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ON STRONGLY PRIME MODULES AND
RELATED TOPICS

MoTosHi HONGAN

Introduction. The useful notions of prime rings, semiprime’ rings, SP
(strongly prime) rings and STP rings have been extended to modules by
Beachy [ 3], Dauns [ 6], Desale-Nicholson [ 7], Handelman-Lawrence [9],
Zelmanowitz [23] and others. In the preliminary section of this paper, we
state those definitions together with already known relationships among
them and with some examples. §1 deals with the further properties of SP
modules and related modules. We shall give characterizations of ZP
modules, HSP modules and QSP modules, and prove [9, Proposition II.3],
[14, Corollary 5.7] and [22, Proposition 2.6] altogether. §2 begins with
characterizations of semiprime rings, prime rings, STP rings and others in
terms of the existence of certain kinds of faithful modules. Next, we shall
give a slight generalization of [7, Proposition 3.1]. The latter part of §2
is concerned with some ring extensions of SP rings and STP rings. In the
final section §3, we treat with rings not necessarily containing identity, and
extend the results obtained in [18] and [19] for normal classes and special
classes of prime rings to those of semiprime rings.

0. Preliminaries. Except in §3, where we deal with weakly special
classes, all the rings we consider will be associative rings with identity 1
(#0) and all the modules considered will be unital. Let R be a ring. As
usual, M (resp. Mz) will denote that M is an object in the category R-mod
(resp. mod-R) of all left (resp. right) R-modules and we write morphisms
on the side opposite to that of scalars. Unless otherwise mentioned, by
a module we mean a left R-module and the concepts will be left sided ones,
and by an ideal of R a two-sided ideal. By Z(M), Soc(M) and J{M), we
denote the singular submodule, the socle and the Jacobson radical of M,
respectively. If X and Y are subsets of zM (resp. Mg), we set YX '=
{ae R|aX S Y} (resp. X 'Y={a€ R| Xa < Y}); in particular we write
I X)=0X"" (resp. rx(X)=X"10).

We now recall some definitions. A subfunctor T of the identity
functor on R-mod is called a preradical ; a preradical T is left exact
(abbreviated as LE) if T(N)=N N T(M) whenever N S gM, and T is
called a radical if T(M/T(M))=0 for all M € R-mod (see, e.g. [20]). Let
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M be a non-zero left R-module. If M has no non-trivial fully invariant
submodules then M is called endosimple [7]. If M is endosimple then
J(M)=0 or M. Following [6], M is called weakly semiprime (resp.
semiprime) (abbreviated as WsP (resp. sP)) if, for any m € M and ¢ € R,
aRaRm=0 (resp. aRam=0) implies aRm=0 (resp. am=0), and M is called
compressible if M can be embedded in each of its non-zero submodules.
Following [3], M is called prime if one of the following equivalent condi-
tions is satisfied: (1) aRm=0 (m € M, a € R) implies m=0 or aM=0;
(2) Ix(N)=1x(M) for all non-zero submodules N of M, and M is called
monoform if every non-zero partial endomorphism of M is a monomorphism.
Furthermore, M is called strongly prime (abbreviated as SP) if one of the
following equivalent conditions is satisfied: (1) T(M)=0 or M for all LE
preradical 7 on R-mod; (2) given #' and non-zero m in M, there exists
a finite set {a,,"**,as} € R such that N&, lk(a:m)<S lg(w’), and M is called
cofaithful if there exists a finite subset F of M such that /z(F)=0. Needless
to say, every cofaithful module is faithful. If M is SP then Z(M)=0 or
M, and Soc(M)=0 or M. On the other hand, M is called strongly prime
in the sense of Handelman-Lawrence (abbreviated as HSP) if for any non-
zero m € M there exists a finite set {a1,**,an} € R such that N&, lk(a;m)
=0 (cf. [9]), and M is called strictly prime(abbreviated as STP ) if for any
non-zero m € M there exists @ € R such that /x(am)=/,:(M) ([6]). A
faithful module M is STP if and only if R is embedded in each non-zero
cyclic submodule of M. When this is the case, M is HSP. We say that M
is quasi-strongly prime (abbreviated as QSP) if for any non-zero submodule
N of M there exists a finite set {x,**,xx} © N and m € M\N such that
NE, k(x;) € Nm™'. Now, let M*=Homg(M . R), and S=Homgz(MM).
Then there exists a derived Morita context (R,M.M*,S), where (m.f)=mf
and [f,m] is defined by m'[f,m]=(m, f)m for m, m € M and f € M* (see,
eg. [1]). Following [23], M is called semiprime (resp. prime) in the sense
of Zelmanowitz (abbreviated as ZsP (resp. ZP)) if (m,M*)m=0 (m € M)
(resp. (m,M*)m'=0 (m, m' € M)) implies m=0 (resp. m=0 or m'=0).
Finally, M is called torsionless if (m,M*)=0 (m € M) implies m=0.

We summarize here already known implications among the notions
cited above (see also the table giverr at the end): Every STP module is
SP, every SP module is prime and QSP, every prime module is sP, and
every sP module is WsP [6, p. 311 and 7, p. 549]. Every simple module is
compressible, monoform and endosimple, every compressible module is SP,
and every endosimple module is SP [7. pp. 550 and 551]. Every HSP
module is cofaithful, SP and non-singular [9, p. 220], every ZP module is
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prime and ZsP, and every ZsP module is torsionless and sP.

A ring R is called SP, STP or self-compressible according as R is
HSP, STP or compressible. A ring R is SP (resp. simple) if and only if
#R is SP (resp. endosimple) [7, p. 550]. Following [21], a ring R is called
Jully left idempotent if every left ideal of R is idempotent, and R is called
a left V-ring if every left ideal of R is an intersection of maximal left ideals
of R. Following [ 7], a ring R is called endoprimitive (resp. weakly primitive)
if there exists a faithful SP left R-module (resp. a faithful, compressible
and monoform left R-module). A ring R is called CTF if T(R)=0or R
for all LE radicals 7 on R-mod [4 or 14]. A ring R is called bisimple if
for any non-zero a, b € R there exists ¢ € R such that aR=cR and Rb=
Rc [13], and R is called E£2 if R has no non-trivial left strongly idempotent
ideals, where an ideal I of R is left strongly idempotent if L=1IL for all left
ideals L < [ [14].

Remark 0.1. Obviously, zZ is not endosimple, but compressible and
monoform. Moreover, for any prime p, zZ» is neither non-singular nor
faithfu! nor torsionless, but STP. If R is the trivial extension Z X @ of
Z by Q, then R is not sP but QSP. Needless to say, for any semiprime
ring R which is not prime, gR is not prime but ZsP and cofaithful. ,Z/8Z
is not monoform but uniform. In what follows, F will represent an
arbitrary field.

(1) Let R be the (non-commutative) free algebra F{x,y}, and M =
R/RxRx. Since xRx-1=0 and x-1#0, xM is not semiprime. Next, we
prove that M is WsP. Suppose that aRaRb S RxRx (a, b € R). Then,
b=rx for some » € R, and hence aRaRr S RxR. If neither » nor a is in
RxR, then aar & RxR, a contradiction. Hence either » or a belongs to
RxR. Therefore, aRr S RxR, and hence aRb S RxRx.

(2) Let R=(§ ?) Then R is not sP but torsionless.
FF F o ,_(FF .y
(3) Let R—(F F)' M—(F 0), and M —(0 0 ) Then gR is neither

compressible nor STP, but SP; gM is not STP but faithful simple ; M’
is neither simple nor compressible nor uniform, but endosimple.

(4) Let V be a countably infinite dimensional vector space over F,
R=Homz(V,V), and I={a € R |rank a < ©}. Then gR is not QSP but
prime (see Theorem 1.4 below) and non-singular, and &/ is not cofaithful but
faithful.
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1. SP modules and related modules. In this section; we mainly study
further properties of modules mentioned in §0. First, we characterize ZP
modules.

Theorem 1.1. A non-zero module M 1s ZP if and only if it is prime
and [M* M)-unital (m[M*M]=0 (mE M) implies m=0). In particular,
a faithful non-zero module M is ZP if and only if it is prime and torsionless.

Proof. It suffices to prove the if part. Suppose (s, M*)m’'=0 for some
m, m' € M. If m=+0 then there exists some f € M* such that (m,f) M #*0,
since M is [M* M]-unital. Now, for any a € R we have (m.f)am'=
(m.fa)ym’ € (mM*)m'=0, ie. (mf)Rm' =0. Since M is prime and
(m.f)M=+0, we obtain m =0, which proves that M is ZP.

Next, we consider the case that R is a left duo ring (ak € Ra for all
a € R).

Proposition 1.1. Let R be a left duo ring, and M an R-module.
Then the following are equivalent:

1) M s prime.

2) M is STP.

3) k(m)=1I1(M) for any non-zero mE M, that is M is a torsion
free R/ 1x(M)-module.

Proof. 1t suffices to show that 1) implies 3). Let m be an arbitrary
non-zero element in M. If a is in Ig(m), then aRm S Ram=0. Thus.
aM =0, ie. a€ [(M).

Corollary 1.1 (cf. [8. Lemma 1.9 and Corollary 1.10]). Let R bea
left duo ring. If M is faithful and prime, then it is HSP and torsion free,
and R has to be a completely prime ving, in particular, every non-zero
submodule of M is faithful.

Proposition 1.2. If M is a uniform module, then the following are
equivalent :

1) M s STP.

2) Each non-zero submodule of M is STP.

3) Each non-zero cyclic submodule of M is STP.

Proof. Obviously, 1)= 2)= 3).
3)= 1). Let m be an arbitrary non-zero element in M. Since Rm
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is STP, there exists a € R such that /r(am)=Izx(Rm). If x(Rm) 2 (M),
then there exists b € lg(Rm)\/x(M). Then there is a non-zero element x
in M such that bx+0. Let y be an arbitrary non-zero element in B, and
choose a non-zero z in Rx N Ry. Since Rx 2 Rz+0 and Rx is STP, we
have /r(Rz)={z(Rx), and so bx € bRx=0, a contradiction. Thus, /z(am)=
Ix(M), that is M is STP.

The next characterizes HSP modules.

Theorem 1.2, If M is a non-zevo module, then the following are
equivalent:

1) M is HSP.

2) M is cofaithful and SP.

3) Each non-zero cyclic submodule of M is cofaithful.

4) For each non-zero m € M, there exists a positive integer n such
that R is embedded in the direct sum (Rm)™ of n copies of Rm.

Proof Obviously, 1) is equivalent with 4) and implies 2) and 3).
2)= 1). Let m be an arbitrary non-zero element in M. Since M is
cofaithful and SP, there exists a finite set {yi,=*.y»} S M such that
NZ%, lx(yv;)=0 and we can find a finite set {a,:-,ax} S R such that
&, Ip(a;m) € Ix(y;) for all j. Thus, we have N%&,; fx(a:m)=0.
3)=1). Let m be an arbitrary non-zero element in M. Since Rm is
cofaithful, there exists a finite set {a1,,a»} € R such that N%; lk(a:m)=0.

The equivalence of 2) and 4) in the next theorem has been shown in
(4, Corollary 2.3]. However, the theorem will provide an alternative proof
of the equivalence.

Theorem 1.3. If M is a non-zervo module, then the following
are equivalent .

1) M is QSP.

2) T(M)=0 or M for all LE radicals T on R-mod.

3) For each non-zero proper snbmodule N of M, Homg(Rx,M/N)#0
with some x € N,

4) For each non-zero proper submodule N .of M, Ix(x) S Nm™! with’
some x € N and m € M\N.

Proof. Obviously, 4) is equivalent with 3) and implies 1).
1)= 2). Suppose that 0+ 7(M)#M for some LE radical 7, and
choose y € M\T(M). Since M is QSP, there exists a finite set {x;,***,xn}
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S T(M)such that N% 1 le(x:) © T(M)y~'. Let x=(x1,,x0) € (T(M))™.
Then we can define a map f : Rx — (Ry+ T(M))/ T(M) by (ax)f=ay+
T(M) (a€ R). Since Rx 2 T(Rx)=Rx N T(M")=Rx N(T(M))"=Rx,
we have Rx=T(Rx), and so

(Rx+ T(M)/ T(M)=(Rx)f=(T(Rx))f
S T((Ry+T(M))/ T(M)) S T(M/T(M))=0.

Thus we have y € Ry S T(M), a contradiction.

2)= 3). Let N be a non-zero proper submodule of M, and choose
yE M\N. We set P(X)=(y)Homg(Ry,X) (X € R-mod). Then, by (20,
Proposition VI.1.5], P is an LE preradical and there exists the smallest
radical P larger than P. Furthermore, P is an LE radical by [20, Corollary
VI.3.4]. Since P(M)+0, we have P(M)=M, and hence P(M/N)=M/N.
Thus P(M/N)=#0, which proves Homg(Ry,M/N)=0.

Corollary 1.2 (cf. [4, Theorem 24]). The following ave equivalent :

1) R is a CTF ring.

2) For each non-zero proper left ideal L of R, there exists a € R\L
and a finite set {x1,*,xn} S L such that N%, Ile(x:)) € La™. -

3) For each non-zero proper left ideal L of R, there exists x € L
and a € R\L such that lz(x) S La™'.

4) For each non-zero proper left ideal L of R, there exists x € L
such that Homg(Rx,R/L)+0.

By Hirano [12], the notion of a fully left idempotent ring has been
extended to modules : A non-zero module M is called a fully left idempotent
module if for each x € M there exist finite sets {fi,"*".fu} © M* and
{ri,7=-,7n} € R such that x=2%, r{x)f;x. Now, we extend the notion of
a left strongly idempotent ideal to modules. A fully invariant submodule
of a non-zero module M is called a left strongly idempotent submodule if for
each x € N there exist finite sets {f1,"* fa} & M*, {r,>, 7o} S R and yEN
such that x=>%, r(y)fix. The following is immediate by definition.

Lemma L1. If M is a fully left idempotent module, then every fully
invariant submodule of M is left strongly idempotent.

Lemma 1.2. Every CTF-ring R is E2.

Proof. Let I be a non-zero proper left strongly idempotent ideal of R.
Since R is CTF, by Corollary 1.2 we have Homgz(Rx,R/I)+0 with some
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x € 1. But, since x=ax with some ¢ € I, we get (x)f=a(x)f=0 for all
f € Homg(Rx,R/I), a contradiction.

Now, combining Lemmas 1.1 and 1.2, we readily obtain [9. Proposition
0.3], [14, Corollary 5.7] and [22, Proposition 2.6] altogether.

Theorem 1.4. The following ave equivalent:
1) R s a simple ring.

2) R is a fully left idempotent SP ring.

3) R is a fully left idempotent CTF ring.
4) R is a fully left idempotent E2 ring.

2. SP rings and related rings. First, we characterize semiprime
rings, prime rings, STP rings and others by the existence of such faithful
modules as treated in the preceding section.

Theorem 2.1. (1) The following are equivalent

1) R is a semiprime ring.

2) There exists a faithful WsP R-module.

3) There exists a faithful sP R-module.

4) There exists a faithful ZsP R-module.

(2) The following are equivalent :

1) R is a prime ring.

2) There exists a faithful prime R-module.

3) There exists a faithful ZP R-module.

(3) R is a non-singular ving if and only if there exists a faithfil
non-singular R-module.

(4) R is an SP ring if and only if there exists an HSP R-module.

(5) The following are equivalent:

1) R is an STP ring.

2) There exists a faithful STP R-module.

3) There exists a faithful R-module M such that R can be embedded
in each non-zero cyclic submodule of M.

4) R is a self-compressible ring.

Proof. (1) Obviously, 4)= 3)= 2).

1)= 4). If-R is a semiprime ring then xR is a faithful ZsP module.

2)=1). Let M be a faithful WsP module. If gaRa=0 for some ¢ €
R, then aRaRm=0 for each m € M. Hence, aRm=0, i.e. aRM=0. Since
M is faithful, we have ¢=0, and so R is a semiprime ring.
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(2) Obviously, 3)= 2).

1)= 3). If R is a prime ring then zR is a faithful ZP module.

2)=1). Let M be a faithful prime module. If aRb=0 for some
a, b € R, then aRbm=0 for all m € M. In case a #0, i.e. aM *0, we have
bm=0 for all m, whence it follows that 6=0.

(3) Let M be a faithful non-singular module, 2 € Z(R), and m € M.
Since (@) € lx(am), Ix(am) is essential in R, and so am € Z(M)=0.
Thus, aM =0, and so a=0.

(4) By definition, R is an SP ring if and only if zR is HSP. Thus,
this is a claim stated in [9, p. 220].

(5) Obviously, 1)= 2)and 4). and 4)= 1).

2)= 3). For each non-zero m € M, there exists a € R such that
Ir(@am)=0. Then, the map f: R — Rm defined by (x)f=xam (x € R) is
a monomorphism.

3)=2). Let m be a non-zero element in M, and f: R— Rm a
monomorphism. Then /z(am)=0, where (1)f=am.

2)=1). Let M be a faithful STP module, and b a non-zero element
of R. Since bm=0 for some m € M, we have /r(abm)=0 for some a € R,
and then /z(ab)=0.

Proposition 2.1. Let M be a non-zero R-module, and e an idempotent
of R such that eM+0. Then the properties WsP, sP, prime, SP, HSP and
STP are inherited by the left eRe-module eM.

Proof. It suffices to show that if M is SP then so is eM. Let em=0
and em’ be in eM, and choose a finite set {a;.:*-,an} S R such that
NE: lr(aiem) S lg(em’). Then we have N lere(eaieem) S legelem’),
which implies that creeM is SP.

As a combination of Theorem 2.1 and Proposition 2.1, we readily

obtain

Corollary 2.1. Let e be an arbitrary non-zero idempotent of R. Then
the ring properties semiprime, prime, endoprimitive, SP and STP are inherited
by the ring eRe.

Next, we improve [7, Proposition 3.1] as follows:

Theorem 2.2. If R is a fully left idempotent, endoprimitive ring then
R s primitive.
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Proof. By [7, Theorem 2.1]. there exists a left ideal L of R such that
#R/L is a faithful SP module. Choose a maximal left ideal X containing
L. We prove that pR/K is faithful, which will imply that R is primitive.
Suppose to the contrary that A=/x(R/K)#0. Then A is a non-zero ideal
of R with A gfc L, since R/L is faithful. For any x € A\L, we can find a
finite set {a1,**.an} S R such that N%, lk(a;x+L) S (1+L)=L. Since
R is fully left idempotent, A is left s-unital (¢ € Aa for all a € A), and so
by [21, Theorem 1] there exists ¢ € A such that ea;x=a;x for all i, Thus
1-e € NL: lkla:x+ L) S L, which yields a contradiction 1 € L+A € K.

Every left V-ring is fully left idempotent by [21, Proposition 6], and so
the next is immediate by Theorem 2.2.

Corollary 2.2 (cf. [7, Proposition 3.1]). Let R be a left V-ring (or
regulay ring). If R is an endoprimitive ring, then R is primitive. In
particular, a left non-singular, self-injective ring is primitive if and only if
it 1s endoprimitive.

Now, we treat with some types of ring extensions. The next can be
easily seen.

Proposition 2.2. Let RS S be rings and let S be generated by
elements which centvalize R. If S is either a semiprime ring, a prime
ring ; an endoprimitive ving: an SP ring, then so is R.

Proposition 2.2 together with Theorem 2.2 gives the following

Corollary 2.3 (cf. [7, Remark]). Let R be a semiprime ring, M(R)
the Martindale (left) quotient ving of R, and C the center of M(R). Let
S be the central closure RC of R.

(1) If R is a fully left idempotent ring and S is an endoprimitive
ring, then R is primitive.

(2) If R is a strongly regular ring and S is a prime ving, then R
is a division ring.

Let R € S be rings. If Ss N R+0 for each non-zero s € S, S is called
a (left) intrinsic extension of R. The next will be almost evident.

Proposition 2.3. Let S be an intrinsic extension of R. If R is either
a Semiprime ring; a prime ving: an SP ring: an STP ring, then so is
S.
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In advance of proving the final result of this section, we state the
following lemma.

Lemma 2.1. Every bisimple ving R is an STP ring.

Proof. Given non-zero a € R, there exists ¢ € R such that Re=Ra
and cR=R. Write c=xa and 1=cy with some x, y € R. Then, lr(xa)=
lx(c) € Ig(1)=0. Thus R is an STP ring.

We can now prove the following that includes [17, Theorem 3.3(1)],
[9, Corollary 1 to Proposition IV.1] and [22, Proposition 2.8 and Corollary
2.9].

Theorem 2.3. (1) If R is a semiprime ring, then so is M(R).

(2) A ring R is simple if and only if R is a fully left idempotent
ring and the centval closure S of R is an SP ring.

(3) Let R be an SP ring, and Q(R) the maximal left quotient ring
of R. Then, every ring S with R< S S Q(R) is an SP ring. Furthermore,
if Sis a fully left idempotent ring, then S is simple; in particular, Q(R)
is a simple ring.

(4) Let R be an STP ring. Then, every ring S with R < S < Q(R)
is an STP ring and Q(R) is bisimple. In particular, if R is a bisimple ring,
then so s Q(R).

(5) A left self-injective ving R is an SP ring if and only if it is
simple.

(6) A left self-injective ving R is an STP ring if and only if it is
bisimple.

Proof. (1) This is immediate by Proposition 28, since R is essential
in RkM(R).

(2) If R is a simple ring, then R is SP and fully left idempotent.
Since R is essential in S, S is an SP ring by Proposition<.3. Conversely,
if R is a fully left idempotent ring and S is an SP ring, then R is SP by
Proposition 2.2, and so simple by Theorem 1.4.

(3) By Proposition 2.3 and Theorem 1.4.

(4) By Proposition 2.3, S and Q(R) are STP rings. Since Q(R) is
a left self-injective ring, @(R) is bisimple by [13, Corollary 3]. The rest of
the proof is immediate by Lemma 2.1.

(5) By (3) and Theorem 14.

(6) By (4) and Lemma 2.1.
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3. Normal classes and weakly special classes. Throughout this last
section, rings need not have identity. We denote by R! the Dorroh exten-
sion of R obtained by adjoining identity in the usual way. Every left R-
module is a left R!-module in an obvious way. We define HSP modules,
torsionless modules, monoform modules and ZsP wmodules in the same way
as in §0, and sP modules, SP modules and STP wmodules are defined for
#M with RM=+0. Then, we can adopt the definitions of SP rings, endopr-
imitive rings and weakly primitive rings given in §0, and R is called an STP
ring if gR is a faithful STP module. For a ring R without identity, we can
-easily see that the equivalence of 1) and 3) in Theorem 2.1 (1) and that
of (2) and (3) in [7. Theorem 2.1] are still valid. The latter equivalence
shows that our definition of an endoprimitive ring agrees with the one given
in [7, p. 557].

In what follows, R and S will represent rings, V an R-S-bimodule, and
W an S-R-bimodule ; all the classes of rings considered are assumed to be
non-empty and closed under isomorphisms. A Morita context (R, V,W.S)
is said to be S-faithful if S+0 and VsW=+0 for every non-zero s € S. A
class & of rings is called a normal class if R € & implies S € & whenever
(R, VW.,S) is an S-faithful Morita context. It is known that the class of
all prime rings are normal [1]. The first aim of this section is to deduce
[7, Theorem 4.2] together with others as a consequence of an easy proposition.

Given a Morita context (R, V,W.S) and a non-zero element » in a left
R-module M, we set Mo=R'm, U={w € W |VuwM =0}, Uy={w € W | Vwm
=0}, J={s€ S| VsW < lx(M)}, and Joy={s& S| VsW S [x(M,)}. Obviously,
U and U, are S-submodules of W, and J and Jy are ideals of S. Under the
above notations, we prove the next.

Proposition 3.1. (1) If M is sP and VSW & (M), then s;W/U
is a faithful sP module.

(2) If Mo is SP and VSW ¢ Ie(Mo), then s, W/Us is a faithful SP
module.

Proof. (1) Obviously, (S/J)(W/U)+#0 and s,W/ U is faithful. Now,
suppose that sSsw S U for some s€ S and w € W. Then VswRVswM <
VsSswM =0. Since M is sP, we have VswM =0, which implies sw € U.
Thus, syW/U is an sP module.

(2) It is obvious that (S/Jo)(W/U,)#0 and s, W/ Us is faithful. Let
wo be an arbitrary element in W\U,. Then Vwem=+0, and vowom*0 for
some vp € V. Since M, is SP, there exists a finite set {@1,"**,an} € R such
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that NZ1 klavowem) S lr(m). Now, for any w € W we have
. Uslwasvowy)™ € Upw ™!, which proves that s,W/ Us is an SP module.

We can now prove the following that includes [7, Theorem 4.2].

Theorem 3.1. (1) The class of all semiprime rings is normal.

(2) The class of all endoprimitive rings is normal.

(3) The class of all rings with faithful uniform SP modules is normal.

(4) The class of all rings with faithful monoform SP wmodules is
normal,

Proof. (1) Since R is a semiprime ring if and only if there exists a
faithful sP R-module, (1) is immediate by Proposition 3.1 (1).

(2) By Proposition 3.1 (2).

(3) We can take a faithful uniform SP (cyclic) module as Mo in
Proposition 3.1 (2). Then sW/U, is a faithful uniform SP module by
Proposition 3.1 (2) and [18, Proposition 1I.7].

(4) We can take a faithful monoform SP (cyclic) module as M, in
Proposition 3.1 (2). Then sW/ U, is a faithful monoform SP module by
Proposition 3.1 (2) and [18, Propositioh II.8]

Remark 3.1. Theorem 3.1 (1) has been given in [1, Corollary 21]
together with the normality of the classes of all rings with no non-zero nil
left (right or two-sided) ideals and of all Levitzki semisimple rings.

We shall now prove further properties of normal classes.

Proposition 3.2. Let & be a normal class of rings.

(1) IfRE N, then eRe € N for each won-zero idempotent e of R.

(2) Let R be a faithful ring (rg(R)=1(R)=0). If RE N, then the
nXn matrix ring (R)n €N for each positive integer n.

(3) Let R be a faithful ring. If (R)x E N for some positive integer
n, then RE N.

(4) Let e be a non-zero idempotent of a ving R such that eRe N RaR
*0 for any non-zevo a€ R, If eRe€E N, then RE N.

(5) Let e be a non-zero idempotent of a semiprime ving R. If eRe E N
then R/ (Ig(Re) N rr(eR)) E N.

Proof. Consider the following contexts: (1) (R, ReeR,eRe).
(2) (RyR(n))(n)Ry(R)n)v where (n)R:{t(al, Yy an) I a; = R}.
(3) (R)n"R,R™R).
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(4) (eReeR,Re.R).
(5) (eRe.eR .Re.R/(Ir(Re) N rx(eR)).

As an immediate consequence of Proposition 3.2 (1) and (5), we obtain
[19, Corollary 2 to Proposition 5].

Corollary 3.1. Let N be a normal class of prime ring, and e a non-
zero idempotent of a prime ving R. Then, eRe € N if and only if RE N.

The next generalizes [18, Proposition 1.10].

Proposition 3.3. Let & be a normal class of semiprime rings, and
RewN. IfIis a vight ideal of R and L is a left ideal of R, then the
Jollowing are equivalent

1) INLeEWA.

2) INL is a semiprime ring.

3) For any non-zero xEINL, x(I NL)*0 and (I N L)x=*0.

4) For any non-zero x €I N L, LxI=+0.

Proof. Obviously, 1)= 2)= 3).

3)=4). Suppose that Lx/=0 for some x€IN L. Since xLxS
INL and xLx(I N L)=0, we have xLx=0, and hence Lx=0 by the
semiprimeness of . Thus, x=0.

4)= 1). Obviously, (R,L,II N L)isan (I N L)-faithful Morita context.
Thus, INLEN.

Corollary 3.2 (cf. [18, Corollary 1.8]). Let & be a normal class of
semiprime rings, and R € N. Then, a left (vesp. right) ideal L (resp. I)
of Ris in N if and only if ve(L) N L=0 (resp. (1) N I=0).

Proposition 3.4. Let & be a normal class of semiprime rings, and L
a left ideal of a semiprime ring R with vs(L)=0. Then the following are
equivalent :

1) ReW.

2) Lew.

3) LREW.

4) Every subring of R containing L is in N.

5) Some subring of R containing L is in N.

Proof. Obviously, 4) implies 1) and 5).
5)(or 1))= 2). Suppose that a subring 7 of R containing L is in
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N. Then L is in # by Corollary 3.2.

2)=3). Asiseasilyseen, (L ,R,L,LR)isan LR-faithful Morita context.
Thus, LR € N.

3)=1). It is easy to see that (LR,LR,R,R) is an R-faithful Morita
context. Hence, we have RE A.

2)=4). Let S be an arbitrary subring of R containing L. Since
(L,S,L,LS)is an LS-faithful Morita context and (LS,LS,S,S) is an S-faithful
Morita context, we see that S is in .

According to [1, Theorem 27], the class of (left) primitive rings is a
normal class. Now, the next is an immediate consequence of Proposition
3.4.

Corollary 3.3 ([15, Corollary]). Let R be a semiprime ring, and L a
left ideal of R with rr(L)=0. Then the following are equivalent:

1) L is a primitive ring.

2) Every subring of R containing L is primitive.

3) Some subring of R containing L is primitive.

Let ® be a class of semiprime rings. We consider the following
conditions :

i) Every non-zero ideal of R is in 2 whenever R is in .

ii) Let A be a non-zero ideal of R. Then R/A* belongs to P
whenever A is in P, where At=1[(A) N rz(A).

iii) Let A be a non-zero ideal of a semiprime ring R such that A is
essential in xR (and in Rz). Then, R belongs to ® whenever A is in P.

iv) Let A be a non-zero ideal of a semiprime ring R such that A+=0,
Then, R belongs to ® whenever A is in P.

Proposition 3.5 ([11, Lemma 6]). Let P be a class of semiprime rings.
Then the following are equivalent :

1) P satisfies i) and ii).

2) P satisfies i) and iii).

3) P satisfies i) and V).

Following Ju. Rjabuhin (see [11]), a class P of semiprime rings is called
a weakly special class if P satisfies one of the equivalent conditions 1)— 3)
in Proposition 3.5.

Theorem 3.2. Every normal class P of semiprime rings is a weakly
special class.
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Proof First, we prove i). Let A be a non-zero ideal of R in .
Considering the A-faithful Morita context (R,R,A,A), we get AE P.
Next, in order to show ii), suppose that a non-zero ideal A of a ring R
belongs to 2. Since A is a semiprime ring, it is easy to see that the Morita
context (A,A R/AL R/AY) is R/A*faithful. Thus, R/A* is in P.

Needless to say, a special class defined in [ 2] is nothing but a weakly
special class of prime rings. And so, every normal class of prime rings
is a special class.

Remark 3.2. By [8, Proposition 3.3], the class of all SP rings is special.
Similarly, we can prove that the class of all STP rings is special. Further-
more the classes of all completely prime rings and of all reduced rings are
easily seen to be special. However, these classes are not normal ;: Let V
be an infinite dimensional vector space over a field F, and E=Hom#(V, V).
Then, (F,V,V*E) is an E-faithful Morita context. But, since £ is not
simple but regular, £ can not be an SP ring by Theorem 1.4.

Remark 3.3. Let P be a weakly special class of semiprime rings.
As a direct consequence of Proposition 3.5 and [11, Theorem 1], we see that
for each R € P, there exists a ring S with identity in ® such that R is
isomorphic to an ideal of S. In particular, if R is a semiprime ring (resp.
reduced ring) then there exists a semiprime ring (resp. reduced ring) with
identity such that R is isomorphic to its ideal. Every SP (resp. STP) ring
can be embedded in an SP (resp. STP) ring with identity as an ideal. And
every completely prime ring can be embedded in a completely prime ring
with identity as an ideal (cf. [5, p. 101] and [16, p. 518]).

A table of modules

WsP

torsnonless

QSP T \ ZsP
prime
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compressible I - HSP
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MoTosHI HONGAN

An error in the proof of 2)=3) in Theorem 1.3 has been kindly pointed
out to the present author by Professor H. Katayama. Since the preradical
P defined by the trace need not be LE in general, the proof 2)=3) should
be changed slightly as follows: Let N be a non-zero proper submodule
of M. We set P(X)i(y)HomR(Ry.X) (y € Nand X € R-Mod) and P(X)
=X N P(X), where X denotes the injective hull of X. Let P (X)=NY,
where Y runs through all the submodules of X with P(X/Y)=0. Then
P® is the least LE radical larger than P. By 2), we have P*(M)=M.
Hence we get P*(M/N)=M/N. By the definition of/lj\*. we have P(M/N)
#0, and therefore P(m):b(). That is, Homg(Ry,M/N)=+0 for some non-
Zero /eliment y of N/\T hen we can choose a non-zero element 7 in Homg
(Ry,M/N). Since M/N is the injective hull of M/N, there exists ¢ € R
such that 0+ a(y)f€ M/N. Now, let f=Flray. Then f is a non-zero
element of Homgz(Ray,M/N), which proves 3).
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