(X) € Z[X] and K Y) € Z[Y] have
no constant terms, and f(X,Y) has no monomials of one variable. Obvi-
ously, 0=26(0,0)= £(0,0)+g(0)+4(0)+a-1=a-1(€ R). Accordingly, for
any a € R, a=a+0=20(a,0)=/(a,0)+g(a)+ h(0)=g(a). and similarly a=
h(a). Therefore, a+b=6(a,b)=F(a,b)+ g(a)+ h(b)=F(a.b)+a+ b, whence
it follows that f(a,b)=0 for all ¢, b € R. Since g(X)+0 and #(Y)#0,

A



136 H. KOMATSU

F(X,Y) is a monic polynomial of positive degree, by Lemma 1 (1). Hence,
F(X,X) is also a monic polynomial of positive degree, and R satisfies the
polynomial identity f(X,X)=0.

Corollary 3. The foliowing statements are equivalent :

1) R is of characteristic 2 and satisfies a polynomial identity
X2n— X"=0 with some positive integer n.

2) The “+" of R is equationally definable in terms of the “-" of R
and “*",
Especially, if R is a veduced ring then 2) is equivalent to
1) R can be embedded in some divect product of GF(2™)'s.

Proof. In view of Theorem 1, it suffices to show that 2) implies that
R is of characteristic 2. Suppose that there exists 8(X,Y) € C(X,Y;*)
such that a+6=20(a,b) for all @, b= R. Then, by Lemma 1 (2), we have
2=6(1,1)=0. The latter is obvious by Jacobson’s commutativity theorem,
since a reduced ring satisfies the polynomial identity X?”— X”=0 if and
only if it does X1 —X =0,
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