SOME POLYNOMIAL IDENTITIES AND COMMUTATIVITY OF s-UNITAL RINGS. II

YASUYUKI HIRANO, HISAO TOMINAGA and ADIL YAQUB

Throughout the present paper, R will represent a ring with center C. Let Q be the set of all quasi-regular elements in R, and N the set of all nilpotent elements in R. Let D be the commutator ideal of R. Given $x, y \in R$, we let [x,y]=xy-yx and $x \circ y=x+y-xy$. Let n be a (fixed) positive integer, and consider the following ring-properties:

A:R is commutative.

 B_0 : For any $x, y \in R$, $(x-xy) \circ (y-yx)=0$ if and only if x=y.

 $B_1:(x-x^2)\circ(x-x^2)=0$ for all $x\in R$.

 $B_2:(x-x^2)^3=0$ for all $x \in R$.

 $B_3: x-x^2 \subseteq Q$ for all $x \in R$.

 $B_4: x \circ x = 0$ for all $x \in Q$.

 $P_3(n+1): [(xy)^{n+1}-(yx)^{n+1},x]=0$ for all $x, y \in R$.

 $P_{10}(n): [x^n, y^n] = 0$ for all $x, y \in R$.

 $P_{11}(n+1):(xy)^{n+1}=x^{n+1}y^{n+1}$ for all $x, y \in R$.

 $P_{11}''(n+1):[[(xy)^{n+1}-x^{n+1}y^{n+1},x],z]=0=[[(xy)^{n+1}-x^{n+1}y^{n+1},y],z]$ for all $x, y, z \in R$.

 $P_{12}(n+1):[x-x^{n+1},y-y^{n+1}]=0$ for all $x, y \in R$.

 $P'_{12}(n): [[x-x^n,y-y^n],y]=0 \text{ for all } x, y \in R.$

Q(n): For any $x, y \in R$, n[x,y]=0 implies [x,y]=0.

The present objective is to prove the following theorems.

Theorem 1. If R is an s-unital ring, then $B_1 \Leftrightarrow B_2 \wedge B_4 \Leftrightarrow B_3 \wedge B_4$.

Theorem 2. If R is an s-unital ring, then $B_0 \Leftrightarrow B_2 \wedge B_4 \wedge A \Leftrightarrow B_3 \wedge B_4 \wedge A$.

Theorem 3. If R is an s-unital ring, then $P_{10}(n) \wedge P_{11}''(n+1) \wedge Q(n) \Leftrightarrow P_{10}(n) \wedge P_{3}'(n+1) \wedge Q(n) \Leftrightarrow P_{10}(n) \wedge P_{12}'(n) \wedge Q(n) \Leftrightarrow A$.

Theorem 4. If R is an s-unital ring, then $P_{11}(n+1) \wedge P_{12}(n+1) \wedge Q(n) \Leftrightarrow A$. If furthermore n is odd, then $P_{11}(n+1) \wedge P_{12}(n+1) \Leftrightarrow A$.

Obviously, B_1 , $P'_3(n+1) - P'_{12}(n)$ and Q(n) are H-properties, A, B_2 and

 B_4 are F-properties (in the sense of [4]), $B_2 \Rightarrow B_3$, and $B_2 \wedge B_4 \Rightarrow B_1$. Furthermore, in case R has 1, B_1 becomes

$$B_1^*: (1-x+x^2)^2=1$$
 for all $x \in R$.

Proof of Theorem 1. According to [4, Proposition 1] and the facts just mentioned above, it is enough to show that if R has 1 then B_1^* implies B_2 and B_4 .

Setting x=2 in B_1^* , we find 8=0. Replacing x by -x in B_1^* to get

(1)
$$(1+x+x^2)^2=1 \text{ for all } x \in R.$$

From B_1^* and (1), we get $4x(1+x^2)=0$, i.e.,

$$4x = 4x^3$$
.

Replacing x by 1+x in (2) and noting that 8=0, we get $4(1+x)=4(1+x)^3=4+4x+4x^2-4x^3$. Combining this with (2), we see that

$$4x = 4x^2$$
.

Now, as $(x-x^2)^2 = 2(x-x^2)$ by B_1^* , (3) shows that $(x-x^2)^3 = 2(x-x^2)^2 = 4(x-x^2) = 0$, which proves B_2 . From this we readily see that

$$(4) x^3 = 0 for all x \in Q.$$

Hence, for all $x \in Q$, we see that $(1-x)^{-1}=1+x+x^2$. Thus, $(1-x)^2=(1+x+x^2)^{-2}=1$ by (1), and R has the property B_4 .

Proof of Theorem 2. It is easy to see that $B_3 \wedge B_4 \wedge A$ implies B_0 . Since B_0 implies B_1 , and therefore $B_2 \wedge B_4$ by Theorem 1, it remains only to prove that B_0 implies A.

According to B_2 , $x^3=0$ for all $x \in Q$. Furthermore, since $(E_{11}+E_{12}+E_{21})-(E_{11}+E_{12}+E_{21})^2=-1$ in $(GF(p))_2$ (p a prime), D is a nil ideal by [4, Proposition 2], and hence Q=N is an ideal. By B_4 , for all $x, y \in Q$,

$$x \circ y = x \circ (x \circ y \circ x \circ y) \circ y = y \circ x$$

which shows that Q is a commutative ideal. In order to show A, choose arbitrary $a \in Q$ and $b \in R$, and set x = (1+a)b and y = b(1+a). Obviously, x-y=[a,b]. Since Q is a commutative ideal, by B_2 we see that $b^2a+ab^2-[a,b]=2b^2a+[a,b^2-b]=2b^2a$, and $[b,ba](=[b^2,ba])=[-b,ba]$, i.e., [2b,ba]=0. Hence,

$$[x,y]-(x-y)=[x,x-[a,b]]-[a,b]=[[a,b],(1+a)b]-[a,b]$$

$$=[[a,b],b]-[a,b]=-2bab+b^2a+ab^2-[a,b]$$

$$=2b^2a-2bab=[2b,ba]=0.$$

whence it follows that

$$(5) xy - x = yx - y.$$

Now, by B_2 we have

$$xy-x=(1+a)b^2(1+a)-(1+a)b=(b^2-b)+(ab^2+b^2a+ab^2a-ab) \in Q.$$

Accordingly, by (5) and B_4 , $(x-xy) \circ (y-yx)=0$. Thus, by B_0 , it follows that x=y, namely ab=ba. This means that Q is contained in C. Thus, by B_2 and [1, Theorem 19], we see that R is commutative.

- **Remark.** (1) Theorem 2 provides a complete solution to Problem E 2825 suggested by A. Melter [Amer. Math. Monthly 87 (1980), 220].
- (2) As was claimed in the proof of Theorem 2, if a ring R with Jacobson radical J has the property B_2 then $x^3=0$ for all $x \in J$ and R/J is a Boolean ring. It is obvious that the converse is also true.
- (3) Let R be a ring with 1 having the property B_0 . If $Q^2=0$, then R is a trivial extension of the Boolean ring R/Q by Q. Conversely, if B is a Boolean ring with 1 and M is a B-module, then the trivial extension of B by M has the property B_0 .
- (4) Let $S=\mathbb{Z}/8\mathbb{Z}$, and $R=\{\begin{pmatrix} s & t \\ 0 & s \end{pmatrix} | s \in S, \ t \in 4s \}$. Then R is a commutative ring with 1 and $Q=\{\begin{pmatrix} s & t \\ 0 & s \end{pmatrix} | s \in 2S, \ t \in 4S \}$. Since $\begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix}^2 \neq 0$, Q contains an element of (nilpotency) index 3. It is easy to see that R has the property $B_2 \wedge B_4$, and therefore B_0 .

In preparation for proving Theorems 3 and 4, we state the next:

Lemma 1. Let R be a ring with 1.

- (i) If R has the property $P_{10}(n) \wedge Q(n)$, then $[a,x^n]=0$ for all $a \in N$ and $x \in R$, and N is a commutative ideal containing D.
- (ii) If R has the property $P_{10}(n) \wedge Q(n)$ and [[[a,x],x],x]=0 for all $a \in N$ and $x \in R$, then R is commutative.
- (iii) If r is an element of R such that $r^2x = rxr = xr^2$ for all $x \in R$ then

$$\{(r+1)^{n+1}x^{n+1}-((r+1)x)^{n+1}\}-\{x^{n+1}(r+1)^{n+1}-(x(r+1))^{n+1}\}=n[r,x^{n+1}].$$

- *Proof.* (i) is included in [3, Lemma 2], and the proof of (iii) is straightforward.
 - (ii) Since $[[a,x],x^n]=0$ by (i), we have $n[[a,x],x]x^{n-1}=0$. Replacing

x by x+1 in this last equation, we get $n[[a,x],x](x+1)^{n-1}=0$. The last two identities are easily seen to imply n[[a,x],x]=0, and hence by Q(n), [[a,x],x]=0. Arguing in a similar manner, we see that $0=[a,x^n]=n[a,x]x^{n-1}$, and hence (as argued above) [a,x]=0. This proves that $N\subseteq C$, and thus in particular, $D\subseteq C$ by (i). Now, it is easy to see that R is commutative, using $P_{10}(n)$, Q(n), and the above argument of replacing first x by x+1 and then y by y+1.

Proof of Theorem 3. We prove that, under the hypothesis $P_{10}(n) \land Q(n)$, each of $P_{11}''(n+1)$, $P_{3}'(n+1)$ and $P_{12}(n)$ implies A. According to [4, Proposition 1], we may assume that R has 1. At any rate, by Lemma 1 (i), $[a,x^n]=0$ for all $a \in N$ and $x \in R$, and N is a commutative ideal containing D, and therefore $N^2 \subseteq C$. By Lemma 1 (ii), it suffices to show that [[[a,x],x],x]=0 for all $a \in N$ and $x \in R$. First, suppose $P_{11}''(n+1)$. Then, by Lemma 1 (iii), for any $a \in N$ and $x \in R$ we have $[n[a,x^{n+1}],x] \in C$. Hence, by Q(n) and $[a,x^n]=0$, it follows that

$$0 = [[[a,x^{n+1}],x],x] = [[[a,x]x^n,x],x] = [[[a,x],x],x]x^n,$$

which implies [[[a,x],x],x]=0. Next, suppose $P_3(n+1)$. Then, noting that $[x^n,a]=0$ $(a \in N, x \in R)$, we can easily see that

$$0 = [\{x(a+1)\}^{n+1} - \{(a+1)x\}^{n+1}, x] = [[x^{n+1}, a], x] = [[x, a], x]x^n,$$

and hence [[a,x],x]=0. Finally, suppose $P'_{12}(n)$. Then, it can be seen that $[[a,x],x]=[[a,x-x^n],x]=0$ for all $a \in \mathbb{N}$ and $x \in \mathbb{R}$.

Proof of Theorem 4. We prove that $P_{11}(n+1) \wedge P_{12}(n+1) \wedge Q(n) \Rightarrow A$. According to [4, Proposition 1], we may assume that R has 1. By Chacron's theorem [2, Theorem 1], N is a commutative ideal containing D. Thus, as in the proof of Theorem 3, we can show that $[a,y^{n+1}]=0$ for all $a \in N$ and $y \in R$, now. Combining this with $P_{12}(n+1)$, we readily obtain [a,y]=0, that is $N \subseteq C$.

Now, let x, y be arbitrary elements of R. Then

$$0 = [xy - (xy)^{n+1}, y - y^{n+1}] = [xy - x^{n+1}y^{n+1}, y - y^{n+1}]$$

= $[x, y - y^{n+1}]y - [x^{n+1}, y - y^{n+1}]y^{n+1} = [x, y - y^{n+1}](y - y^{n+1}).$

Hence, $x(y-y^{n+1})^2 = (y-y^{n+1})x(y-y^{n+1}) = (y-y^{n+1})^2x$. In view of Lemma 1 (iii), this enables us to see that $n[y-y^{n+1},x^{n+1}]=0$, whence it follows that $[y-y^{n+1},x^{n+1}]=0$. Combining this with $[y-y^{n+1},x-x^{n+1}]=0$, we obtain $[y-y^{n+1},x]=0$. Thus, by [1, Theorem 19], R is commutative.

Henceforth, suppose that n is odd. Replace y by -y in $P_{12}(n+1)$ and subtract the result from $P_{12}(n+1)$ to get $[x-x^{n+1},2y]=0$. Repeat this

process for x in $[x-x^{n+1},2y]=0$ to get 4[x,y]=0. Since n is odd, the last equation implies Q(n).

Acknowledgement. The second author wishes to thank the University of California, Santa Barbara, for its hospitality while he was a visitor.

REFERENCES

- [1] I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864—871.
- [2] Y. HIRANO and H. TOMINAGA: Two commutativity theorems for rings, Math. J. Okayama Univ. 20 (1978), 67—72.
- [3] Y. HIRANO and H. TOMINAGA: Some commutativity theorems for rings, Hiroshima Math. J. 11 (1981), 457—464.
- [4] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN
OKAYAMA UNIVERSITY, OKAYAMA, JAPAN
UNIVERSITY OF CALIFORNIA, SANTA BARBARA, U.S.A.

(Received May 18, 1982)