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ON RIGHT P.P. RINGS

YAsuyukl HIRANO, MoTtosHlt HONGAN and Masayukl OHORI

In this paper we study non-commutative p.p. rings and Baer rings in
relation to their quotient rings. First, we investigate right p.p. rings and
their classical quotient rings. It has been shown by several authors that a
commutative ring R is a p.p. ring if and only if the classical quotient ring
Q of R is von Neumann regular and every idempotent of @ lies in R ([1],
[3], [19]). In Theorem 1, we extend this result to normal p.p. rings. Next,
we consider a right non-singular ring R and a necessary and sufficient
condition for R to be a right Utumi, Baer ring is given (Theorem 3). Using
this, we define the Baer hull of a reduced right Utumi ring. In Theorem 5
(resp. Theorem 6), we characterize a ring which is a finite direct sum of
prime right and left Goldie right p.p. rings (resp. finite direct sum of right
Ore domains). In Theorem 7 (resp. Theorem 8) we prove that a semiprime
right and left Goldie ring (resp. normal ring) R is a right p.p. ring if and
only if every divisible right R-module is p-injective. Finally, we consider
rings all of whose non-zero factor rings are right p.p. rings.

Throughout this paper “a ring” means “a non-zero associative ring with
1" and all modules are unital. For any ring S, we denote by E(S) the set of
all idempotents in S. Let R be an arbitrary ring. For a non-empty subset
X of a right (resp. left) R-module M, we set »x(X)={r € R| X»=0} (resp.
R(X)={r€ R|»X=0}). For aright (or left) R-module M, Z(M) denotes
as usual the singular submodule of M. A right R-module M is called a c.p.
module if every cyclic submodule of M is projective, or equivalently, for
any m € M, there exists e € E(R) such that rx(m)=eR. We call R a
right (resp. left) p.p. ring if Rg (resp. rR) is a c.p. module. A ring which
is right and left p.p. is said to be a p.p. ving. R is called a normal ring if
every idempotent of R is central. As was shown by Endo [2, Proposition
2], a normal ring R is a right p.p. ring if and only if it is a left p.p. ring and
if this condition is satisfied, then R is reduced. A right order R in a ring
@ is a subring of @ such that every element of @ has the form ab~! for
some @, b & R. Similarly, we define a left order in Q.

We begin by showing that a ring @ which has a right p.p. right order
is also a right p.p. ring. First, we prove the following

Lemma 1. Let R be a right order in a ring Q. Then for any
99
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ab™' € Q (a, b € R) we have ro{ab™')=brr(a)@Q.

Proof. It is clear that ro(ab™') 2 brg(a)@. On the other hand. let
cd™' (¢, d € R) be an arbitrary element of ro(ab~!). Since R is a right
order in @, we can write b~'c=rs"! for some r, sE€ K. Then » is in
re{a), and so cd! = brs'd~! € bre(@)Q. This shows that ro(ab™!) S
bre(a)Q.

Proposition 1. Let R be a right order in a ving Q. If R is a right
b.p. ring, then @ is also a right p.p. ring.

Proof. Let ab™! (a. b € R) be an arbitrary element of . Since R is
a right p.p. ring, 7z(e@)=eR for some ¢ € E(R). Then, by Lemma 1,
rolab ) =beQ=>beb™'Q. Clearly, beb™' is in E(Q). Therefore @ is a
right p.p. ring.

Corollary 1. Let R be a right order in a ring Q. Suppose that R is
a normal ring. Then R is a right p.p. ring if and only if Q is a right p.p.
ring and E(Q)=E(R).

Proof Assume first that R is a right p.p. ring. Then, by Proposition
1, @ is a right p.p. ring. Let e be an arbitrary element of F(Q) and write
l1—e=ab! with g, b € R. Clearly, ro(1—e)=eQ. On the other hand, by
Lemma 1, ro{ab~')=brr(a)Q@="5bfQ, where f is an element of E(R) such
that 7g(a)=fR. Since R is normal, 7¢(ab~")=/pQ=sQ. Thus we have
eQ=/rQ. Now it is easy to see that e=f € E(R).

To see the converse, we assume now that & is a right p.p. ring and
E(Q)=E(R). For any element a in R, ro(a)=eQ for some e € E(Q)=
E(R), and so 7z(a)=ro(a) N R=eQ N R=eR.

Proposition 2. Let R be a vight and left order in a ving Q. Then
R is a right p.p. ring if and only if Q s a right p.p. ring and for each
e € E(Q) there exists f € E(R) such that eQ=fQ.

Proof. The proof of the if part is quite similar to that of Corollary 1,
so we prove the only if part. Suppose that R is a right p.p. ring. By
Proposition 1, @ is a right p.p. ring. For an arbitrary element ¢ of E(Q),
we can write 1 —e=a"'b with a, b€ R. By hypothesis there exists fE E(R)
such that 7z(b)=sR. Then we have eQ=r¢(1—e)=rola™'b)=1Q.

By a classical right quotient ving of a ring R, we mean a ring @ 2 R
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such that every non zero-divisor d of K has an inverse ¢! in Q. and every
element of @ has the form ab~' for some a, b € R. If a classical right
quotient ring ¢ of R exists, it is unique up to isomorphism over R. A ring
R is called a right Ore ring if it has a classical right quotient ring.
Similarly, we define a classical left quotient ring and a left Ore ring.

The next is a slight generalization of [1. Lemma 3.1], [3. Theorem 3.4]
and [19, Theorem 1.3].

Theorem 1. Let R be a right Ore ring with classical right quotient
ring Q. Then the following are equivalent .

1) R is a normal p.p. ring.

2) Q s a strongly regular ving and E(Q)=E(R).

Proof. By Corollary 1, it suffices to prove that if R is a normal p.p.
ring, then @ is a strongly regular ring. Let @b~' be an arbitrary element
of @ (a, b € R). By [2, Lemma 2], there exist e € E(R) and a non zero-
divisor d € R such that a=ed. Then we have (@b ')?bd " '=ab 'e=aebh™!
=ab~!, and so @ is strongly regular.

Corollary 2. The following are equivalent:
1) R isa normal p.p. ring and every non zero-divisor of R is invertible,
2) R is a strongly regular ving.

Since a right duo ring is a normal right Ore ring, we readily obtain

Corollary 3. Let R be a right duo p.p. ring with classical right
quotient ving Q. Then Q is strongly regulay and E(Q)=E(R).

Although a normal p.p. ring need not be a right Ore ring, we have

Theorem 2. Let R be a normal p.p. ving. If R is integral over its
center, then R has a strongly regular classical two-sided quotient ring.

Proof. Clearly, the center of K is also a p.p. ring and every non zero-
divisor of the center of R is a non zero-divisor in K. Therefore the clas-
sical quotient ring C of the center of R is a von Neumann regular ring
(Theorem 1) and we may view R as a subring of the ring of central quotients
Q of R. (cf. [15]) As is easily seen, @ is reduced and is integral over C,
and hence by [17, Theorem 12] @ is also a strongly regular ring. Every
non zero-divisor of R is a non zero-divisor in @, and so it is invertible in
). Hence @ is a classical two-sided quotient ring of R.
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Using the standard technique, we can show that a ring which is a
finitely generated module over its center is integral over the center, and
hence we obtain

Corollary 4. Let R be a normal p.p. ring. If R is a finitely generated
module over its center, then R has a strongly regular classical two-sided
quotient ring.

According to Kaplansky [11], a ring R is called a Baer ring if every
annihilator right ideal of R is generated by an idempotent, or equivalently,
every annihilator left ideal of R is generated by an idempotent.

Let R be a right non-singular ring with maximal right quotient ring @.
Then R is said to be a right Utumi ring if it satisfies the following equiv-
alent conditions (cf. [18, Theorem 2.2]-or [16, XII, Proposition 4.7]):

1) Every non-essential right ideal of R has non-zero left annihilator.
2) Every closed right ideal of R is a right annihilator.
3) Every non-zero left ideal of @ has non-zero intersection with R.

The following lemma is available to simplify the proof of Utumi’s
theorem [18, Theorem 3.3]: Let R be a right and left non-singular ring.
Then the maximal right and left quotient rings of R coincide if and only
if R is a right and left Utumi ring.

Lemma 2. Let R be a right non-singular ring with maximal right
quotient ving Q. Then R is a right Utumi ring if and only if Q is a left
quotient ving of R, that is, rQ is a rational extension of rR.

Proof. The if part is clear, so we prove the only if part. Since @ is
a von Neumann regular ring, it suffices to show that Qe N R=+0 for every
non-zero e € E(Q). First, we prove that Qe=/o(R N (1—e)Q) for every
e € E(Q). Let a be an arbitrary element of /o(R N (1—e)Q). If we take
an essential right ideal 7 of R such that (1—e)! € R, then a(1—e)/=0.
Hence a=ae, which shows the above equality. If ¢ is a non-zero idempo-
tent of @, then R N (1—e)Q is a non-essential right ideal of K, hence by
hypothesis (R N (1—e)@)+*0. Since Qe= (R N (1—e)Q) =2
k(R N (1—e)®Q)+0, we obtain Qe N R=+0.

Theorem 3. Let R be a right non-singular ring with maximal right
quotient ving Q. Then the following are equivalent:
1) R is g vight Utumi, Baer ring.
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2) For every e € E(Q) there exists fE E(R) such that Qe=Qf.
If moreover R is normal, then 2) is equivalent to the following
condition:

2') E(Q)=E(R).

Proof 1)=2). For any non-zero e€ E(Q), RN(1—e)Q is a
non-essential right ideal of . Hence by hypothesis /(R N (1—e)Q)=Rf
for some non-zero f € E(R). On the other hand, since /o(R N (1—¢)Q)
= (e as was shown in the proof of Lemma 2, we have

Qe NR=LIRN(1A-e)Q)=Rf=Qf N R.

Since R is a right Utumi ring, @ is a left quotient ring of ® by Lemma 2.
Hence Qe and Qf are essential extensions of Qe N R(=Qf N R). Since
Z(rQ)=0 and Qe, Qf are closed submodules of zQ. it follows from [5, §7,
7. Proposition] that Qe=Qf.

2)=>1). As is clear from the assumption, @ is a left quotient ring
of R. Hence, by Lemma 2, R is a right Utumi ring. Since every annihi-
lator right ideal of @ is a closed right ideal [5, §8, 5. Proposition (3)], it is
generated by an idempotent [5, §8, 4. Theorem (3)]. Therefore @ is a
Baer ring. Hence for any non-empty subset X of R there exists e € E(Q)
such that /o(X)=Qe. By hypothesis there exists f € E(R) such that Qe
=¢@)f. Then we have

R(X)=1(X) N R=Qe N R=Qf N R=RY,

which shows that R is a Baer ring.

Thus we have proved the equivalence of 1) and 2). Noting that the
centralizer of R in @ coincides with the center of @, the last assertion is
obvious.

In [14]), Mewborn defined the Baer hull of a commutative semiprime
ring. We now define the Baer hull of a reduced right Utumi ring.

Theorem 4. Let R be a reduced right Utumi ring, and Q its maximal
right quotient ring. Let B(R) be the intersection of all Baer subrings of
Q containing R. Then B(R) is a Baer ring and coincides with the subring
of Q generated by R and E(Q).

Proof. Let S be a subring of @ containing R. Then, by Theorem 3,
S is a Baer ring if and only if E(Q)=E(S). Therefore our assertion is
clear.
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The ring B(R) defined in Theorem 4 will be called the Baer hull of
the reduced right Utumi ring R. Suppose now that R is a reduced, right
Utumi ring. Then the maximal right quotient ring @ of R is strongly
regular ([16, XII, Proposition 5.2]). Hence the intersection S(R) of all von
Neumann regular subrings of @ containing R is strongly regular ([16,
Exercise I. 47 (iii)]). We call S(R) the strongly regular hull of R.

According to [13, Theorems 1 and 5], any semiprime Pl-ring is a right
(and left) Utumi ring. Hence we have

Corollary 5. FEvery reduced Pl-ring has the Baer hull and the
strongly vegular hull.

Let R be a right Utumi, normal p.p. ring. If R has a classical right
(or left) quotient ring @, then S(R)=@, and hence by Theorem 1 E(S(R))
=F(R). We have the following conjecture.

Conjecture. If R is a right Utumi, normal p.p. ring, then E(S(R))=E(R).

Let R be a ring and let M be a right R-module. For any #« € M and
right ideal I of R, we set ({: u)={rE R|ur € 1}.

Proposition 3 (cf. [14, Proposition 2.9]). Let R be a reduced, right
Utumi ring, and S 2 R a novmal, Baer ring such that Sp is non-singular.
Then there is an isomorphism over R of B(R) onto a subring of S.

Proof. Let S’={a < S|(R:a) is an essential right ideal of R}, and
let K be a non-empty subset of S". As is easily seen, S’ is a subring of S
containing R. Since S is a Baer ring, »s(K)=eS for some e € E(S). We
show that 1—e & S’. Let I be a non-zero right ideal of R. If KI=0,
then / S eS and hence (1—e)/=0. Therefore, (R:(1—e)) 2 I. Thus, we
may assume that there exist some ¢ € K and b € [ such that ab=0.
Clearly, ab € S'. Since Sg is non-singular, there is an element » € R such
that 0+abr € K. Since R is reduced and S is normal, we have 0+ brabr
€(R:(1—e)) N I. Therefore (R:(1—e)) is an essential right ideal of R.
Hence 1—e&€ S". Since S’ is a subring of S we have e€ S’. Consequently,
rs(K)=rs(K)N S "=eS N S’=eS’. This shows that S’ is a Baer ring.
Since S’ is a right quotient ring of R, there is a monomorphism over R of
S’ into the maximal right quotient ring of R. The rest of the proof is easy.

Let R be a ring and let M be a right R-module. We set T(M)=
{me M| md =0 for some non zero-divisor 4 of R}. It is well known that
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T(M) is a submodule of M for each right R-module M if and only if R is
a right Ore ring ([12, Theorem 1.4)). We say that M is forsion free if
T(M)=0.

Lemma 3. Let R be a ving and suppose that R has a classical right
quotient ring Q.
(1) The following are equivalent:
1) Every torsion free right R-module is non-singular.
2) For every right R-module M we have Z(M)=T(M).
3) Q s a semisimple Artinian ring.
(2) If every torsion free right R-module is a c.p. module, then Q is
semisimple Artinian. )

Proof (1) 1)= 2). Let M be a right R-module and let m be an
arbitrary element of 7(M). Then there exists a non zero-divisor & of R
such that md=0. As is easily seen, dR is an essential right ideal of R,
and so mE€ Z(M). Hence we have T(M) S Z(M).

Now M/ T (M) is torsion free and hence by hypothesis it is non-singular.
Since Z(M)/ T(M) € Z(M/T(M)), it follows that Z(M)=T(M).

2)= 3). We show that @ has no proper essential right ideals. Let
I be an arbitrary essential right ideal of Q. Considering @// as a right
R-module, we have T(Q/1)=Z(Q/I)=Q/I. Hence there exists a non zero-
divisor d of R such that (1+7)d=1 that is, d € I. Hence we have /=Q.

3)= 1). Let M be a torsion free right R-module. By [12, Propo-
sition 1.5], M is an R-submodule of some @-module. Let m be an arbitrary
element of Z(M). Then rz(m) contains a non zero-divisor d. Since d is
invertible in @, we get m=0. Thus we have proved that Z(M)=0.

(2) It is easily seen that every c.p. module is non-singular. Hence
the assertion is a direct consequence of (1).

Theorem 5. For a ring R the following are equivalent :

1) R has a classical two-sided quotient ring and every torsion free
right R-module is a c.p. module.

2) R is a finite divect sum of prime right and left Goldie right pp

Yings.
Proof 1)= 2). Let @ be a classical two-sided quotient ring of R.
By Lemma 3, @ is semisimple Artinian. Clearly, Rj is torsion free and

hence by hypothesis R is a right p.p. ring. Therefore, by [5, 20.32 Theorem],
R is a finite direct sum of prime right and left Goldie right p.p. rings.
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2)Y=1). By hypothesis R has a classical two-sided quotient ring @
which is semisimple Artinian. Let M be a torsion free right R-module.
By [12, Proposition 1.5], M is an R-submodule of some @-module. Let m
be an arbitrary element of M. Since @ is semisimple Artinian, ro(m)=eQ
for some e E(Q). Noting that R is a right p.p. ring, there exists /€ E(R)
such that eQ =70 (Proposition 2), and hence rx(m)=ro(m)NR=QNR=
fR. This completes the proof.

Theorem 6 (cf. [3, Proposition 4.8]). Let R be a normal, right Ore
ring with classical right quotient ving Q. Then the following arve equivalent:

1) Every torsion free right R-module is a c.p. module.

2) Risa pp ring and Q is a finite dirvect sum of division rings.

3) R is a finite divect sum of right Ore domains.

Proof 1)= 2). Clearly Ris a p.p. ring and, by Lemma 3(2), @ is
semisimple Artinian. Noting that @ is normal (Theorem 1), @ is a finite
direct sum of division rings.

2)=>3). By Theorem 1, E(R)=E(Q), and hence this implication is
clear.

3)=1). Since E(Q)=E(R), the proof is similar to that of 2)= 1)
in Theorem 5.

A right R-module M is said to be divisible if Md=M for every non
zero-divisor d of R, and M is called p-injective if for any principal right
ideal I of R and any R-homomorphism f:I— M, there exists m € M such
that f(@)=ma for all e < L.

Theorem 7 (cf. [12, Theorem 3.4]). Let R be a ring and suppose that
R has a semisimple Artinian classical two-sided quotient ving. Then the
Jollowing are equivalent:

1) Every divisible right R-module is p-injective.

2) R is a right p.p. ring.

Proof. 1) = 2). Let M be a p-injective right R-module. Then, by
the proof of [12, Theorem 3.1], M is divisible. If M is an arbitrary factor
module of M, then M is also divisible, and hence by hypothesis it is p-
injective. Therefore, by [20, Remarks (2)], R is a right p.p. ring.

2)=1). Let M be a divisible right R-module and let f be an K-
homomorphism of a principal right ideal 7 of R to M. Since R is of finite
right Goldie dimension, there exist principal right ideals 1), :**, I» such that
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J=1® 5L D P I, is an essential right ideal of R. Since R is a right p.p.
ring, J is projective. By [8, Theorem 3.9], J contains a non zero-divisor.
Hence, in view of [12, Lemma 3.8] we can apply the argument used in the
proof of (2)=>(1) in [12, Theorem 3.4] to conclude that  can be extended
to an element of Homg(R,M). This completes the proof.

Remark. Suppose that R has a classical right quotient ring €. Then
every torsion free right R-module is p-injective if and only if @ is von
Neumann regular.

It is well known that a module M over a domain R is p-injective if
and only if it is divisible (see e.g. [10, Lemma 2]).

Theorem 8. If R is a normal ring, then the following arve equivalent:
1) Every divisible right R-module is p-injective.
2) R is a p.p. ring.

Proof. 1)= 2). The proof is same as that of 1)= 2) in Theorem 7.

2)=1). Let M be a divisible right R-module, and let f:aR— M
(a € R) be an R-homomorphism. Since R is a right p.p. ring, rz(a)=eR
for some ¢ € E(R). Noting that e+e is a non zero-divisor, we see that
there exists m € M such that m(a+e)=f(a). Since f(a)=Ff(a(l1—e))=
f(a)(1—e), we have then f(a)=ma. This shows that M is p-injective.

A ring R is called a completely right p.p. ring (resp. completely hered-
itary ring) if every non-zero factor ring of R is right p.p. (resp. right
hereditary).

Lemma 4. If R is a completely right p.p. ring, then the center C of
R s a von Neumann regular ring.

Proof. First, we show that C is semiprime. Let 2 be an element of
C with ¢2=0. Since R is right p.p., 7r(@)=eR for some e€ E(R). Then
we have a € eR N R(1—e) N C=0, and therefore C is semiprime. Next,
let ¢ be an arbitrary element of C and suppose that ¢2R+R. Since the
center of R/c?R is also semiprime, we obtain ¢ € c2R. Now it is easy to
see that C is a von Neumann regular ring.

Corollary 6. Let R be a normal, completely right p.p. ring satisfying
a polynomial identity. Then R is a strongly regular ring.
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- Proof By Lemma 4, the center of each prime factor ring of R is a
field. Hence, by [15, Corollary 1.6.28], each prime factor ring of R is simple
Artinian. Therefore, by [6, Corollary 1.4], R is a strongly regular ring.

Theorem 9. Let R be a completely right p.p. ring satisfying a
polynomial identity. If R is right Noetherian, then R is right Artinian.

Proof. In the proof of Corollary 6, we have seen that each prime factor
ring of R is a von Neumann regular ring. Hence, by [6, Corollary 1.2],
R/P(R) is von Neumann regular and P(R) is nilpotent, where P(R) is the
prime radical of R. Since R is right Noetherian, R/P(R) is semisimple
Artinian. Therefore R is right Artinian.

Combining Theorem 9 with [7, (4.2) Theorem], we readily obtain

Corollary 7. If R is a Pl-ring, then the following are equivalent:

1) R is a completely hereditary right Noetherian ring.

2) R is a hereditary, right Artinian ring and the square of its radical
s 0.
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CORRECTION TO “ON RIGHT P.P. RINGS”

(This Journal, Vel. 24, pp. 99—109)
Yasuvuki HIRANO, Motosii HONGAN and MAsAaYuki OHORI

Lemma 2 in [2] is false. In fact, let R be a right Ore domain which
is not left Ore (see e.g., [3, Example 1.3.7]). Let Q denote the skew
field of right fractions of R. (Obviously Q is a maximal right quotient ring
of R.) Then R is a right Utumi ring, but Q is not a left quotient ring of R.
Lemma 2 was used in the proof of Theorem 3. We present a revised
version of Theorem 3. The other results of the paper remain true without
change.

Theorem 3. Let R be a right Utumi ring with maximal right quotient
ring Q. Then the following are equivalent:

1) R is a Baer ring.

2) For every e € E(Q) there exists f € E(R) such that Qe N R =
RYf.

If moreover R is normal, then 2) is equivalent to the following condi-
tion:

2') E@Q) = E(R).

Proof. 1) =2). We claim that Qe = [o(R N (1 —e)Q) for every e
€ E(Q). Indeed, let a be an arbitrary element of I(R N (1—e)Q). If
we take an essential right ideal I of R such that (1—e)l C R, then
a(l — e)I = 0. Hence a = ae. which shows the above equality. Now for any
non-zero e € E(Q). RN (1 —e)Q is a non-essential right ideal of R.
Hence by hypothesis {z(R N (1 —e)Q) = Rf for some non-zero f € E(R).
Combining this with what we have shown above, we have Qe N R =
IlRN(1—e)R) = RS.

2} =>1). Since every annihilator right ideal of Q is a closed right
ideal [1, Proposition 8.5 (3)], it is generated by an idempotent [1,
Theorem 8.4 (3)]. Therefore @ is a Baer ring. Hence for any non-empty
subset X of R there exists e € E(Q) such that /4,(X) = Qe. By hypothe-
sis there exists f & E(R) such that Qe N R = Rf, and so [(X) =
loX) N R=Qe N R = RS This proves that R is a Baer ring.

Thus we have proved the equivalence of 1) and 2). Trivially 2°)
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implies 2). Now suppose R is normal and 2) holds. Since the centralizer
of R in @ coincides with the center of Q, every idempotent of R is central
in Q. Let e € E(Q) and take f € E(R) such that Qe N R = Rf. Clearly
we have f=fe and Q(1—fle N R =0. Since R is right Utumi, the
latter implies (1 —f)e = 0. Therefore we have f=fe =e. This com-
pletes the proof.

REFERENCES

[1] C. Farth:  Lectures on Injective Modules and Quotient Rings, Springer-{/er]ag. Berlin-
Heidelberg-New York, 1967.

[2] Y. Hirano, M. HONGAN arid M. OHORI: On right p.p. rings, Math. J. Okayama Univ. 24
(1982), 99—-109.

[3] A. V. JATEGAONKAR : Localization in Noetherian Rings, London Math. Soc. Lecture Notes
No. 98, Cambridge University Press, Cambridge, 1986.

Okavama UNIVERsITY
Tsuvyama CoLLEGE OoF TECHNOLOGY
Suinsau UNIVERSITY

(Received February 18, 1988)



